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The quantum many-body problem
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Simplified systems 
Benchmark many-body approaches with exact solutions

• Homogenous matter

• Quantum rings (ringiums), 2D spheriums… 
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Why a quantum ring?

Radius of the ring
Number of fermions

Interaction between fermions

• Non-homogeneity
• Exact analytical solutions for 2 electrons - Loos & Gill, Phys. Rev. Lett. 108, 083002 (2012)
• Generalision to higher dimensions - Loos & Gill, Phys. Rev. Lett. 103, 123008 (2009)

Figure 2.1: A comparison between the two nuclear potentials used in this thesis with V0 = 1.

interaction potentials, which I refer to as Nuclear 1 and Nuclear 2 respectively, are each
the sum of attractive and repulsive Yukawa potentials,

VN1(r–—) = V0
r–—

1
100e≠2r–— ≠ 64e≠1.5r–—

2
, (2.3)

VN2(r–—) = V0
r–—

1
12e≠2r–— ≠ 8e≠r–—

2
, (2.4)

where again V0 determines the strength of the potential and is positive for these inter-
actions. A comparison of the two interaction potentials can be seen in figure (2.1) with
V0 = 1. The main di�erence between the two is the strength and range of the hard-core
repulsion and the classical equilibrium distances (that is, the minimum of the potential).
Nuclear 1 has the larger hard-core repulsion and has an equilibrium distance of r–— = 1.29
arbitrary units, while Nuclear 2 has a weaker hard-core repulsion and an equilibrium dis-
tance of r–— = 0.77 arbitrary units. The two interactions have similar well depths at
their respective equilibrium distances of around ≠1.4 arbitrary units, provided that their
potential strengths, V0, are the same.

In this thesis, I use dimensionless distances and energies and set the mass of the fermions
on the ring, m, and the reduced Planck constant, ~, to be 1. In this format, the system
Hamiltonian in the angular coordinate basis is

H = ≠ 1
2R2

Nÿ

–=1

ˆ2

ˆ◊2
–

+
Nÿ

–<—

Vint(r–—), (2.5)
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Mean-field based methods with ringium
Ground state 

energy

True ground state

Variational Monte Carlo

Restored Symmetry Hartree-Fock

Unbroken symmetry Hartree-Fock

Broken Symmetry Hartree-FockMF based 
approaches

Potentially 
exact



The Hartree-Fock approach

1 x N-body problem N x 1-body problems

Hartree-Fock state = antisymmetrised product of single-particle wave-functions

Mean-Field



Correlations through symmetry Breaking

Unbroken Symmetry  
Hartree-Fock

Broken Symmetry 
Hartree-Fock

(repulsive interaction)

Broken Symmetry 
Hartree-Fock

(attractive interaction)



Restoring broken symmetry
True ground state should be symmetric under rotation. 
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Variational Monte Carlo

θ2

θ3θ1

θ4

Flexible trial wave function:

Ψ(θ1, θ2, …, θn;  α1, α2, … αm)

Energy minimisation with respect to the 
parameters {α1, α2, … αm} 



Comparison with exact results

Ring Radius
(arb. units)

Exact energy
(arb. units)

Variational Monte Carlo 
energy

(arb. units)

Hartree-Fock 
energy

(arb. units)

!1 2 2.25 2.2503 ± 0.0008 2.2732

!3 2
0.66667 0.66661 ± 0.00016 0.68646

3
8 (7 + 33)

0.32694 0.32695 ± 0.00006 0.34352

!23
2

0.19565 0.19562 ± 0.00003 0.20947

Exact analytical solutions for 2 electrons 
Loos & Gill, Phys. Rev. Lett. 108, 083002 (2012)

Further VMC comparisons (various interactions and particle numbers) with CASINO solver
Bray & Simenel, Phys. Rev. C, 103, 014302 (2021)



Mean-field based methods with ringium
Ground state 

energy

Variational Monte Carlo

Restored Symmetry Hartree-Fock

Unbroken symmetry Hartree-Fock

Broken Symmetry Hartree-FockMF based 
approaches
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“exact”



Interactions



Repulsive Interaction:
4 particles



Attractive Interaction:
4 particles



Nuclear interaction:
4 particles



Conclusions and future work

• Numerical solutions for N fermions on a ring MF based methods and VMC

• Restoring the symmetry brings further improvement
• Symmetry breaking is able to partially account for correlations through localisation

• Break other symmetries (e.g. U(1) gauge invariance ⇒ pairing correlations & superfluidity)

• Investigate higher dimensions (2D-spherium)
• Benchmark other approximate methods (e.g. generator coordinate method)
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I found that the density plots produced from my results, shown in figure (3.4), matched
these expectations and this, along with convergence of the energy with respect to the
number of basis states, K, and the imaginary time, · , provided good evidence that the
results were valid.

After performing this method, I am left with many-body independent-particle states
without rotational symmetry. However, the true ground state of the system exists in
the space with rotational symmetry. Later in this chapter, I will outline a symmetry
restoration method which will find the projection of these broken-symmetry states into the
space of rotationally symmetric states (which are no longer required to be independent-
particle states) which is hoped to produce a state even closer to the exact ground state.
First though, I will cover the variational Monte Carlo method used to find a better
approximation to the exact ground state, since it involves an algorithm that I also use in
the symmetry restoration method.

3.3 Variational Monte Carlo

3.3.1 Theoretical background
In the previous method, I restricted the variational space in which I was searching for the
ground state, to independent-particle many-body states. In the variational Monte Carlo
method, I explore a larger variational space that has been found to give much better
approximations to the true ground state [24, 25]. The method revolves around a trial
ground state |�vmc(aaa)Í, which depends on several parameters, a1, a2, ..., aJ . Thanks
to the variational principle discussed earlier, we can find an approximation to the true
ground state of the system by minimising the expectation energy of the trial state with
respect to its parameters [28].

Unlike the previous method with its simpler independent-particle state, evaluating the
energy of this trial state cannot be performed analytically in general. This is because the
expectation energy of the trial state is given by a high dimensional integral of the trial
wave function �vmc(◊◊◊, aaa),

È�vmc(aaa)|Ĥ|�vmc(aaa)Í =
s

d◊◊◊ �ú
vmc(◊◊◊, aaa)H�vmc(◊◊◊, aaa)

s
d◊◊◊ �ú

vmc(◊◊◊, aaa)�vmc(◊◊◊, aaa) , (3.25)

where the integration is over the position of each of the particles on the ring, d◊1, d◊2, ...,
d◊N . In the variational Monte Carlo method, this integral is evaluated numerically using
Monte Carlo integration. To perform this integration, I first write equation (3.25) as:

È�vmc(aaa)|Ĥ|�vmc(aaa)Í =
⁄

d◊◊◊P (◊◊◊, aaa)EL(◊◊◊, aaa) (3.26)

where P (◊◊◊, aaa) = |�vmc(◊◊◊,aaa)|2s
d◊◊◊|�vmc(◊◊◊,aaa)|2 and EL(◊◊◊, aaa) = H�vmc(◊◊◊,aaa)

�vmc(◊◊◊,aaa) . I then treat P (◊◊◊, aaa) as a proba-
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significantly to the overall average. In this project, I used the Metropolis algorithm
[35], a method of sequential sampling which uses the previous sample to stochastically
produce the next one. Rather than choosing samples randomly and weighting their local
energies with P (◊◊◊i, aaa) in the average, the Metropolis algorithm instead chooses samples
with a probability proportional to P (◊◊◊i, aaa) and then weights them evenly in the average.
In this way, a larger proportion of the sampled configurations contribute significantly
to the average, resulting in a faster convergence to the true expectation energy. To
accomplish this, a new configuration is generated in each step by subjecting the previous
configuration to a small jump in the position of one of its particles. Then the probabilities
of finding the new and old states are compared. If the new state is more likely, i.e.
P (◊◊◊new, aaa) > P (◊◊◊old, aaa), then the jump is accepted. If it is less likely then the jump is
accepted with the probability P (◊◊◊new,aaa)

P (◊◊◊old,aaa) or rejected with the probability of 1 ≠ P (◊◊◊new,aaa)
P (◊◊◊old,aaa) .

Each accepted configuration in the sequence has its local energy computed and included
in the average and if a jump is rejected, the energy of the old configuration is included
in the average again. In this way, the sequence of samples is drawn randomly from the
probability distribution, P (◊◊◊i, aaa), so that the local energies can then be weighted evenly
when calculating the average energy. Another advantage of the Metropolis algorithm is
that it is no longer necessary to calculate the normalisation factor, 1s

d◊◊◊|�vmc(◊◊◊,aaa)|2 , since

we only ever need the ratio of two probabilities P (◊◊◊new,aaa)
P (◊◊◊old,aaa) . Thus, we only ever need to do

one Monte Carlo integration to find the energy of the state rather than two6. Finally,
it is worth noting that the Metropolis algorithm also requires a ‘thermalising’ period for
the first part of its sequential sampling. In this period, the local energy of the samples
is not included in the overall average so as to avoid the choice of initial configuration
from influencing the final average. For instance, you could choose a highly improbable
configuration with a very large local energy as your first sample, which would unfairly
raise the final average energy.

The average distance between the particles for this method was also calculated using the
Metropolis algorithm, simply replacing EL(◊◊◊i, aaa) with 2

N(N≠1)
q

N

–<—
r–—(◊–, ◊—).

Uncertainty in the final result

As mentioned previously, one of the advantages of Monte Carlo integration when com-
pared to other numerical integration methods is that it gives a statistical uncertainty in
its final result, which indicates how good of an approximation the discrete sampling is to
the continuous integral. For random uncorrelated samples, this uncertainty is simply the
unbiased standard error in the mean,

‡EL =
ı̂ıÙ

q
ns
i=1(EL(◊◊◊i, aaa) ≠ ÈEL(aaa)Í)2

ns(ns ≠ 1) . (3.28)

6
That is, one Monte Carlo integration for the numerator of equation (3.25) and one for the denomi-

nator.
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condition on the second derivative of the wave function,

ˆ2�
ˆr2

–—

-----
r–—æ0

= V1
r–—

�
-----
r–—æ0

(3.29)

which was derived in appendix B.

The Jastrow wave function [37] has shown to be a compact and accurate approximation
to the many body wave function for interacting fermions [38]. It consists of a Slater
determinant of single-particle wave functions multiplied by a Jastrow correlation factor
which consists of the product of positive functions of the inter-particle distances, r–—,

�vmc(◊1, ◊2, ..., ◊n, aaa) =

-----------

„1(◊1) „1(◊2) · · · „1(◊n)
„2(◊1) „2(◊2) · · · „2(◊n)

... ... . . . ...
„n(◊1) „n(◊2) · · · „n(◊n)

-----------

NŸ

–<—

f(r–—, aaa). (3.30)

The Slater determinant part of the trial wave function ensures that it is antisymmetric
under the exchange of two particles, while the Jastrow factor allows for correlations
between the particles’ positions by increasing or decreasing the magnitude of the wave
function depending on the distance between the particles. In this method, I keep the
Slater determinant fixed and just optimise the correlation factor whose functions depend
on the parameters that will be optimised.

3.3.2 Numerical implementation
As mentioned in the previous chapter, Bray and Simenel [25] used the previously devel-
oped CASINO program to obtain their quantum Monte Carlo results. The issue with
the CASINO program was that it was not clear how to implement higher dimensional
spheriums which was a core goal for future research. Thus, in this project, the decision
was made to develop a new variational Monte Carlo simulation from scratch which would
be easier to modify to include spheriums. As I did for the previous method, in this sec-
tion I will outline and attempt to justify the choices that were made in this numerical
implementation of the variational Monte Carlo method.

The first major choice was on the form of the trial wave function which consisted of
a Slater determinant of single-particle wave functions and a Jastrow correlation factor.
Initially, I chose the single-particle wave functions and Jastrow correlation factor to be
the same as Bray and Simenel’s [25]. The single-particle wave functions were the kinetic
energy eigenstates whose Slater determinant was the unbroken symmetry Hartree-Fock
ground state discussed in the previous section. The wave functions of these states were,
for an odd number of particles,

1Ô
2fi

,
sin(◊)Ô

fi
,

cos(◊)Ô
fi

,
sin(2◊)Ô

fi
,

cos(2◊)Ô
fi

, ...,
sin((N ≠ 1)◊/2)Ô

fi
,

cos((N ≠ 1)◊/2)Ô
fi

, (3.31)
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1Ô
2fi

,
sin(◊)Ô

fi
,

cos(◊)Ô
fi

,
sin(2◊)Ô

fi
,

cos(2◊)Ô
fi

, ...,
sin((N ≠ 1)◊/2)Ô

fi
,

cos((N ≠ 1)◊/2)Ô
fi

, (3.31)
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and for an even number of particles,

sin(◊/2)Ô
fi

,
cos(◊/2)Ô

fi
,

sin(3◊/2)Ô
fi

,
cos(3◊/2)Ô

fi
, ...,

sin((N ≠ 1)◊/2)Ô
fi

,
cos((N ≠ 1)◊/2)Ô

fi
.

(3.32)
The advantage of using these states as a starting point (before introducing correlations
with the Jastrow factor) is that they are already relatively low in energy and their Slater
determinant is rotationally symmetric. Additionally, we know that these states can re-
produce the exact ground state when there is no interaction between the particles (so
long as the Jastrow factor can be equal to 1). Another advantage of this particular Slater
determinant of single-particle states is that it can be evaluated rapidly by comparing it
to the Vandermonde determinant which is done in appendix C. This gives

-----------

„1(◊1) „1(◊2) · · · „1(◊n)
„2(◊1) „2(◊2) · · · „2(◊n)

... ... . . . ...
„n(◊1) „n(◊2) · · · „n(◊n)

-----------

Ã
NŸ

–<—

sin
A

◊i ≠ ◊j

2

B

Ã
NŸ

–<—

rú
–—

(3.33)

where rú
–—

= 2R sin
1

◊–≠◊—

2

2
is the signed inter-particle distance which is allowed to be

positive or negative. The constants in front of this term are not important as normal-
isation of the wave function is dealt with by the Metropolis algorithm. Generally, the
determinant consists of the sum of N ! terms each of which is the product of N single-
particle wave functions. Instead, the determinant can be calculated as the product of
N

2 (N ≠ 1) functions which can be evaluated much faster, particularly for larger N . I used
this Slater determinant of single-particle wave functions for all variational Monte Carlo
results in this thesis.

I initially used the same Jastrow factor as Bray and Simenel [25],

NŸ

–<—

f(r–—, aaa) = exp
Q

a
Nÿ

–<—

(r–— ≠ Lc)3�(Lc ≠ r–—)
5ÿ

k=0
akrk

–—

R

b , (3.34)

where ak are the parameters of the trial wave function, � is the Heaviside step function
and Lc is a parameter which controls the maximum distance over which two particles can
correlate their positions. The Jastrow factor was first given in [38], and was developed
for use in both finite systems and infinite periodic systems, hence the need for a cut-o�
length, Lc. Since the quantum ring was finite and I wanted all the particles to be able
to be correlated, I simply set Lc = fiR, which is larger than the diameter of the ring. In
this form, the condition on the second derivative of the ring which prevents divergence in
the local energy becomes a condition on the relation between two of the wave functions
parameters

a0 = Lc

3

A

a1 + V1
2L3

c

B

(3.35)

and the derivation can be found in appendix D.
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where ak are the parameters of the trial wave function, � is the Heaviside step function
and Lc is a parameter which controls the maximum distance over which two particles can
correlate their positions. The Jastrow factor was first given in [38], and was developed
for use in both finite systems and infinite periodic systems, hence the need for a cut-o�
length, Lc. Since the quantum ring was finite and I wanted all the particles to be able
to be correlated, I simply set Lc = fiR, which is larger than the diameter of the ring. In
this form, the condition on the second derivative of the ring which prevents divergence in
the local energy becomes a condition on the relation between two of the wave functions
parameters

a0 = Lc
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and the derivation can be found in appendix D.
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The bounds of the parameters a1 through to a5 were another important consideration for
the numerical implementation of the method. A smaller parameter space took less time
to search and could result in a more finely optimised wave function in a given amount of
time, however, the smaller the parameter space was, the more likely it was that it would
not include the best possible parameter set and so could lead to a worse approximation
to the ground state. For this Jastrow factor, I chose the bounds such that the maximum
magnitude of each term, ak(r–— ≠Lc)3rk

–—
(over all possible r–— and ak within the bounds),

was approximately the same, equal to 10. This was to allow each parameter of the trial
wave function to have roughly equal ability to change the shape of the wave function; if
one term was significantly smaller than the others then there would be no sense in trying
to optimise that parameter as it would have little e�ect on the overall wave function.
This was especially true thanks to the exponential function which further obscured small
changes in its polynomial argument. The choice of the bounds of a1 also factored in the a1
dependence of the a0 term such that the maximum magnitude of (a0 + a1r–—)(r–— ≠ Lc)3

was roughly the same as the other terms.

The di�culty in using the aforementioned Jastrow factor arose when trying to increase
the strength of the interaction potential, V0

8. Since the strength of V0 factored into the
magnitude of the a0 term (since V1 Ã V0), larger values of V0 resulted in tighter parameter
bounds for a1 using the current method of choosing parameter bounds. I could mitigate
this by increasing the maximum allowed magnitude for any of the terms, however this
resulted in larger parameter bounds and slower optimisation of the other parameters. To
resolve this issue, I relaxed the condition on the second derivative of the wave function
and used a simpler Jastrow function with only four free parameters,

NŸ

–<—

f(r–—, aaa) = exp
Q

a
Nÿ

–<—

4ÿ

k=1
akrk

–—

R

b . (3.36)

I chose to use a simpler form because the original Jastrow function had been engineered
to have particular behaviours at the cut-o� distance Lc [38], which were not important on
the finite quantum ring. I chose to decrease the number of parameters because I noticed
that in most runs, a5 was not being optimised and so I assumed it was not necessary to
achieve a good approximation to the ground state. In this new form, the second derivative
condition would give a1 = V1

2 (shown in appendix D), although I still allowed a1 to vary.
My assumption was that so long as V1

2 was within the bounds of a1, the optimisation
process itself would decide if the second derivative condition was necessary for finding
the best ground state approximation in this variational space.

Figure (3.6) shows that for N = 2 particles on a R = 2 radius ring, interacting via
Nuclear 1 of strength V0 = 5, this new Jastrow factor was able to achieve a much better
approximation to the ground state energy in shorter amount of time. Indeed, the more
complicated Jastrow function was not able to converge to the same ground state energy
even when run for more than seven times as long as the simpler Jastrow function. Ad-

8
I wanted to increase V0 to display the rotational symmetry breaking in the previous Hartree-Fock

method. Low values of V0 resulted in no symmetry breaking.

35

Energy

calculated as

treated as a probability Energy of the configuration

Uncertainty

using Metropolis algorithm

Condition for continuity                                (equiv. Kato cusp condition)

Wave function
Single particles for N odd

and for Neven

Jastrow function

Vandermonde
determinant


