

2022 AIP Congress

Convergent close-coupling calculations of positron scattering from carbon

Nicolas A. Mori*, Liam H. Scarlett, Igor Bray and D.V. Fursa

Curtin University, Perth, Western Australia

*nicolas.mori@postgrad.curtin.edu.au

December 14, 2022

Introduction: Motivation

Introduction

- Method
- Results
- Conclusion
- Acknowledgements
- Positrons are important in medical industry positron emission tomography (PET) and positherapy.
- Quantifiable data of scattering processes occurring in these technologies scarce and largely unknown.
- Many modern scattering methods require accurate cross sections for each constituent atom to model the interactions occurring with positrons and biomolecules in these cases.
- Positronium-formation important, in particular, as its decay results in 80 % of detected gamma rays in PET scans.
- With this data can increase accuracy of PET scans and model positherapy.

- Method
- Results
- Conclusion
- Acknowledgements

Introduction: CCC-method

- Have extended atomic single-center convergent close-coupling (CCC) to calculate scattering from multi-electron atoms, without requirement of frozen-core.
- Achieved through utilisation of Multiconfigurational Hartree-Fock (MCHF) method of Fischer [Comp. Phys. Comm. 64, 369 (1991)] and MULT codes of Zatsarinny [Comp. Phys. Comm. 174, 273 (2006))]
- Have calculated comprehensive scattering data for positron scattering from carbon.
- Addressed deficits in single-center method through use of complex model potential.

Method

Results

Conclusion

Acknowledgements

Method: Atomic structure calculation

• Target Hamiltonian:

$$H_{\mathrm{T}} = \sum_{i=1}^{N_{\mathrm{e}}} \left(-\frac{1}{2} \nabla_{i}^{2} - \frac{Z}{r_{i}} \right) + \sum_{i>j=1}^{N_{\mathrm{e}}} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$

- Configuration-interaction representation of wave function: $\Phi_n^N(x_1, \dots, x_{N_e}) = \sum_{i=1}^N C_i^{(n)} \phi_i(x_1, \dots, x_{N_e})$
- Radial functions obtained via MCHF calculation or Laguerre basis functions:

$$\varphi_{k\ell}(r) = \sqrt{\frac{\alpha_{\ell}(k-1)!}{(k+\ell)(k+2\ell)!}} (2\alpha_{\ell}r)^{\ell+1} \\ \times e^{-\alpha_{\ell}r} L_{k-1}^{2\ell+1}(2\alpha_{\ell}r), \quad k = 1, \dots, N_{\ell}.$$
(1)

- Diagonalize target Hamiltonian to obtain CI coefficients.
- Pseudostates satisfy: $\langle \Phi_n^N | H_T | \Phi_m^N \rangle = \epsilon_n^N \delta_{nm}$

Method

Results

Conclusion

Acknowledgements

Method: Single-Center Convergent Close-Coupling

- Total scattering Hamiltonian: $H = H_{\rm T} \frac{1}{2}\nabla_0^2 + V$
- Schrödinger equation for total scattering wave function: $(H - E)|\Psi_i^{(+)}\rangle = 0$
- Solve through expanding wavefunction in set of target pseudostates:

$$\Psi_i^{N(+)} = \sum_{n=1}^N F_n^{N(+)}(\mathbf{r}_0) \Phi_n^N(\hat{\mathbf{r}}_1, \dots, \hat{\mathbf{r}}_N)$$

• Coupled Lippman-Schwinger equations for the T matrix:

• Perform partial-wave expansion of the projectile plane waves and solve the Lippmann-Schwinger equations per total scattering-system angular momentum *J*.

Method

Results

Conclusion

Acknowledgements

Method: Single-Center Convergent Close-Coupling Drawbacks

- Approach unstable between positronium-formation threshold and ionization threshold.
- Occurs because boundary conditions with channels corresponding to positive-energy pseudostates are closed while positronium-formation channels are open.
- Positronium-formation included implicitly therefore cannot seperate positronium-formation and direct ionization.

Method

- Results
- Conclusion
- Acknowledgements

Method: CCC-scaled Complex Model Potential

- Complex potential: $V_{opt}(r, E_i) = V_{st}(r) + V_{pol}(r) + iV_{abs}(r, E_i)$
- Static potential: $V_{\rm st}(r) = \frac{Z}{r} - 4\pi \left(\frac{1}{r} \int_0^r dr' \rho(r') r'^2 + \int_0^\infty dr' \rho(r') r'\right)$
- Polarization potential: $V_{\rm pol}(r) = -\frac{\alpha_{\rm D}}{2(r^2+d^2)^2}$
- Absorption potential:

$$egin{aligned} V_{\mathsf{abs}}(r,E_i) &= - \,
ho(r) \left[\sqrt{rac{T_{\mathit{loc}}}{2}} \left(rac{8\pi}{10k_F^3(r)E_i}
ight)
ight. \ & imes heta(k_i^2 - k_F^2(r) - 2\Delta)(A_1 + A_2 + A_3)
ight] \end{aligned}$$

- Staszewska et al. [J. Chem. Phys. 81, 335 (1984)].
- Absorption threshold: $\Delta(E) = \Delta_e (\Delta_e \Delta_p)e^{-(E_i \Delta_p)/E_m}$
- Form from Chiari et al. [J. Phys. B: At Mol Opt 45, 215206 (2012)]

Method

Results

Conclusion

Acknowledgements

Method: CCC-scaled Complex Model Potential

• Solve Lippman-Schwinger equation:

$$\langle \mathbf{k}_f | T | \mathbf{k}_i \rangle = \langle \mathbf{k}_f V | \mathbf{k}_i \rangle + \int d\mathbf{k} \frac{\langle \mathbf{k}_f | V | \mathbf{k} \rangle \langle \mathbf{k} | T | \mathbf{k}_i \rangle}{k_i^2 / 2 - k^2 / 2 + i0}$$

• Obtain partial-wave Lippman-Schwinger equation:

$$T_{\ell}(k_{f}, k_{i}) = V_{\ell}(k_{f}, k_{i}) + \mathcal{P} \int_{0}^{\infty} dk \frac{V_{\ell}(k_{f}, k) T_{\ell}(k, k_{i})}{k_{i}^{2}/2 - k^{2}/2} - rac{i\pi}{k_{i}} V_{\ell}(k_{i}, k_{i}) T_{\ell}(k_{i}, k_{i})$$

- Total cross section: $\sigma_{\rm tot} = 4\pi^3 \sum_{l=0}^{\infty} (2\ell+1) |T_\ell|^2$
- Elastic cross section: $\sigma_{\mathsf{el}} = -\frac{4\pi^2}{\sqrt{2E_i}}\sum_{\ell=0}^{\infty}(2\ell+1)\mathsf{Im}(T_\ell)$
- Calculate positronium-formation with delta-variational technique.
- Scale direct inelastic component to agree at high energy limit with single-center CCC.
- Scale positronium-formation component to agree at the maximum cross section between ionization threshold and 10 eV above it.

Calculation Details

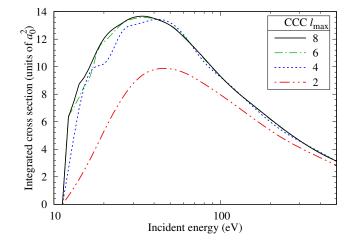
Introduction

Method

Results

Conclusion

- A MCHF calculation for C^+ was used to obtain orbitals 1s to 5s.
- All other orbitals obtained by Laguerre basis with $N_{\ell} = 18 \ell$, $\ell_{max} = 8$, and $\alpha_{\ell} = 1.0$.
- Configurations included: $2s^22pn\ell$ continuum for $\ell \le 8$, $2s2p^2n\ell$ for $\ell \le 4$, $2p^3n\ell$ for $\ell \le 2$, $2s2pn\ell'n\ell$ and $2s2pn\ell^2$ for $n\ell$ and $n'\ell'$ between 3s and 5s.
- Included target states with excitation energies 40 eV above ionization threshold, resulting in 943 target states.
- Calculations completed to J = 10 partial waves.
- Extrapolated ionization cross section at high energies with a 4571-state Born calculation.


Convergence study

Introduction

Results

Conclusion

- Convergence study of total ionization cross section for $\ell_{max}=2$ to $\ell_{max}=8.$
- Convergence established for $\ell_{max} > 6$ for energies above 15 eV.

Results: Structure

Introduction

Method

• Excitation energies and oscillator strength for carbon

Results

Conclusion

Acknowledgements

		State	Term	CCC	Ref. [1]	Ref. [2]	Ref. [3]	NIST. [4]							
	1	$2s^2 2p^2$	³Р	0.000	0.000	0.000	0.000	0.000	-						
	2	$2s^22p^2$	^{1}D	1.372	1.302	1.557	1.545	1.260							
	3	$2s^2 2p^2$	¹ S	2.748	2.629	2.602	2.545	2.680							
	4	2s2p ³	⁵ S°	3.940	3.963	3.092	3.133	4.179							
nts	5	2s ² 2p3s	³ P°	7.617	7.527	7.401	8.488	7.481							
	6	2s ² 2p3s	$^{1}P^{o}$	7.818	7.750	7.740	8.936	7.680	Lower level	Upper level	CCC	Ref. [1]	Ref. [2]	Ref. [3]	NIST. [4]
	7	$2s2p^3$	$^{3}D^{o}$	7.951	8.004	8.340	8.412	7.942	2s ² 2p ² ³ P	2s ² 2p3s ³ P° 2s2p ³ ³ D°	0.146	0.143	0.124 0.098	0.154 0.152	0.140 0.072
	8	2s ² 2p3p	^{1}P	8.897	8.534	8.451	9.456	8.534		2s2p D ⁻ 2s2p ³⁻³ P ^o	0.078	0.073	0.098	0.152	0.072
	9	$2s^22p3p$	³ D	9.032	8.649	8.600	9.589	8.642		2s ² 2p4s ³ P°	0.037	0.027	0.023	0.010	0.021
	10	2s ² 2p3p	³ S	9.188	8.775	8.772	9.785	8.767		2s ² 2p3d ³ D°	0.144	0.096	0.112	0.132	0.094
	11	2s ² 2p3p	³ P	9.332	8.857	9.309	10.390	8.845		2s ² 2p3d ³ P° 2s2p ³ ³ S°	0.037	0.037	0.340	0.069	0.040
	12	$2s2p^3$	³ P°	9.481	9.379	9.517	9.981	9.326	$2s^2 2o^2 {}^1D$	2s2p S ⁻ 2s ² 2p3s ¹ P ^o	0.143	0.156 0.103	0.171 0.128	0.269 0.103	0.152 0.118
	13	2s ² 2p3p	^{1}D	9.553	9.014	9.443	10.757	8.998	25 2p - D	2s ² 2p3d 1D°	0.017	0.012	0.009	0.007	0.013
	14	$2s^22p3p$	¹ S	9.766	9.172	10.424	11.370	9.168		2s ² 2p4s ¹ P°	0.015	0.007	0.004	0.010	0.011
	15	2s ² 2p3d	$^{1}D^{o}$	10.166	9.614	9.772	10.719	9.627		2s ² 2p3d ¹ F° 2s ² 2p3d ¹ P°	0.123	0.080	0.061 0.018	0.099	0.085
	16	$2s^22p4s$	³ P°	10.258	9.673	10.142	10.810	9.683		2s 2p30 P 2s2p ^{3 1} D ^o	0.256	0.011	0.344	0.529	0.009
	17	2s ² 2p3d	³ F°	10.271	9.687	9.517	10.809	9.695		2s2p3 1Po	0.151	0.155	0.351	0.333	
	18	2s ² 2p3d	$^{3}D^{o}$	10.288	9.705	9.607	10.888	9.705	2s ² 2p ² ¹ S	2s ² 2p3s ¹ P°	0.088	0.090	0.021	0.0076	0.094
	19	2s ² 2p4s	$^{1}P^{o}$	10.301	9.685	9.549	10.834	9.709		2s ² 2p4s ¹ P° 2s ² 2p3d ¹ P°	0.008	0.011 0.116	0.007	0.001 0.142	0.005 0.125
	20	2s ² 2p3d	${}^{1}F^{o}$	10.333	9.716	9.607	10.947	9.732		2s 2p30 P 2s2p ^{3 1} P°	0.148	0.110	0.030	0.142	0.125
	21	2s ² 2p3d	${}^{1}P^{o}$	10.370	9.748	9.653	10.970	9.758							
	22	2s ² 2p3d	³ P°	10.404	9.840	13.407	11.018	9.830							
	lon.	Limit		11.234				11.268							
	23	$2s2p^3$	$^{1}D^{o}$	13.600	12.968	14.470	14.645								
	24	$2s2p^3$	³ S°	13.279	13.073	13.407	15.366	13.117							
	25	$2s2p^3$	$^{1}P^{o}$	15.883	15.401	15.927	16.182								
		41 14/			4 07 04	0704 (004	a))]		-						

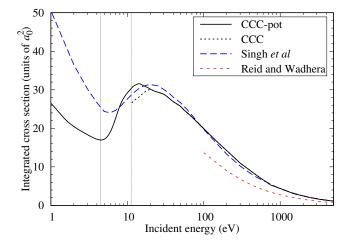
[1] Wang et al. [Phys. Rev. A 87, 012704 (2013)]

[2] Stancalie et al. [J. Phys. B: At. Mol. Opt. Phys. 576, 01201 0(2015)]

[3] Dunseath et al. [J. Phys. B: At. Mol. Opt. Phys. 30, 277 (1997)]

[4] NIST [https://www.nist.gov/]

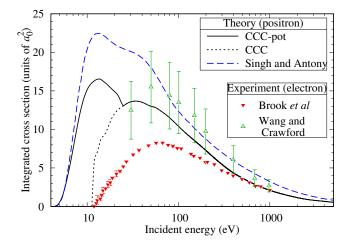
Results: Total Cross Section


Introduction

Method

Results

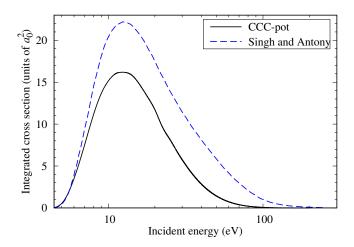
Conclusion


Acknowledgements

 Agreement with Singh et al. [J. Phys. Chem. A 120, 5685 (2016)] at high energies, Reid and Wadhera [J. Phys. B.: At. Mol. Opt. Phys 47, 225211 (2014)] underestimate both theories.

Results: Total Ionization Cross Section

- Introduction
- Method
- Results
- Conclusion
- Acknowledgements


• Results of Singh and Antony [J. App. Phys. 119, 50006 (2017)] higher for all energies beside threshold. Agreement viewed with electron experiment of Brook *et al.* [J. Phys. B.: At. Mol. Opt. Phys. 1, 3115 (1978)] above 500 eV.

Results: Positronium-formation Cross Section

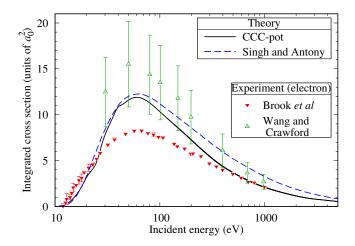
~ . .

Results

Acknowledgements

 CCC-scaled model potential lower than Singh and Antony [J. App. Phys. 119, 50006 (2017)] for energies above 5 eV.

Results: Direct Ionization Cross Section


Introduction

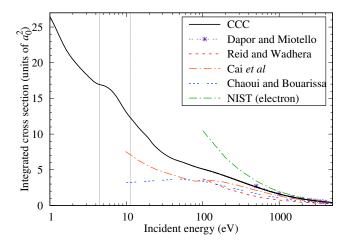
Method

Results

Conclusion

Acknowledgements

• Singh and Antony [J. App. Phys. 119, 50006 (2017)] and CCC in agreement below 40 eV. Agreement between CCC and electron experiment of Brook et al. [J. Phys. B.: At. Mol. Opt. Phys. 1, 3115 (1978)] above 500 eV.


Results: Elastic Cross Section

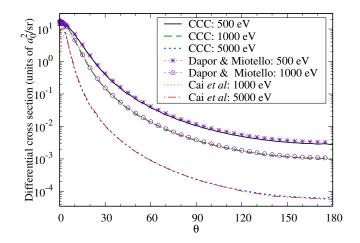
Method

Results

Conclusion

- Close agreement with CCC and calculations of Dapor and Miotello [At. Data and Nucl. Data Tables 69, 1 (1998)].
- Agreement with electron NIST [https://srdata.nist.gov/srd64/ (2016)] results above 2500 eV.

Results: Elastic Differential Cross Section


Introduction

Method

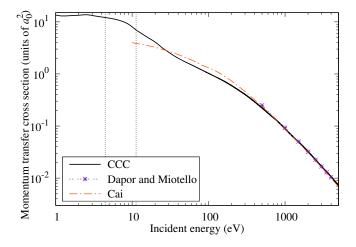
Results

Conclusion

Acknowledgements

• Close agreement between all theory, except for Cai *et al.* [J. Phys. Conf. Ser. 262, 012009 (2011).] at low angles.

Results: Momentum Transfer Cross Section


Introduction

Method

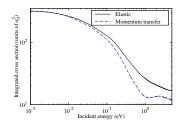
Results

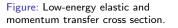
Conclusion

Acknowledgements

• Close agreement between all theory above 750 eV.

Method


Results


Conclusion

Acknowledgements

Results: Low-energy scattering

- From low-energy results can calculate scattering length of -5.03 a_0 .
- Can use this to calculate energy of positron-carbon virtual state: 0.537 eV.
- Hidden Ramsauer-Townsend minimum in elastic cross-section, can be observed in *s*-wave component and MTCS.
- Has been demonstrated for noble gases [Dzuba et al., J. Phys. B: Atom. Mol. Phys. 29, 3151 (1996).)], [Green et al., Phys. Rev. A 90, 032712 (2014).], [F. Arretche, M. V. Barp, W. Tenfen, and E. P. Seidel, Braz. J. Phys 50, 844 (2020).].

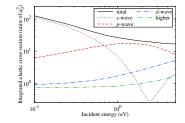
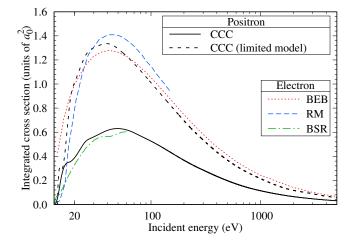


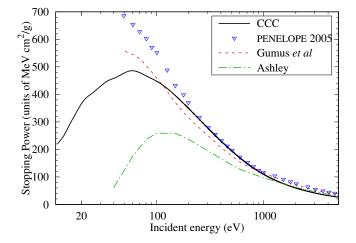
Figure: *s*-, *p*-, *d*- and higher wave components of elastic cross-section.


Results: Excitation to ³*S*^o

Method

Results

Conclusion



- Magnitude in closer agreement with electron-impact BSR [Phys. Rev. A 87, 012704 (2013)] results.
- Limited model agreement with other electron-impact calculations suggests inadequate description of $2s2p^2nl$ continuum.

Results: Stopping Power

Results

Conclusion

- PENELOPE [*NEA Databank (2004)*] code in agreement with CCC above 250 eV.
- Ashley [J. Electron Spectrosc. Relat. Phenom. 50, 323 (1990)] results in agreement with CCC above 1500 eV.

Conclusion

- Introduction
- Method
- Results
- Conclusion
- Acknowledgements
- Calculated comprehensive cross section data for positron scattering on carbon for various cross sections.
- Also calculated energy of virtual state, scattering length, and stopping power.
- Agreement viewed with carbon experiment and other theory for high energies, with exception for Singh and Antony [J. App. Phys. 119, 50006 (2017)] results for ionization.
- Discrepancies present between previous theory at lower energies.

- Introduction
- Method
- Results
- Conclusion
- Acknowledgements
- Pawsey supercomputing centre.
- Australian goverment.
- AIP congress.
- Audience.