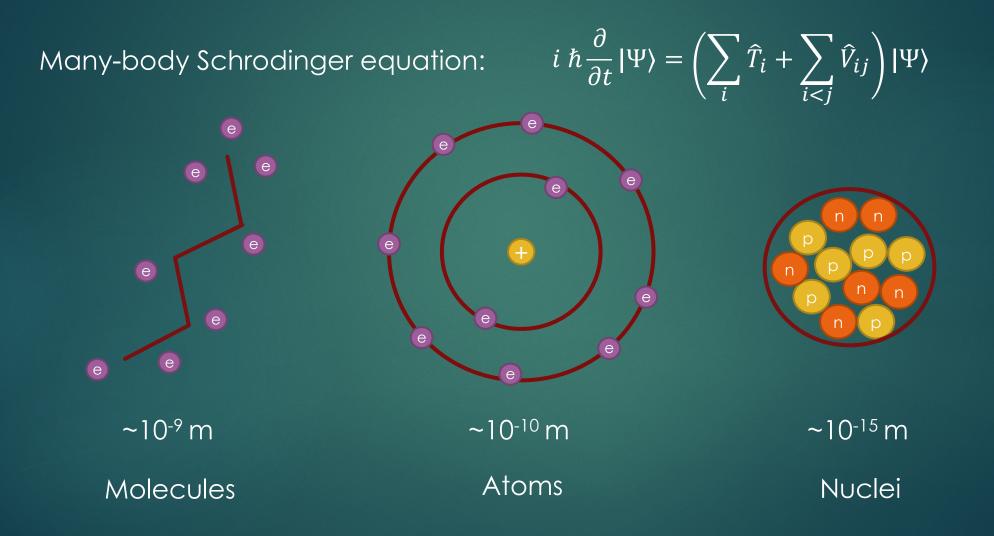
Fermions on a quantum ring

Joshua Cesca, Cedric Simenel, Alexander Bray ANU, Fundamental and Theoretical Physics

The quantum many-body problem



Simplified systems

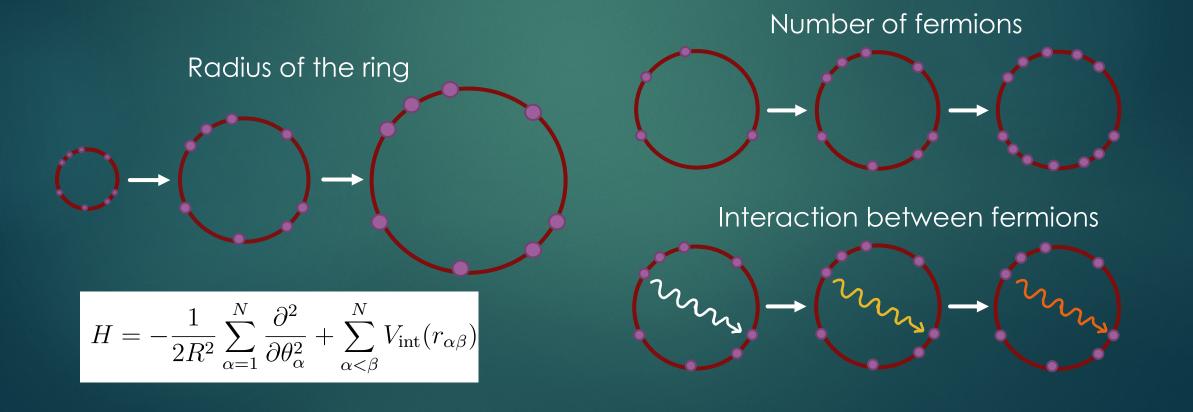
Benchmark many-body approaches with exact solutions

Homogenous matter

• Quantum rings (ringiums), 2D spheriums...

Why a quantum ring?

- Non-homogeneity
- Exact analytical solutions for 2 electrons Loos & Gill, Phys. Rev. Lett. 108, 083002 (2012)
- Generalision to higher dimensions Loos & Gill, Phys. Rev. Lett. 103, 123008 (2009)



Mean-field based methods with ringium

Ground state energy

MF based approaches

> Potentially exact

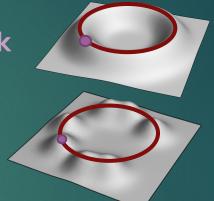
Unbroken symmetry Hartree-Fock

Broken Symmetry Hartree-Fock

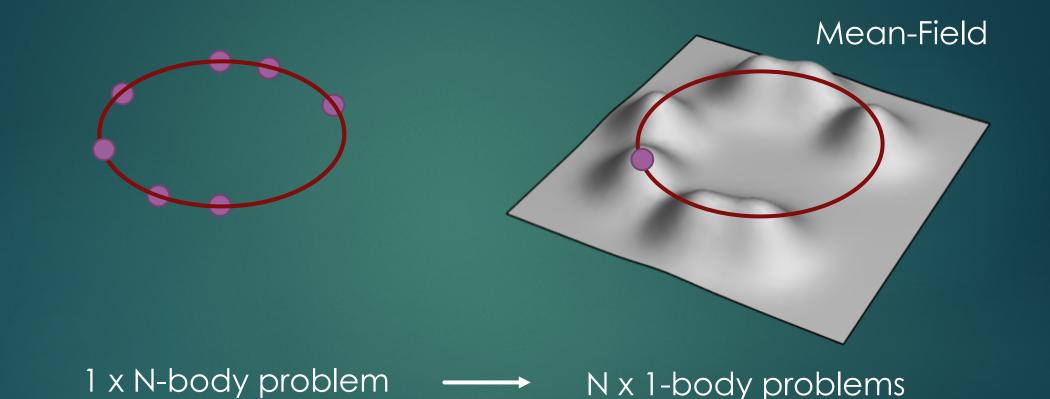
Restored Symmetry Hartree-Fock

Variational Monte Carlo

True ground state



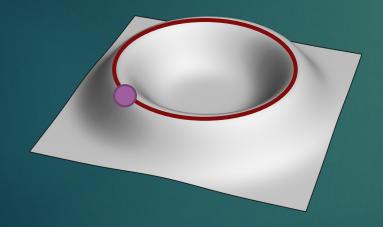
The Hartree-Fock approach

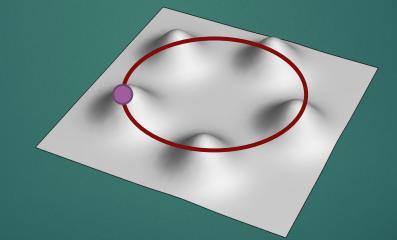


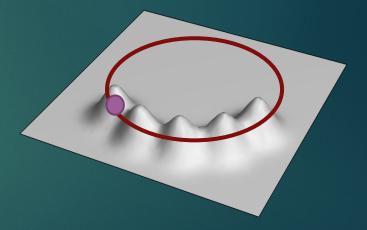
Hartree-Fock state = antisymmetrised product of single-particle wave-functions

Correlations through symmetry Breaking

Unbroken Symmetry Hartree-Fock Broken Symmetry Hartree-Fock (repulsive interaction) Broken Symmetry Hartree-Fock (attractive interaction)

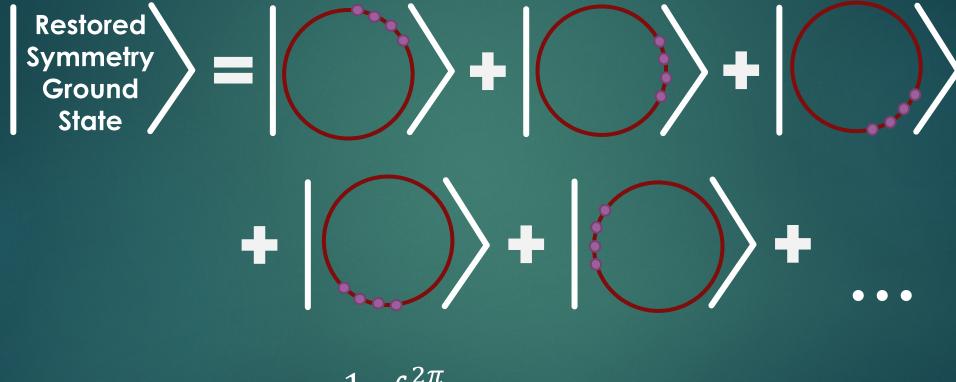






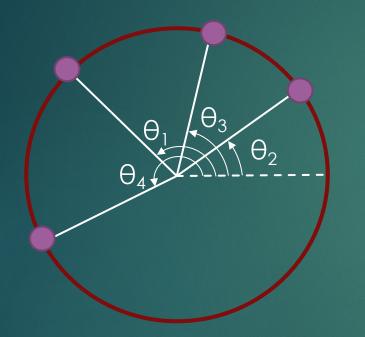
Restoring broken symmetry

True ground state should be symmetric under rotation.



$$|\Psi_{RS}\rangle = \frac{1}{2\pi} \int_{0}^{2\pi} d\theta \left(e^{-i\theta (J_{Z} - M)} |\Psi_{BS}\rangle \right)$$

Variational Monte Carlo

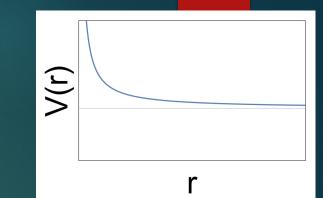


Flexible trial wave function: $\Psi(\Theta_1, \Theta_2, ..., \Theta_n; a_1, a_2, ..., a_m)$

Energy minimisation with respect to the parameters $\{a_1, a_2, \dots, a_m\}$

Comparison with exact results

Exact analytical solutions for 2 electrons Loos & Gill, Phys. Rev. Lett. 108, 083002 (2012)



Ring Radius (arb. units)	Exact energy (arb. units)	Variational Monte Carlo energy (arb. units)	Hartree-Fock energy (arb. units)
¹ / ₂	2.25	2.2503 ± 0.0008	2.2732
$\sqrt{3/2}$	0.66667	0.66661 ± 0.00016	0.68646
$\sqrt{\frac{3}{8}(7+\sqrt{33})}$	0.32694	0.32695 ± 0.00006	0.34352
$\sqrt{\frac{23}{2}}$	0.19565	0.19562 ± 0.00003	0.20947

Further VMC comparisons (various interactions and particle numbers) with CASINO solver Bray & Simenel, Phys. Rev. C, 103, 014302 (2021)

Mean-field based methods with ringium

Ground state energy

MF based approaches Unbroken symmetry Hartree-Fock

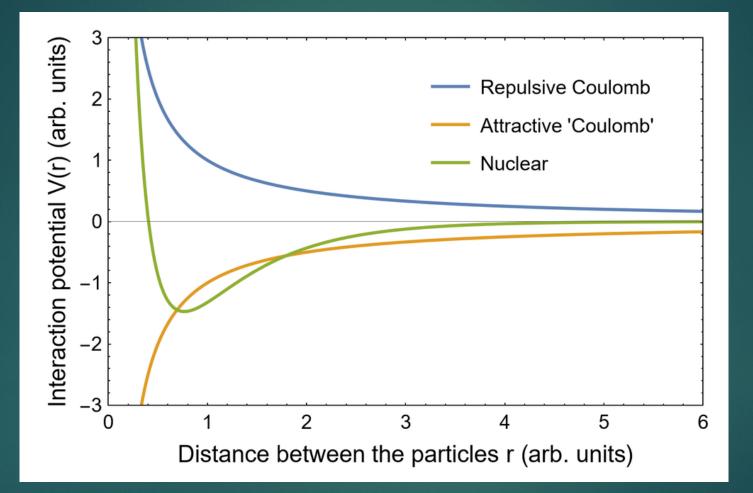
Broken Symmetry Hartree-Fock

Restored Symmetry Hartree-Fock

Numerically "exact"

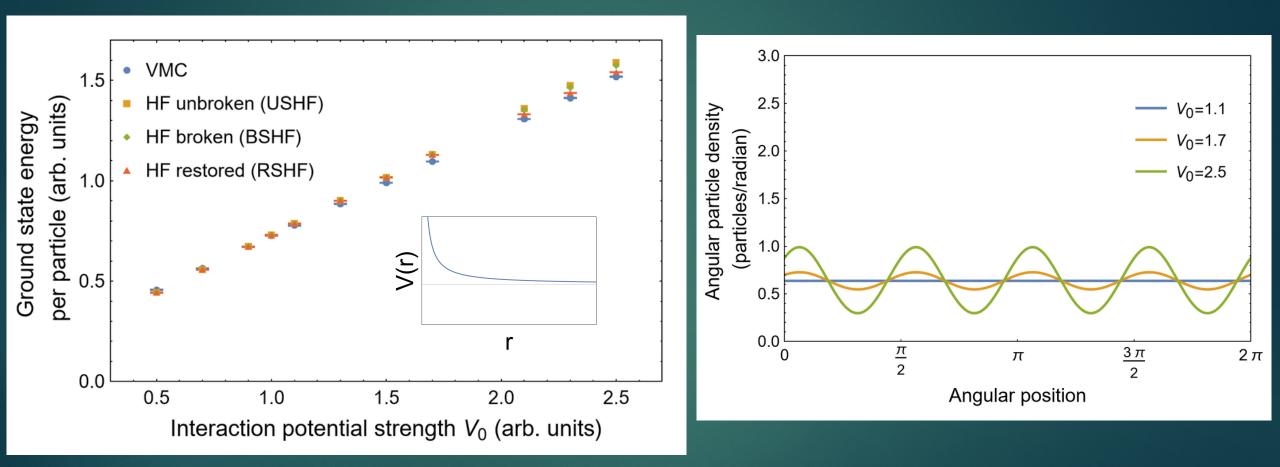
Variational Monte Carlo

Interactions



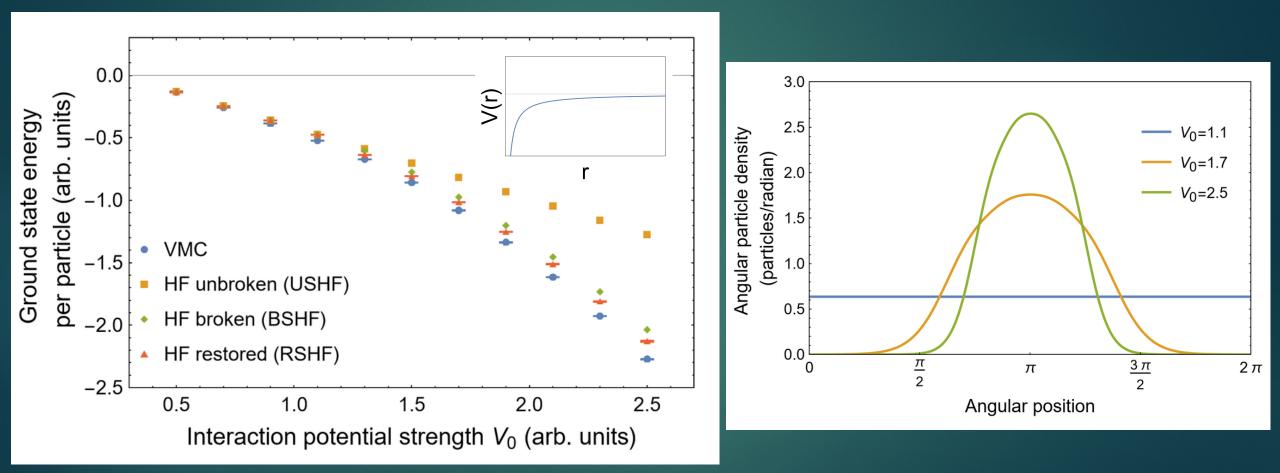
Repulsive Interaction:

4 particles



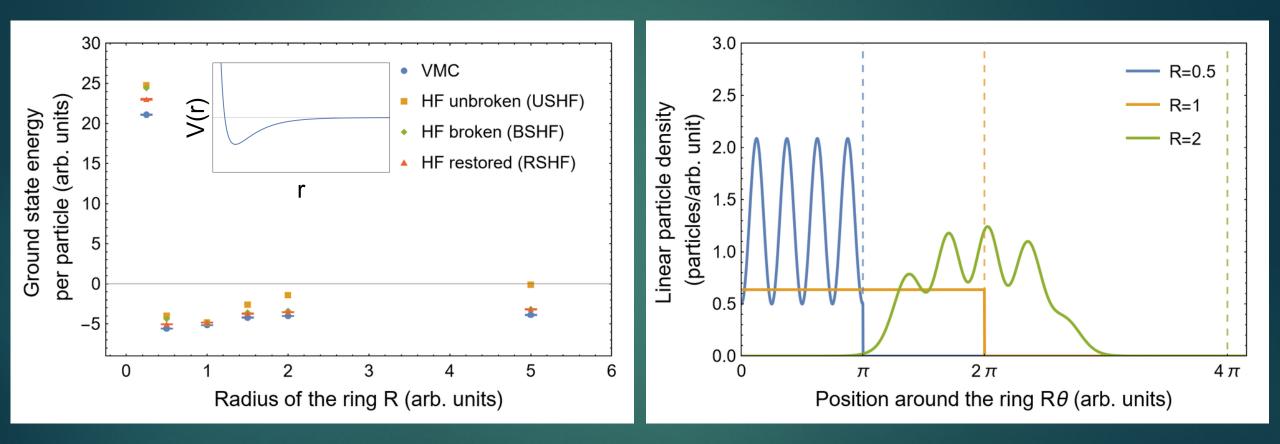
Attractive Interaction:

4 particles



Nuclear interaction:

4 particles



Conclusions and future work

- Numerical solutions for N fermions on a ring MF based methods and VMC
- Symmetry breaking is able to partially account for correlations through localisation
- Restoring the symmetry brings further improvement

- Investigate higher dimensions (2D-spherium)
- Benchmark other approximate methods (e.g. generator coordinate method)
- Break other symmetries (e.g. U(1) gauge invariance \Rightarrow pairing correlations & superfluidity)

