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Strong collective coupling to the cavity NC ≫ 1 is the key requirement 
for both approaches to generate entanglement, where C is the single 
particle cooperativity parameter43,47,48. Previously, an interferometer 
was operated in a low finesse cavity49,50, to provide power build-up, 
spatial mode filtering and precise beam alignment. Here we achieve 
matter-wave interferometric control31,32 simultaneously with strong 
collective coupling NC ≈ 500 by operating inside a cavity with high 
finesse = 1.3 × 105F  with small mode waist w0 = 72 µm.

Our two-mirror cavity is vertically oriented along Ẑ (Fig. 1). The cavity 
has a power decay rate κ = 2π × 56(3) kHz at 780 nm, a mirror separation 
L = 2.2 cm and a free spectral range ωFSR = 2π × 6.7879 GHz (all error bars 
reported are 1σ uncertainties). Rubidium atoms are laser cooled inside 
the cavity and then allowed to fall under gravity for a duration of Tfall, 
guided tightly along the cavity axis by a hollow (Laguerre–Gauss 
LG01-like) blue-detuned optical dipole guide51 with thermal r.m.s. cloud 
transverse radius of rr.m.s. = 4.7(8) µm ≪ w0 (Methods).

Manipulating matter waves
We manipulate matter-wave wave packets using velocity-sensitive 
two-photon transitions with wavelength λ = 780 nm. The combined 
absorption and stimulated emission of photons imparts 2ħk momen-
tum kicks oriented along the cavity axis, where k = 2π/λ and ħ is the 
reduced Planck constant.

For Raman transitions in which both momentum and spin states  
are changed, we use the magnetically insensitive 87Rb clock states, 

F m↓) ≡ = 1, = 0)F∣ ∣  and F m↑) ≡ = 2, = 0)F∣ ∣ , separated by the hyper-
fine transition frequency ωHF ≈ 2π × 6.835 GHz. The driving laser’s  
frequency is stabilized between two TEM00 longitudinal modes app-
roximately ∆ = 2π × 85 GHz blue-detuned of ∣ ∣ ∣e F↑) → ) ≡ 5 P , = 3)2

3/2  
(Fig. 2a). As shown in Fig. 2b, the cavity free spectral range is tuned such 
that two sidebands at ±ωR are approximately ±2π × 23 MHz from reso-
nance with the closest TEM00 mode when 2ωR = ωHF. This configuration 
allows enough light to non-resonantly enter the cavity for a two-photon 
Rabi frequency ΩTwoPh = 2π × 10 kHz. By injecting the Raman tones 
non-resonantly and with opposite detunings, we greatly suppress laser 

frequency noise from being converted into phase and amplitude noise 
inside the cavity. Such noise manifests as noise in the Raman rotations 
and undesired Bragg scattering to other momentum states. The fre-
quency difference of the sidebands is linearly ramped at a rate of 
25 kHz ms−1 to compensate for the acceleration of the atoms by gravity 
(Methods).

In Fig. 2c, we show the initial axial velocity spectrum of the atoms as 
mapped out by inducing velocity-dependent spin flips. We use this 
same process to select atoms within a narrow range of initial velocities 
for coherent manipulation of matter waves, resulting in approximately 
N0 = 800−1,200 atoms in |↓  with r.m.s. momentum spread ∆p = 0.1ħk 
set by choice of the two-photon Rabi frequency ΩTwoPh = 2π × 1.4 kHz 
(Methods).

In Fig. 2d, we demonstrate the quantized nature of the momentum 
kicks imparted by the intracavity Raman transitions. After velocity 
selection, a π/2 pulse is followed by a second Raman π pulse to place 
the atoms into a superposition of ħk0 , ↓)∣  and ħk4 , ↓)∣  in the falling 
frame of reference. We observe this as two distinct peaks separated in 
the subsequent velocity spectrum. Future interferometers might evolve 
in such superpositions so as to minimize systematic errors and dephas-
ing due to differential environmental couplings to ∣↑)  and ∣↓).

Complementary to hyperfine spin-state changing Raman transi-
tions, we also demonstrate intracavity Bragg transitions in this 
high-finesse and high-cooperativity cavity. The Bragg coupling  
(Methods) connects states ∣ ∣nħk n ħk) / ( + 2) )  with no change in the 
spin degree of freedom, as shown in Fig. 2e. After velocity selection, 
the wave packet is coherently split by a Bragg π/2 pulse, followed by 
successive π pulses to transfer momentum to one of the wave packet 
components for a momentum difference of up to 10ħk. Access to Bragg 
transitions opens the door to both large momentum transfer operations 
for greater sensitivity and to improved coherence times in future work.

Squeezing on momentum states
We now turn our attention to creating entanglement between atoms 
that includes this external degree of freedom. We describe the 
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Fig. 1 | Experimental overview. a, Ultracold atoms undergo guided free fall  
in a vertical high-finesse cavity. The atomic wave packets are split and 
recombined by driving two-photon Raman transitions to provide quantized 
momentum kicks to the atoms. Intracavity atomic probe light (right inset) 
generates entanglement between the atoms by either OAT dynamics or QND 
measurements made by detecting (bottom inset) the reflected atomic probe 
field's Q quadrature with a homodyne detector5,47. The entanglement between 
atoms is seen to persist over wave packet separations exceeding 12 µm.  
b, Space–time and Bloch sphere depictions of the generation and injection of 

the entanglement into a Mach–Zehnder matter-wave interferometer. 
Squeezing is first generated in the population basis, and then a Raman beam 
splitter pulse orients the squeezing for enhanced interferometer phase 
sensitivity. The two paths (red and blue) accrue a relative phase φ over time 
2Tevol, the mirror pulse serves to re-overlap the wave packets and the readout 
beam splitter pulse creates interference that is read out as a population 
difference with sub-SQL sensitivity. Representative noise distributions are 
depicted on the Bloch sphere for various points in the interferometer.

Graham P. Greve, Chengyi Luo, Baochen Wu & James K. Thompson, Nature 610, 472 (2022)
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principle could be orders of magnitude lower than mechanical and
optical gyroscopes.113 To date, the most stable cold-atom gyroscope
achieved a stability of 3! 10"10 rad/s, comparable to strategic-grade
fiber-optic gyroscopes.114 The long-term stability of cold-atom inertial
sensors also enables high-accuracy measurements in field-deployed
scenarios that could never be achieved with classical sensors.32,36

Integrated measurement units that fuse high precision, high band-
width classical sensors with the long-term stability provided by cold-
atom inertial sensors, within a portable and rugged form factor, could
enable currently unachievable capabilities in navigation, mineral
resource extraction and recovery, hydrology and groundwater moni-
toring, and satellite gravimetry.31 Toward this end, there is consider-
able ongoing research and development into guided cold-atom
gyroscopes, more suitable for moving platforms,115–118 with recent
experiments demonstrating per-shot sensitivities of 10"5 rad/s.119

B. Potential benefits of quantum entanglement
Equation (5) shows that there are only four routes to improved

cold-atom accelerometer sensitivity: (1) increase the interferometer
time T, (2) increase the atomic flux, (3) increase the momentum
imparted to the atoms by the beamsplitters and mirrors, and (4) sur-
pass the SNL with quantum entanglement (n < 1). Not all routes are
necessarily available. For example, a given size, weight, and power
place a fundamental bound on T (through the device size) and also on
the maximum kk (due to both device size and maximum available
power). Atomic fluxes are limited by device duty cycles, trapping
depths and geometries, and requirements on source coherence and
momentum width.121–123 Similar limitations hold for cold-atom gyro-
scopes [Eq. (6)]. Quantum enhancement may therefore be required to
achieve the ambitious sensitivity improvements needed for future pre-
cision measurements, such as weak equivalence principle tests capable
of ruling in or out candidate theories of quantum gravity.23–26

The high accuracy of current cold-atom inertial sensors could
also be improved by quantum entanglement. As in the case of atomic
clocks, quantum enhancement would allow a cold-atom inertial sensor
to reach a given precision faster than a shot-noise-limited inertial sen-
sor. This would accelerate the characterization of systematic errors,
potentially increasing the accuracy.

When operating at the environmental noise floor, improvements
to sensitivity do not give improved performance. However, a
quantum-enhanced sensor could still be beneficial here. For instance,
according to Eq. (5), improvements to sensitivity can be traded for a
reduction in T, and therefore an increase in measurement rate (band-
width) and/or a decrease in device size. Concretely, 10 dB of spin
squeezing (n ¼ 0:1) could let you build an accelerometer a factor of 10
smaller for the same sensitivity as a shot-noise-limited device.

C. Requirements for quantum-enhanced cold-atom
inertial sensors

Precision cold-atom inertial sensors require the creation and
manipulation of well-defined motional atomic matter-wave modes
that are space-time separated. For high fringe contrast, coherence
needs to be maintained between these modes for significant periods of
interrogation time, alongside good mode-matching at the interferome-
ter output. This must be achieved with large atom number sources
and with minimal atom-atom interactions (to minimize phase

diffusion124,125). To realize a stable device that does not drift over long
time scales—a key advantage of cold-atom sensors—the response of
the sensor is locked to some atomic transition. Ideally, the sensor’s
response should only depend on fundamental constants, rather than
the particular macroscopic properties of the device.

State-of-the-art cold-atom inertial sensors meet these require-
ments, and so must a useful quantum-enhanced cold-atom inertial
sensor. However, meeting these requirements while also generating
entanglement between motional modes and preserving it over large
space-time separations is exceedingly difficult. Any experimental
imperfection that causes atom loss in the two modes that define the
atom interferometer arms will degrade metrologically useful entangle-
ment within the interferometer and therefore the degree of quantum
enhancement. In current state-of-the-art atom interferometers, such
losses are primarily due to detection noise, multimode excitations into
modes other than the two interferometer modes (e.g., populating the
intermediate momentum states for Bragg pulses96) and atoms leaving
the laser beam and detection regions (and therefore the interferome-
ter).32 Furthermore, mode-matching requirements are far more strin-
gent for quantum-enhanced atom interferometry. In a shot-noise-
limited atom interferometer, imperfect spatial-mode overlap simply
degrades the sensitivity via a multiplicative factor in the fringe con-
trast, whereas in a quantum-enhanced atom interferometer it leads to
both a loss of fringe contrast and an increase in fluctuations. The latter
effect can be significant; for instance, in the numerical simulations of
spin-squeezed Bose–Einstein condensates (BECs) reported in Fig. 3 of
Ref. 126, when imperfect mode matching reduced the average spin
length jhĴij by 35% in a spherical BEC of N ¼ 106 atoms, it also
reduced the spin squeezing from an anticipated n $ 0:2 to zero
(n¼ 1). Imperfect mode overlap can also manifest as a rotation of the
state on the Bloch sphere. For states with a large degree of spin squeez-
ing, this can couple noise from the anti-squeezed spin direction into
the measured spin-axis, degrading the sensitivity to significantly worse
than the SNL.

Meeting these stringent requirements has proven challenging, to
the degree that a quantum-enhanced measurement of an inertial
quantity with a cold-atom sensor has not yet been demonstrated, even
in a proof-of-principle laboratory-based device. Indeed, despite sophis-
ticated demonstrations of sub-SNL atom interferometry between
internal states, only recently has an experiment converted entangle-
ment between internal states into entanglement between well-
separated, controllable motional modes suitable for inertial sensing.127

FIG. 3. Under the OAT Hamiltonian Ĥ ¼ !hvĴ
2
z , the Wigner quasiprobability distri-

bution for an initial CCS state (i) is sheared on the Bloch sphere [(ii) and (iii)], creat-
ing a spin-squeezed state by reducing the variance of the distribution in one
direction at the expense of an increase in the other. To exploit this spin squeezing
in the scheme depicted in Fig. 1, the state needs to be rotated such that the vari-
ance is minimized along Jz (iv).

Applied Physics Letters PERSPECTIVE scitation.org/journal/apl

Appl. Phys. Lett. 118, 140501 (2021); doi: 10.1063/5.0050235 118, 140501-6

Published under license by AIP Publishing
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FIG. 1. (a) Space-time diagram illustrating SNL gravimetry
with a BEC. Unwanted interatomic interactions are reduced
by freely expanding the BEC for duration Texp. A ⇡/2-⇡-⇡/2
Raman pulse sequence then creates a MZ interferometer of
interrogation time T . The two interferometer modes corre-
spond to internal states |1i (red) and |2i (blue) with ~k0 mo-
mentum separation. (b) Quantum-enhanced ultracold-atom
gravimetry. During initial expansion duration Texp = 2TOAT,
the BEC’s interatomic interactions generate spin squeezing
via OAT. (c) Bloch sphere representation of state during
quantum-enhanced gravimetry.

proves the e�ciency of large momentum transfer beam-
splitting [63, 64], and mitigates many systematic and
technical noise e↵ects [65, 66]. However, a BEC’s large
interatomic interactions are generally considered an un-
wanted hinderance. Interatomic collisions couple num-
ber fluctuations into phase fluctuations, causing phase
di↵usion, which degrades sensitivity [67, 68]. Conse-
quently, the e↵ects of interatomic collisions are mini-
mized by freely expanding the BEC prior to the MZ’s
first beamsplitting pulse [Fig 1(a)], which converts most
of the collisional energy to kinetic energy. This reduces
phase di↵usion and gives excellent mode matching (re-
quired for high fringe contrast), since the BEC’s spatial
mode is largely preserved under free expansion [69, 70].

Quantum-enhanced gravimetry with a BEC.— Our
scheme, depicted in Fig. 1(b), is a modification of the
standard MZ. Instead of ‘wasting’ the strong interatomic
interactions during this initial expansion period, our
scheme exploits them with a ‘state-preparation’ interfer-
ometer that generates spin squeezing via OAT. Repre-
senting the state as a Husimi-Q distribution on the Bloch
sphere [71, 72], OAT causes a shearing of the distribution
[Fig. 1(c)]. The second beamsplitter (BS2) rotates the
distribution such that it is more sensitive to phase fluc-
tuations within the interferometer, resulting in reduced

relative number fluctuations at the output. Necessar-
ily, BS2 is not a 50/50 beamsplitter, with the relative
population transfer dependent on the degree of squeez-
ing. Unlike trapped schemes, where interatomic collisions
cause unwanted multimode dynamics that make it di�-
cult to match the two modes upon recombination [73],
a BEC’s spatial mode is almost perfectly preserved un-
der free expansion, even for large atom numbers and
collisional energies. The two modes are therefore well-
matched throughout the interferometer sequence. Fur-
thermore, since the collisional energy is converted to ki-
netic energy during expansion, the interatomic interac-
tions e↵ectively ‘switch o↵’ after ⇠ 10ms, minimizing
their e↵ect during most of the interferometer sequence.
For T � TOAT, our scheme enables a gravity measure-
ment with sensitivity (see Supplemental [74], which in-
cludes Refs. [5, 7, 59, 69, 75–86])
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symbol. Physically, Ĵz is proportional to the popula-
tion di↵erence between the two internal states, whilst Ĵx

and Ĵy encode coherences between the modes. Equa-
tion (1) shows that our scheme is capable of high pre-
cision, quantum-enhanced gravimetry provided ⇠ < 1,
which is a su�cient condition for spin squeezing [88].
Analytic model of spin squeezing.— In what follows,

we assume Raman pulse durations that are much shorter
than the timescale for atomic motional dynamics. Typ-
ical atom interferometers operate in this regime, allow-
ing us to treat the Raman coupling as an instantaneous
beamsplitter unitary Û✓,� [53]:
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where ✓ and � are the beamsplitting angle and phase,
respectively.
Typical spin squeezing models approximate  ̂1(r) ⇡

u1(r)â1 and  ̂2(r) ⇡ u2(r)eik0z
â2, where bosonic modes

âi correspond to the two interferometer paths [34].
This neglects the e↵ect of imperfect spatial-mode over-
lap on the spin squeezing, which can be substan-
tial [73]. Here, we assume  ̂1(r, t) = u1(r, t)â1 +
v̂1(r, t) and  ̂2(r, t) = u2(r, t)eik0z

â2 + v̂2(r, t), where
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interrogation time T . The two interferometer modes corre-
spond to internal states |1i (red) and |2i (blue) with ~k0 mo-
mentum separation. (b) Quantum-enhanced ultracold-atom
gravimetry. During initial expansion duration Texp = 2TOAT,
the BEC’s interatomic interactions generate spin squeezing
via OAT. (c) Bloch sphere representation of state during
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proves the e�ciency of large momentum transfer beam-
splitting [63, 64], and mitigates many systematic and
technical noise e↵ects [65, 66]. However, a BEC’s large
interatomic interactions are generally considered an un-
wanted hinderance. Interatomic collisions couple num-
ber fluctuations into phase fluctuations, causing phase
di↵usion, which degrades sensitivity [67, 68]. Conse-
quently, the e↵ects of interatomic collisions are mini-
mized by freely expanding the BEC prior to the MZ’s
first beamsplitting pulse [Fig 1(a)], which converts most
of the collisional energy to kinetic energy. This reduces
phase di↵usion and gives excellent mode matching (re-
quired for high fringe contrast), since the BEC’s spatial
mode is largely preserved under free expansion [69, 70].

Quantum-enhanced gravimetry with a BEC.— Our
scheme, depicted in Fig. 1(b), is a modification of the
standard MZ. Instead of ‘wasting’ the strong interatomic
interactions during this initial expansion period, our
scheme exploits them with a ‘state-preparation’ interfer-
ometer that generates spin squeezing via OAT. Repre-
senting the state as a Husimi-Q distribution on the Bloch
sphere [71, 72], OAT causes a shearing of the distribution
[Fig. 1(c)]. The second beamsplitter (BS2) rotates the
distribution such that it is more sensitive to phase fluc-
tuations within the interferometer, resulting in reduced

relative number fluctuations at the output. Necessar-
ily, BS2 is not a 50/50 beamsplitter, with the relative
population transfer dependent on the degree of squeez-
ing. Unlike trapped schemes, where interatomic collisions
cause unwanted multimode dynamics that make it di�-
cult to match the two modes upon recombination [73],
a BEC’s spatial mode is almost perfectly preserved un-
der free expansion, even for large atom numbers and
collisional energies. The two modes are therefore well-
matched throughout the interferometer sequence. Fur-
thermore, since the collisional energy is converted to ki-
netic energy during expansion, the interatomic interac-
tions e↵ectively ‘switch o↵’ after ⇠ 10ms, minimizing
their e↵ect during most of the interferometer sequence.
For T � TOAT, our scheme enables a gravity measure-
ment with sensitivity (see Supplemental [74], which in-
cludes Refs. [5, 7, 59, 69, 75–86])
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symbol. Physically, Ĵz is proportional to the popula-
tion di↵erence between the two internal states, whilst Ĵx
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tion (1) shows that our scheme is capable of high pre-
cision, quantum-enhanced gravimetry provided ⇠ < 1,
which is a su�cient condition for spin squeezing [88].
Analytic model of spin squeezing.— In what follows,

we assume Raman pulse durations that are much shorter
than the timescale for atomic motional dynamics. Typ-
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This neglects the e↵ect of imperfect spatial-mode over-
lap on the spin squeezing, which can be substan-
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proves the e�ciency of large momentum transfer beam-
splitting [63, 64], and mitigates many systematic and
technical noise e↵ects [65, 66]. However, a BEC’s large
interatomic interactions are generally considered an un-
wanted hinderance. Interatomic collisions couple num-
ber fluctuations into phase fluctuations, causing phase
di↵usion, which degrades sensitivity [67, 68]. Conse-
quently, the e↵ects of interatomic collisions are mini-
mized by freely expanding the BEC prior to the MZ’s
first beamsplitting pulse [Fig 1(a)], which converts most
of the collisional energy to kinetic energy. This reduces
phase di↵usion and gives excellent mode matching (re-
quired for high fringe contrast), since the BEC’s spatial
mode is largely preserved under free expansion [69, 70].

Quantum-enhanced gravimetry with a BEC.— Our
scheme, depicted in Fig. 1(b), is a modification of the
standard MZ. Instead of ‘wasting’ the strong interatomic
interactions during this initial expansion period, our
scheme exploits them with a ‘state-preparation’ interfer-
ometer that generates spin squeezing via OAT. Repre-
senting the state as a Husimi-Q distribution on the Bloch
sphere [71, 72], OAT causes a shearing of the distribution
[Fig. 1(c)]. The second beamsplitter (BS2) rotates the
distribution such that it is more sensitive to phase fluc-
tuations within the interferometer, resulting in reduced

relative number fluctuations at the output. Necessar-
ily, BS2 is not a 50/50 beamsplitter, with the relative
population transfer dependent on the degree of squeez-
ing. Unlike trapped schemes, where interatomic collisions
cause unwanted multimode dynamics that make it di�-
cult to match the two modes upon recombination [73],
a BEC’s spatial mode is almost perfectly preserved un-
der free expansion, even for large atom numbers and
collisional energies. The two modes are therefore well-
matched throughout the interferometer sequence. Fur-
thermore, since the collisional energy is converted to ki-
netic energy during expansion, the interatomic interac-
tions e↵ectively ‘switch o↵’ after ⇠ 10ms, minimizing
their e↵ect during most of the interferometer sequence.
For T � TOAT, our scheme enables a gravity measure-
ment with sensitivity (see Supplemental [74], which in-
cludes Refs. [5, 7, 59, 69, 75–86])
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which is a su�cient condition for spin squeezing [88].
Analytic model of spin squeezing.— In what follows,

we assume Raman pulse durations that are much shorter
than the timescale for atomic motional dynamics. Typ-
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respectively.
Typical spin squeezing models approximate  ̂1(r) ⇡

u1(r)â1 and  ̂2(r) ⇡ u2(r)eik0z
â2, where bosonic modes

âi correspond to the two interferometer paths [34].
This neglects the e↵ect of imperfect spatial-mode over-
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tial [73]. Here, we assume  ̂1(r, t) = u1(r, t)â1 +
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proves the e�ciency of large momentum transfer beam-
splitting [63, 64], and mitigates many systematic and
technical noise e↵ects [65, 66]. However, a BEC’s large
interatomic interactions are generally considered an un-
wanted hinderance. Interatomic collisions couple num-
ber fluctuations into phase fluctuations, causing phase
di↵usion, which degrades sensitivity [67, 68]. Conse-
quently, the e↵ects of interatomic collisions are mini-
mized by freely expanding the BEC prior to the MZ’s
first beamsplitting pulse [Fig 1(a)], which converts most
of the collisional energy to kinetic energy. This reduces
phase di↵usion and gives excellent mode matching (re-
quired for high fringe contrast), since the BEC’s spatial
mode is largely preserved under free expansion [69, 70].

Quantum-enhanced gravimetry with a BEC.— Our
scheme, depicted in Fig. 1(b), is a modification of the
standard MZ. Instead of ‘wasting’ the strong interatomic
interactions during this initial expansion period, our
scheme exploits them with a ‘state-preparation’ interfer-
ometer that generates spin squeezing via OAT. Repre-
senting the state as a Husimi-Q distribution on the Bloch
sphere [71, 72], OAT causes a shearing of the distribution
[Fig. 1(c)]. The second beamsplitter (BS2) rotates the
distribution such that it is more sensitive to phase fluc-
tuations within the interferometer, resulting in reduced

relative number fluctuations at the output. Necessar-
ily, BS2 is not a 50/50 beamsplitter, with the relative
population transfer dependent on the degree of squeez-
ing. Unlike trapped schemes, where interatomic collisions
cause unwanted multimode dynamics that make it di�-
cult to match the two modes upon recombination [73],
a BEC’s spatial mode is almost perfectly preserved un-
der free expansion, even for large atom numbers and
collisional energies. The two modes are therefore well-
matched throughout the interferometer sequence. Fur-
thermore, since the collisional energy is converted to ki-
netic energy during expansion, the interatomic interac-
tions e↵ectively ‘switch o↵’ after ⇠ 10ms, minimizing
their e↵ect during most of the interferometer sequence.
For T � TOAT, our scheme enables a gravity measure-
ment with sensitivity (see Supplemental [74], which in-
cludes Refs. [5, 7, 59, 69, 75–86])
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symbol. Physically, Ĵz is proportional to the popula-
tion di↵erence between the two internal states, whilst Ĵx
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which is a su�cient condition for spin squeezing [88].
Analytic model of spin squeezing.— In what follows,

we assume Raman pulse durations that are much shorter
than the timescale for atomic motional dynamics. Typ-
ical atom interferometers operate in this regime, allow-
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Typical spin squeezing models approximate  ̂1(r) ⇡
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âi correspond to the two interferometer paths [34].
This neglects the e↵ect of imperfect spatial-mode over-
lap on the spin squeezing, which can be substan-
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v̂1(r, t) and  ̂2(r, t) = u2(r, t)eik0z
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proves the e�ciency of large momentum transfer beam-
splitting [63, 64], and mitigates many systematic and
technical noise e↵ects [65, 66]. However, a BEC’s large
interatomic interactions are generally considered an un-
wanted hinderance. Interatomic collisions couple num-
ber fluctuations into phase fluctuations, causing phase
di↵usion, which degrades sensitivity [67, 68]. Conse-
quently, the e↵ects of interatomic collisions are mini-
mized by freely expanding the BEC prior to the MZ’s
first beamsplitting pulse [Fig 1(a)], which converts most
of the collisional energy to kinetic energy. This reduces
phase di↵usion and gives excellent mode matching (re-
quired for high fringe contrast), since the BEC’s spatial
mode is largely preserved under free expansion [69, 70].

Quantum-enhanced gravimetry with a BEC.— Our
scheme, depicted in Fig. 1(b), is a modification of the
standard MZ. Instead of ‘wasting’ the strong interatomic
interactions during this initial expansion period, our
scheme exploits them with a ‘state-preparation’ interfer-
ometer that generates spin squeezing via OAT. Repre-
senting the state as a Husimi-Q distribution on the Bloch
sphere [71, 72], OAT causes a shearing of the distribution
[Fig. 1(c)]. The second beamsplitter (BS2) rotates the
distribution such that it is more sensitive to phase fluc-
tuations within the interferometer, resulting in reduced

relative number fluctuations at the output. Necessar-
ily, BS2 is not a 50/50 beamsplitter, with the relative
population transfer dependent on the degree of squeez-
ing. Unlike trapped schemes, where interatomic collisions
cause unwanted multimode dynamics that make it di�-
cult to match the two modes upon recombination [73],
a BEC’s spatial mode is almost perfectly preserved un-
der free expansion, even for large atom numbers and
collisional energies. The two modes are therefore well-
matched throughout the interferometer sequence. Fur-
thermore, since the collisional energy is converted to ki-
netic energy during expansion, the interatomic interac-
tions e↵ectively ‘switch o↵’ after ⇠ 10ms, minimizing
their e↵ect during most of the interferometer sequence.
For T � TOAT, our scheme enables a gravity measure-
ment with sensitivity (see Supplemental [74], which in-
cludes Refs. [5, 7, 59, 69, 75–86])
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proves the e�ciency of large momentum transfer beam-
splitting [63, 64], and mitigates many systematic and
technical noise e↵ects [65, 66]. However, a BEC’s large
interatomic interactions are generally considered an un-
wanted hinderance. Interatomic collisions couple num-
ber fluctuations into phase fluctuations, causing phase
di↵usion, which degrades sensitivity [67, 68]. Conse-
quently, the e↵ects of interatomic collisions are mini-
mized by freely expanding the BEC prior to the MZ’s
first beamsplitting pulse [Fig 1(a)], which converts most
of the collisional energy to kinetic energy. This reduces
phase di↵usion and gives excellent mode matching (re-
quired for high fringe contrast), since the BEC’s spatial
mode is largely preserved under free expansion [69, 70].

Quantum-enhanced gravimetry with a BEC.— Our
scheme, depicted in Fig. 1(b), is a modification of the
standard MZ. Instead of ‘wasting’ the strong interatomic
interactions during this initial expansion period, our
scheme exploits them with a ‘state-preparation’ interfer-
ometer that generates spin squeezing via OAT. Repre-
senting the state as a Husimi-Q distribution on the Bloch
sphere [71, 72], OAT causes a shearing of the distribution
[Fig. 1(c)]. The second beamsplitter (BS2) rotates the
distribution such that it is more sensitive to phase fluc-
tuations within the interferometer, resulting in reduced

relative number fluctuations at the output. Necessar-
ily, BS2 is not a 50/50 beamsplitter, with the relative
population transfer dependent on the degree of squeez-
ing. Unlike trapped schemes, where interatomic collisions
cause unwanted multimode dynamics that make it di�-
cult to match the two modes upon recombination [73],
a BEC’s spatial mode is almost perfectly preserved un-
der free expansion, even for large atom numbers and
collisional energies. The two modes are therefore well-
matched throughout the interferometer sequence. Fur-
thermore, since the collisional energy is converted to ki-
netic energy during expansion, the interatomic interac-
tions e↵ectively ‘switch o↵’ after ⇠ 10ms, minimizing
their e↵ect during most of the interferometer sequence.
For T � TOAT, our scheme enables a gravity measure-
ment with sensitivity (see Supplemental [74], which in-
cludes Refs. [5, 7, 59, 69, 75–86])
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cos ✓Ĵz. Here Ĵi = 1

2

R
dr †(r)�i (r) are pseudospin

operators, where �i are the set of Pauli matrices,  (r) =
( ̂1(r),  ̂2(r)eik0z)T with  ̂1(r) and  ̂2(r) being field op-
erators describing the BEC’s two internal states |1i and
|2i, respectively, and i = x, y, z. Since [ ̂i(r),  ̂

†
j (r

0)] =

�ij�(r � r0), [Ĵi, Ĵj ] = i✏ijkĴk with ✏ijk the Levi-Civita

symbol. Physically, Ĵz is proportional to the popula-
tion di↵erence between the two internal states, whilst Ĵx

and Ĵy encode coherences between the modes. Equa-
tion (1) shows that our scheme is capable of high pre-
cision, quantum-enhanced gravimetry provided ⇠ < 1,
which is a su�cient condition for spin squeezing [88].
Analytic model of spin squeezing.— In what follows,

we assume Raman pulse durations that are much shorter
than the timescale for atomic motional dynamics. Typ-
ical atom interferometers operate in this regime, allow-
ing us to treat the Raman coupling as an instantaneous
beamsplitter unitary Û✓,� [53]:
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where ✓ and � are the beamsplitting angle and phase,
respectively.
Typical spin squeezing models approximate  ̂1(r) ⇡

u1(r)â1 and  ̂2(r) ⇡ u2(r)eik0z
â2, where bosonic modes

âi correspond to the two interferometer paths [34].
This neglects the e↵ect of imperfect spatial-mode over-
lap on the spin squeezing, which can be substan-
tial [73]. Here, we assume  ̂1(r, t) = u1(r, t)â1 +
v̂1(r, t) and  ̂2(r, t) = u2(r, t)eik0z

â2 + v̂2(r, t), where
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We calculate ⇠✓,� at t = 2TOAT immediately before
BS2, with the best spin squeezing ⇠ achieved by op-
timizing ✓ and � in the unitary Û✓,� for BS2. The
BEC’s evolution between pulses approximately corre-
sponds to OAT Hamiltonian ĤOAT(t) = ~�(t)ĵ2

z , where
ĵz = 1

2
(â†

1
â1 � â

†
2
â2), �(t) = �11(t) + �22(t) � 2�12(t),

and �ij(t) = gij

2~
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dr |ui(r, t)|2|uj(r, t)|2, with gij =
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aij/m and s-wave scattering lengths aij [74].

In the linear squeezing regime, the minimum spin
squeezing is [74]
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0
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dru⇤

1
(r, 2TOAT)u2(r, 2TOAT). Physically, |Q| quantifies

how well the interferometer modes â1 and â2 are spa-
tially matched at BS2 (t = 2TOAT), with |Q| = 1 indi-
cating perfect spatial overlap. Minimum spin squeezing
requires ✓ ⇡

3⇡
2

�
1

2
tan�1 [2/(N |Q|�)] and � = �' for

the BS2 unitary. Since � > 0, Eq. (3) shows that ⇠ < 1
always, provided good mode overlap |Q| is maintained.

We estimate Q and � by numerically solving the two-
component Gross-Pitaevskii equation (GPE) for mean-
field wavefunctions  i(r, t) and identifying ui(r, t) =
 i(r, t)/

p
N [74]. For concreteness, we take |1i and |2i

as the |F = 1,mF = 0i and |F = 2,mF = 0i hyper-
fine states, respectively, of 87Rb with (a11, a22, a12) =
(100.4, 95.0, 97.66)a0 and k0 = 2kL = 1.61 ⇥ 107m�1

(780nm D2 transition). Figure 2 illustrates the key ad-
vantages of our scheme by plotting how �(t), �(t) =R t
0
dt

0
�(t0) and |Q(t)| = |

R
dru⇤

1
(r, t)u2(r, t)| vary during

the interferometer sequence. All three scattering lengths
are of similar magnitude, so during the short duration
where the two modes are strongly overlapped, �(t) is
almost zero and little spin squeezing is produced. How-
ever, the two modes rapidly separate (⇠ 1ms) whilst the
interatomic interactions are still significant, substantially
increasing �(t). Most of this increase occurs over the next
10ms; after this, free expansion rapidly reduces the col-
lisional energy and therefore �(t). Fortunately, this ex-
pansion is self-similar, largely preserving the mode shape,
allowing high spatial-mode overlap (|Q| ⇠ 1) at the in-
terferometer output.

Spin squeezing results.— Although this analytic model
provides qualitative insights into our scheme’s viability,
quantitative modelling requires a multimode description
that, unlike the GPE, incorporates the e↵ect of quantum
fluctuations. This description is provided by the trun-
cated Wigner (TW) method, which has successfully mod-
elled BEC dynamics in regimes where nonclassical parti-
cle correlations become important [76, 77, 89–95]. In this
approach, the BEC dynamics are e�ciently simulated by
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FIG. 2. Analytic spin squeezing model parameters deter-
mined from a GPE simulation of our scheme up to t = 2TOAT,
with TOAT = 20ms and an N = 104 atom BEC initially pre-
pared in a spherical harmonic trap of frequency 50Hz. (a) Ef-
fective squeezing rate �(t) (blue, solid) and squeezing degree
�(t) (orange, dashed). (b) Mode overlap |Q(t)|. (Bottom)
Normalized density slices at radial coordinate r = 0.

a set of stochastic di↵erential equations (SDEs), with av-
erages over the solutions of these SDEs corresponding to
symmetically-ordered operator expectations [74].
Figure 3 compares the spin squeezing parameter com-

puted from our analytic model Eq. (3), with � and |Q|

determined from 3D GPE simulations, to a direct compu-
tation of ⇠ via 3D TW simulations. We consider two sce-
narios: an initial spherical BEC prepared in a spherical
harmonic trap of frequency 50 Hz [Fig. 3(a)] and an ini-
tial ‘pancake’ BEC prepared in a cylindrically-symmetric
harmonic trap with frequencies (fr, fz) = (32, 160)Hz in
the radial and z directions [Fig. 3(b)]. Although the an-
alytic model correctly captures the atom-number depen-
dence, it overestimates the degree of squeezing by roughly
a factor of two. An exception is for the largest atom num-
bers considered in the spherical case, where TW predicts
much worse squeezing. For these atom numbers, the in-
teratomic interactions are su�ciently strong such that
intercomponent scattering strongly degrades the mode
overlap, even though the clouds are initially overlapped
for only ⇠ 1ms [Figs. 3(e) and (f)]. This is not seen in
the GPE simulations [Figs. 3(c) and (d)] which neglect
spontaneous scattering processes that clearly matter. In
contrast, for an initially pancake-shaped BEC that is spa-
tially tight in z, the two modes spatially separate on a
timescale much faster than the spherical case. This mit-
igates the e↵ect interatomic interactions have on mode
matching [Figs. 3(g) and (h)], allowing significant squeez-
ing even for N = 106 atoms.

Simulation of full interferometer sequence.— Although
the spin squeezing parameter shows that our scheme pro-
duces significant spin squeezing, it does not confirm that
this spin squeezing leads to a more sensitive measure-
ment of g. Residual interatomic interactions may further
degrade mode overlap during the remainder of the inter-
ferometer sequence and can couple to quantum fluctua-
tions in Ĵz, causing phase di↵usion [67, 68]. Both e↵ects
may degrade the sensitivity from the value predicted by
Eq. (1). We confirm that these e↵ects are not signifi-
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FIG. 3. Minimum spin squeezing parameter ⇠ for TOAT =
10ms and atom numberN [74]. In (a) the BEC is initially pre-
pared in a spherical harmonic trap (fr = fz = 50Hz), whereas
in (b) an initial ‘pancake’ BEC is prepared in a cylindrically-
symmetric harmonic trap (fr = 32Hz, fz = 160Hz). TW
simulations are compared to Eq. (3) with model parameters
determined from GPE simulations (‘3D GPE’). (c)-(h) Den-
sity profiles for N = 106 at t = 2TOAT. The analytic model
fails here for the spherical BEC case since spontaneous scat-
tering degrades mode overlap.

cant in our scheme by simulating the full interferome-
ter sequence and directly computing the sensitivity via
�g

2 = Var(Ĵz)/(@hĴzi/@g)2. 3D TW simulations of the
full interferometer sequence are computationally infeasi-
ble, since they require prohibitively large grids and num-
bers of trajectories. Instead, we use an e↵ective 1D TW
model for these simulations, which assumes a Thomas-
Fermi radial profile that self-similarly expands according
to scaling solutions [74]. As shown in Fig. 3, this model
perfectly agrees with 3D TW simulations except for the
largest atom numbers.

Our scheme’s sensitivity for an initial pancake BEC
of N = 104 atoms and T = 60ms is shown in Fig. 4.
Although phase di↵usion degrades the sensitivity for
small TOAT, its e↵ect rapidly reduces for increasing
TOAT, becoming negligible for TOAT & 15ms. We com-
pare our scheme to two SNL cold-atom gravimeters
with the same initial BEC and total interferometer time
2(TOAT + T ): (1) the conventional BEC gravimeter de-
picted in Fig. 1(a) (MZ with initial Texp = 2TOAT period
of free expansion) and (2) a MZ with no initial period
of free expansion, thereby having an increased interro-
gation time T + TOAT. As expected, the former has
negligible phase di↵usion, attaining the ideal SNL result
�g = 1/(

p
Nk0T

2). The latter su↵ers from considerable
phase di↵usion, far outweighing the benefit of increased
interrogation time. Our scheme outperforms both SNL
gravimeters, demonstrating the clear benefit of using the
initial 2TOAT period to produce spin squeezing.

Experimental imperfections.— Finally, we assess the
e↵ect of three common experimental imperfections.
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FIG. 4. 1D TW calculations of sensitivity �g for an N = 104

atom BEC initially prepared in a cylindrically-symmetric har-
monic trap (fr = 32Hz, fz = 160Hz). From top to bottom:
(red) MZ with total interrogation time T + TOAT (no initial
period of free expansion), (green) BEC undergoes free expan-
sion for duration 2TOAT, followed by MZ of interrogation time
T [Fig. 1(a)]; (magenta) quantum-enhanced BEC gravime-
try [Fig. 1(b)]; (blue) Eq. (1) with ⇠ computed via TW. All
four cases have the same total duration 2(TOAT + T ) with
T = 60ms. The SNL for an ideal MZ of interrogation time T
(dashed) and T +TOAT (dot-dashed) are marked for compari-
son. Our quantum-enhanced scheme always outperforms MZ
schemes, even when phase di↵usion is non-negligible.

(i) Shot-to-shot fluctuations in laser intensity.— Al-
though the laser pulse intensity is stable during a sin-
gle interferometer run, it can vary between experimental
runs [96]. Such shot-to-shot intensity fluctuations cause
an o↵set �✓ to the angle of all beamsplitters and mir-
rors in that run, where �✓ varies from shot-to-shot [50].
To first order, �✓ ⇡ 2�f , where �f is the fractional
change in the population ratio due to imperfect beam-
splitting (e.g. �f = 0.02 means that a 50/50 beamsplit-
ter is instead performed as a 48/52 beamsplitter). We
simulated the full interferometer sequence assuming that
all five laser pulses su↵ered from Gaussian-distributed
shot-to-shot fluctuations �✓ of variance �

2

✓ . As shown
in Fig. 5(a), these shot-to-shot fluctuations have a rela-
tively small e↵ect on �g, since common rotation errors
from the di↵erent pulses largely cancel.

(ii) Shot-to-shot fluctuations in atom number.— The
optimal rotation angle ✓ for BS2 depends on the atom
number. This cannot be known precisely and varies
10-20% for di↵erent experimental runs [7, 62]. Con-
sequently, ✓ will deviate from the optimum from shot-
to-shot, degrading ⇠. We quantify this by assuming
Gaussian-distributed shot-to-shot atom number fluctu-
ations about mean N with variance �

2

N . To leading or-
der, optimal BS2 parameters for atom number N give
⇠(�N ) . ⇠ + 1

2|Q|2 (�N/N)2 [74], so shot-to-shot atom
number fluctuations weakly impact the spin squeezing.
This is confirmed by TW simulations [Fig. 5(b)].

(iii) Imperfect atom detection.— We model imper-
fect detection resolution as a Gaussian noise of variance
(�n)2, corresponding to uncertainty �n in the measured
atom number. Imperfect detection increases the vari-
ance in Ĵz, giving poorer sensitivity �g

2 = (Var(Ĵz) +
�j

2
z )/(@hĴzi/@g)2, where �jz = �n/

p
2. Then �g is
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FIG. 1. (a) Space-time diagram illustrating SNL gravimetry
with a BEC. Unwanted interatomic interactions are reduced
by freely expanding the BEC for duration Texp. A ⇡/2-⇡-⇡/2
Raman pulse sequence then creates a MZ interferometer of
interrogation time T . The two interferometer modes corre-
spond to internal states |1i (red) and |2i (blue) with ~k0 mo-
mentum separation. (b) Quantum-enhanced ultracold-atom
gravimetry. During initial expansion duration Texp = 2TOAT,
the BEC’s interatomic interactions generate spin squeezing
via OAT. (c) Bloch sphere representation of state during
quantum-enhanced gravimetry.

proves the e�ciency of large momentum transfer beam-
splitting [63, 64], and mitigates many systematic and
technical noise e↵ects [65, 66]. However, a BEC’s large
interatomic interactions are generally considered an un-
wanted hinderance. Interatomic collisions couple num-
ber fluctuations into phase fluctuations, causing phase
di↵usion, which degrades sensitivity [67, 68]. Conse-
quently, the e↵ects of interatomic collisions are mini-
mized by freely expanding the BEC prior to the MZ’s
first beamsplitting pulse [Fig 1(a)], which converts most
of the collisional energy to kinetic energy. This reduces
phase di↵usion and gives excellent mode matching (re-
quired for high fringe contrast), since the BEC’s spatial
mode is largely preserved under free expansion [69, 70].

Quantum-enhanced gravimetry with a BEC.— Our
scheme, depicted in Fig. 1(b), is a modification of the
standard MZ. Instead of ‘wasting’ the strong interatomic
interactions during this initial expansion period, our
scheme exploits them with a ‘state-preparation’ interfer-
ometer that generates spin squeezing via OAT. Repre-
senting the state as a Husimi-Q distribution on the Bloch
sphere [71, 72], OAT causes a shearing of the distribution
[Fig. 1(c)]. The second beamsplitter (BS2) rotates the
distribution such that it is more sensitive to phase fluc-
tuations within the interferometer, resulting in reduced

relative number fluctuations at the output. Necessar-
ily, BS2 is not a 50/50 beamsplitter, with the relative
population transfer dependent on the degree of squeez-
ing. Unlike trapped schemes, where interatomic collisions
cause unwanted multimode dynamics that make it di�-
cult to match the two modes upon recombination [73],
a BEC’s spatial mode is almost perfectly preserved un-
der free expansion, even for large atom numbers and
collisional energies. The two modes are therefore well-
matched throughout the interferometer sequence. Fur-
thermore, since the collisional energy is converted to ki-
netic energy during expansion, the interatomic interac-
tions e↵ectively ‘switch o↵’ after ⇠ 10ms, minimizing
their e↵ect during most of the interferometer sequence.
For T � TOAT, our scheme enables a gravity measure-
ment with sensitivity (see Supplemental [74], which in-
cludes Refs. [5, 7, 59, 69, 75–86])
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operators, where �i are the set of Pauli matrices,  (r) =
( ̂1(r),  ̂2(r)eik0z)T with  ̂1(r) and  ̂2(r) being field op-
erators describing the BEC’s two internal states |1i and
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symbol. Physically, Ĵz is proportional to the popula-
tion di↵erence between the two internal states, whilst Ĵx

and Ĵy encode coherences between the modes. Equa-
tion (1) shows that our scheme is capable of high pre-
cision, quantum-enhanced gravimetry provided ⇠ < 1,
which is a su�cient condition for spin squeezing [88].
Analytic model of spin squeezing.— In what follows,

we assume Raman pulse durations that are much shorter
than the timescale for atomic motional dynamics. Typ-
ical atom interferometers operate in this regime, allow-
ing us to treat the Raman coupling as an instantaneous
beamsplitter unitary Û✓,� [53]:

Û
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where ✓ and � are the beamsplitting angle and phase,
respectively.
Typical spin squeezing models approximate  ̂1(r) ⇡

u1(r)â1 and  ̂2(r) ⇡ u2(r)eik0z
â2, where bosonic modes

âi correspond to the two interferometer paths [34].
This neglects the e↵ect of imperfect spatial-mode over-
lap on the spin squeezing, which can be substan-
tial [73]. Here, we assume  ̂1(r, t) = u1(r, t)â1 +
v̂1(r, t) and  ̂2(r, t) = u2(r, t)eik0z

â2 + v̂2(r, t), where
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t = 0 t = 2TOAT t = 2(TOAT + T )

FIG. 1. (a) Space-time diagram illustrating SNL gravimetry
with a BEC. Unwanted interatomic interactions are reduced
by freely expanding the BEC for duration Texp. A ⇡/2-⇡-⇡/2
Raman pulse sequence then creates a MZ interferometer of
interrogation time T . The two interferometer modes corre-
spond to internal states |1i (red) and |2i (blue) with ~k0 mo-
mentum separation. (b) Quantum-enhanced ultracold-atom
gravimetry. During initial expansion duration Texp = 2TOAT,
the BEC’s interatomic interactions generate spin squeezing
via OAT. (c) Bloch sphere representation of state during
quantum-enhanced gravimetry.

proves the e�ciency of large momentum transfer beam-
splitting [63, 64], and mitigates many systematic and
technical noise e↵ects [65, 66]. However, a BEC’s large
interatomic interactions are generally considered an un-
wanted hinderance. Interatomic collisions couple num-
ber fluctuations into phase fluctuations, causing phase
di↵usion, which degrades sensitivity [67, 68]. Conse-
quently, the e↵ects of interatomic collisions are mini-
mized by freely expanding the BEC prior to the MZ’s
first beamsplitting pulse [Fig 1(a)], which converts most
of the collisional energy to kinetic energy. This reduces
phase di↵usion and gives excellent mode matching (re-
quired for high fringe contrast), since the BEC’s spatial
mode is largely preserved under free expansion [69, 70].

Quantum-enhanced gravimetry with a BEC.— Our
scheme, depicted in Fig. 1(b), is a modification of the
standard MZ. Instead of ‘wasting’ the strong interatomic
interactions during this initial expansion period, our
scheme exploits them with a ‘state-preparation’ interfer-
ometer that generates spin squeezing via OAT. Repre-
senting the state as a Husimi-Q distribution on the Bloch
sphere [71, 72], OAT causes a shearing of the distribution
[Fig. 1(c)]. The second beamsplitter (BS2) rotates the
distribution such that it is more sensitive to phase fluc-
tuations within the interferometer, resulting in reduced

relative number fluctuations at the output. Necessar-
ily, BS2 is not a 50/50 beamsplitter, with the relative
population transfer dependent on the degree of squeez-
ing. Unlike trapped schemes, where interatomic collisions
cause unwanted multimode dynamics that make it di�-
cult to match the two modes upon recombination [73],
a BEC’s spatial mode is almost perfectly preserved un-
der free expansion, even for large atom numbers and
collisional energies. The two modes are therefore well-
matched throughout the interferometer sequence. Fur-
thermore, since the collisional energy is converted to ki-
netic energy during expansion, the interatomic interac-
tions e↵ectively ‘switch o↵’ after ⇠ 10ms, minimizing
their e↵ect during most of the interferometer sequence.
For T � TOAT, our scheme enables a gravity measure-
ment with sensitivity (see Supplemental [74], which in-
cludes Refs. [5, 7, 59, 69, 75–86])
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tion di↵erence between the two internal states, whilst Ĵx

and Ĵy encode coherences between the modes. Equa-
tion (1) shows that our scheme is capable of high pre-
cision, quantum-enhanced gravimetry provided ⇠ < 1,
which is a su�cient condition for spin squeezing [88].
Analytic model of spin squeezing.— In what follows,

we assume Raman pulse durations that are much shorter
than the timescale for atomic motional dynamics. Typ-
ical atom interferometers operate in this regime, allow-
ing us to treat the Raman coupling as an instantaneous
beamsplitter unitary Û✓,� [53]:
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This neglects the e↵ect of imperfect spatial-mode over-
lap on the spin squeezing, which can be substan-
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FIG. 3. Minimum spin squeezing parameter ⇠ for TOAT =
10ms and atom numberN [74]. In (a) the BEC is initially pre-
pared in a spherical harmonic trap (fr = fz = 50Hz), whereas
in (b) an initial ‘pancake’ BEC is prepared in a cylindrically-
symmetric harmonic trap (fr = 32Hz, fz = 160Hz). TW
simulations are compared to Eq. (3) with model parameters
determined from GPE simulations (‘3D GPE’). (c)-(h) Den-
sity profiles for N = 106 at t = 2TOAT. The analytic model
fails here for the spherical BEC case since spontaneous scat-
tering degrades mode overlap.

cant in our scheme by simulating the full interferome-
ter sequence and directly computing the sensitivity via
�g

2 = Var(Ĵz)/(@hĴzi/@g)2. 3D TW simulations of the
full interferometer sequence are computationally infeasi-
ble, since they require prohibitively large grids and num-
bers of trajectories. Instead, we use an e↵ective 1D TW
model for these simulations, which assumes a Thomas-
Fermi radial profile that self-similarly expands according
to scaling solutions [74]. As shown in Fig. 3, this model
perfectly agrees with 3D TW simulations except for the
largest atom numbers.

Our scheme’s sensitivity for an initial pancake BEC
of N = 104 atoms and T = 60ms is shown in Fig. 4.
Although phase di↵usion degrades the sensitivity for
small TOAT, its e↵ect rapidly reduces for increasing
TOAT, becoming negligible for TOAT & 15ms. We com-
pare our scheme to two SNL cold-atom gravimeters
with the same initial BEC and total interferometer time
2(TOAT + T ): (1) the conventional BEC gravimeter de-
picted in Fig. 1(a) (MZ with initial Texp = 2TOAT period
of free expansion) and (2) a MZ with no initial period
of free expansion, thereby having an increased interro-
gation time T + TOAT. As expected, the former has
negligible phase di↵usion, attaining the ideal SNL result
�g = 1/(

p
Nk0T

2). The latter su↵ers from considerable
phase di↵usion, far outweighing the benefit of increased
interrogation time. Our scheme outperforms both SNL
gravimeters, demonstrating the clear benefit of using the
initial 2TOAT period to produce spin squeezing.

Experimental imperfections.— Finally, we assess the
e↵ect of three common experimental imperfections.
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FIG. 4. 1D TW calculations of sensitivity �g for an N = 104

atom BEC initially prepared in a cylindrically-symmetric har-
monic trap (fr = 32Hz, fz = 160Hz). From top to bottom:
(red) MZ with total interrogation time T + TOAT (no initial
period of free expansion), (green) BEC undergoes free expan-
sion for duration 2TOAT, followed by MZ of interrogation time
T [Fig. 1(a)]; (magenta) quantum-enhanced BEC gravime-
try [Fig. 1(b)]; (blue) Eq. (1) with ⇠ computed via TW. All
four cases have the same total duration 2(TOAT + T ) with
T = 60ms. The SNL for an ideal MZ of interrogation time T
(dashed) and T +TOAT (dot-dashed) are marked for compari-
son. Our quantum-enhanced scheme always outperforms MZ
schemes, even when phase di↵usion is non-negligible.

(i) Shot-to-shot fluctuations in laser intensity.— Al-
though the laser pulse intensity is stable during a sin-
gle interferometer run, it can vary between experimental
runs [96]. Such shot-to-shot intensity fluctuations cause
an o↵set �✓ to the angle of all beamsplitters and mir-
rors in that run, where �✓ varies from shot-to-shot [50].
To first order, �✓ ⇡ 2�f , where �f is the fractional
change in the population ratio due to imperfect beam-
splitting (e.g. �f = 0.02 means that a 50/50 beamsplit-
ter is instead performed as a 48/52 beamsplitter). We
simulated the full interferometer sequence assuming that
all five laser pulses su↵ered from Gaussian-distributed
shot-to-shot fluctuations �✓ of variance �

2

✓ . As shown
in Fig. 5(a), these shot-to-shot fluctuations have a rela-
tively small e↵ect on �g, since common rotation errors
from the di↵erent pulses largely cancel.

(ii) Shot-to-shot fluctuations in atom number.— The
optimal rotation angle ✓ for BS2 depends on the atom
number. This cannot be known precisely and varies
10-20% for di↵erent experimental runs [7, 62]. Con-
sequently, ✓ will deviate from the optimum from shot-
to-shot, degrading ⇠. We quantify this by assuming
Gaussian-distributed shot-to-shot atom number fluctu-
ations about mean N with variance �

2

N . To leading or-
der, optimal BS2 parameters for atom number N give
⇠(�N ) . ⇠ + 1

2|Q|2 (�N/N)2 [74], so shot-to-shot atom
number fluctuations weakly impact the spin squeezing.
This is confirmed by TW simulations [Fig. 5(b)].

(iii) Imperfect atom detection.— We model imper-
fect detection resolution as a Gaussian noise of variance
(�n)2, corresponding to uncertainty �n in the measured
atom number. Imperfect detection increases the vari-
ance in Ĵz, giving poorer sensitivity �g

2 = (Var(Ĵz) +
�j

2
z )/(@hĴzi/@g)2, where �jz = �n/

p
2. Then �g is
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Figure 4.5: The evolution of the density for (a) the original scheme of Szigeti et al. [1], and
(b), the DK scheme. (c) ⁄sp for the DK scheme for a when a trap of 50 (yellow), 100 (blue) and
150 (red) Hz was used to implement the delta kick. (d) The resulting spin-squeezing parameter
for these three cases.

4.5.1 Improvement by Delta Kick

Figure 4.5(a) shows the amount of spin squeezing achieved using the DK-modified scheme

for di�erent DK parameters. tk = 0 means that e�ectively no DK is applied; so in the

figure at tk = 0, it is the spin squeezing for the scheme proposed by Szigeti et al. [1].

Therefore, the figure shows that the e�ect of the DK modification is to enhance the

amount of spin squeezing achieved. This is because the DK ‘focuses’ the matterwave; the

BEC contracts until the repulsive force from atom-atom collisions cause the BEC to start
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QND + OAT:

(b)

Figure 4.1: QND measurement in an atom-interferometer. (a) Experimental configura-
tion. Light is incident on the atomic sample, then heads to a homodyne detector where
the phase is measured. (b) Bloch sphere representation. Here, Ĵz is the number difference
between the atoms, and Ĵx (pointing into the page) and Ĵy are the relative coherence be-
tween the state. The atoms are initially in a coherent spin state (CSS) (left). Ĵz is then
imperfectly entangled with laser light and the state of the light measured (right), result-
ing in a decreased variance in Ĵz while increasing variances in the relative coherences.
Reproduced with permission from [5].

quantum limit in free space [26], and up to 20dB in a cavity for 106 atoms [33]. Simulations
using realistic experimental parameters indicate up to 15dB1 of squeezing should be
achievable in free space, and up 25dB in a cavity for 106 atoms [47]. In the following
Sections, I explore the different experimental configurations and models which can be
used to describe the entanglement process.

4.1.1 Experimental Schemes

There are two primary experimental configurations in the literature to perform QND in
atom-interferometers. The first is one-colour QND [46], in which the atomic sample is
illuminated by a single laser detuned equally from transitions from the low-lying hyperfine
levels, as in Figure 4.2a. It can be shown that this scheme imprints the number difference
of the two low-lying hyperfine levels, Ĵz, into the phase of the laser, which I derive in
Section 4.2. A measurement of the phase then collapses the atoms into a squeezed state
of Ĵz, as in Figure 4.1. However, when one accounts for the spatial profile of the laser,
which is typically Gaussian, one can show that this scheme leads to an inhomogeneous
dephasing of the atoms that degrades the squeezing [48, 49].

A second scheme, two-colour QND, was introduced to remove this dephasing [50, 48].
1While the parameters were realistic, the simulations did not account for the highly constrained

density of the atomic cloud. I show in Section 4.5.2 that this causes the discrepancy in squeezing.
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between the atoms, and Ĵx (pointing into the page) and Ĵy are the relative coherence be-
tween the state. The atoms are initially in a coherent spin state (CSS) (left). Ĵz is then
imperfectly entangled with laser light and the state of the light measured (right), result-
ing in a decreased variance in Ĵz while increasing variances in the relative coherences.
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quantum limit in free space [26], and up to 20dB in a cavity for 106 atoms [33]. Simulations
using realistic experimental parameters indicate up to 15dB1 of squeezing should be
achievable in free space, and up 25dB in a cavity for 106 atoms [47]. In the following
Sections, I explore the different experimental configurations and models which can be
used to describe the entanglement process.

4.1.1 Experimental Schemes

There are two primary experimental configurations in the literature to perform QND in
atom-interferometers. The first is one-colour QND [46], in which the atomic sample is
illuminated by a single laser detuned equally from transitions from the low-lying hyperfine
levels, as in Figure 4.2a. It can be shown that this scheme imprints the number difference
of the two low-lying hyperfine levels, Ĵz, into the phase of the laser, which I derive in
Section 4.2. A measurement of the phase then collapses the atoms into a squeezed state
of Ĵz, as in Figure 4.1. However, when one accounts for the spatial profile of the laser,
which is typically Gaussian, one can show that this scheme leads to an inhomogeneous
dephasing of the atoms that degrades the squeezing [48, 49].

A second scheme, two-colour QND, was introduced to remove this dephasing [50, 48].
1While the parameters were realistic, the simulations did not account for the highly constrained

density of the atomic cloud. I show in Section 4.5.2 that this causes the discrepancy in squeezing.
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Figure 4.1: QND measurement in an atom-interferometer. (a) Experimental configura-
tion. Light is incident on the atomic sample, then heads to a homodyne detector where
the phase is measured. (b) Bloch sphere representation. Here, Ĵz is the number difference
between the atoms, and Ĵx (pointing into the page) and Ĵy are the relative coherence be-
tween the state. The atoms are initially in a coherent spin state (CSS) (left). Ĵz is then
imperfectly entangled with laser light and the state of the light measured (right), result-
ing in a decreased variance in Ĵz while increasing variances in the relative coherences.
Reproduced with permission from [5].

quantum limit in free space [26], and up to 20dB in a cavity for 106 atoms [33]. Simulations
using realistic experimental parameters indicate up to 15dB1 of squeezing should be
achievable in free space, and up 25dB in a cavity for 106 atoms [47]. In the following
Sections, I explore the different experimental configurations and models which can be
used to describe the entanglement process.

4.1.1 Experimental Schemes

There are two primary experimental configurations in the literature to perform QND in
atom-interferometers. The first is one-colour QND [46], in which the atomic sample is
illuminated by a single laser detuned equally from transitions from the low-lying hyperfine
levels, as in Figure 4.2a. It can be shown that this scheme imprints the number difference
of the two low-lying hyperfine levels, Ĵz, into the phase of the laser, which I derive in
Section 4.2. A measurement of the phase then collapses the atoms into a squeezed state
of Ĵz, as in Figure 4.1. However, when one accounts for the spatial profile of the laser,
which is typically Gaussian, one can show that this scheme leads to an inhomogeneous
dephasing of the atoms that degrades the squeezing [48, 49].

A second scheme, two-colour QND, was introduced to remove this dephasing [50, 48].
1While the parameters were realistic, the simulations did not account for the highly constrained

density of the atomic cloud. I show in Section 4.5.2 that this causes the discrepancy in squeezing.
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QND + OAT:

Figure 6.9: Optimised ξ over both η and ξ for Na = 105 and d = 694. The dashed and dot
dashed lines represent the interaction strength available in current experiments (λ = 6.5×
10−5), and the possible interaction strength from a delta kick scheme being investigated
in an Honours project by K. Gill at the Cold Atom Laboratory (λ = 9.8 × 10−5. For
current experiments, the squeezing can be improved from 7.8861(3)dB (ξ = 0.1627(6))
to 13.1461(7)dB (ξ = 4.84(2) × 10−2). In future experiments using the delta kick, the
squeezing can be improved from 10.0305(2)dB (ξ = 9.92(3) × 10−2) to 14.42490(8)dB
(ξ = 3.61(3) × 10−2).

continues to decrease. There are a few notable properties: the first is that amount of
squeezing can be significantly improved using the Hybrid model for both current experi-
ments (dashed line), and future experiments using a delta kick scheme (dot dashed line)7.
Specifically, there is a projected increase in current experiments of 6dB over experiments
using OAT on a CSS, and 7.5dB over optimal QND; for the delta kick, there is a project
4dB increase over OAT on a CSS, and 8dB over optimal QND. Another notable property
is that the amount of squeezing cannot be improved over optimal OAT on a CSS, which is
significantly different from the results of the previous Chapter. The reason for this is the
degradation of OAT squeezing due to loss, as I explained in the previous section. Finally,
for interaction strengths larger than optimum, the hybrid model outperforms OAT on
a regular CSS. These results indicate that significant improvements can be made to the

7See figure caption.

75

(credit: Liam Fuderer)

QND limit

OAT
DK OAT



Acknowledgements:

Simon.Haine@anu.edu.au 

Karandeep Gill Liam Fuderer Reuben Symon

Stuart Szigeti John Close Joe Hope



Acknowledgements:

Thanks!
Simon.Haine@anu.edu.au 

Karandeep Gill Liam Fuderer Reuben Symon

Stuart Szigeti John Close Joe Hope





GPE simulation:

3

R
dr |ui(r, t)|2 = 1 and v̂i(r, t) are ‘vacuum’ opera-

tors satisfying v̂i(r, t)| i = 0 and [v̂i(r, t), v̂
†
j (r, t)] =

�i,j

�
�(r� r0)� ui(r, t)u⇤

j (r
0
, t)

�
[75].

We calculate ⇠✓,� at t = 2TOAT immediately before
BS2, with the best spin squeezing ⇠ achieved by op-
timizing ✓ and � in the unitary Û✓,� for BS2. The
BEC’s evolution between pulses approximately corre-
sponds to OAT Hamiltonian ĤOAT(t) = ~�(t)ĵ2

z , where
ĵz = 1

2
(â†

1
â1 � â

†
2
â2), �(t) = �11(t) + �22(t) � 2�12(t),

and �ij(t) = gij

2~
R
dr |ui(r, t)|2|uj(r, t)|2, with gij =

4⇡~2
aij/m and s-wave scattering lengths aij [74].

In the linear squeezing regime, the minimum spin
squeezing is [74]

⇠
2
⇡

1� 1

2
|Q|N�(

p
4 + |Q|2N2�2 � |Q|N�)

|Q|2
, (3)

where � ⌘
R

2TOAT

0
dt

0
�(t0) and Q ⌘ |Q|e

i' =R
dru⇤

1
(r, 2TOAT)u2(r, 2TOAT). Physically, |Q| quantifies

how well the interferometer modes â1 and â2 are spa-
tially matched at BS2 (t = 2TOAT), with |Q| = 1 indi-
cating perfect spatial overlap. Minimum spin squeezing
requires ✓ ⇡

3⇡
2

�
1

2
tan�1 [2/(N |Q|�)] and � = �' for

the BS2 unitary. Since � > 0, Eq. (3) shows that ⇠ < 1
always, provided good mode overlap |Q| is maintained.

We estimate Q and � by numerically solving the two-
component Gross-Pitaevskii equation (GPE) for mean-
field wavefunctions  i(r, t) and identifying ui(r, t) =
 i(r, t)/

p
N [74]. For concreteness, we take |1i and |2i

as the |F = 1,mF = 0i and |F = 2,mF = 0i hyper-
fine states, respectively, of 87Rb with (a11, a22, a12) =
(100.4, 95.0, 97.66)a0 and k0 = 2kL = 1.61 ⇥ 107m�1

(780nm D2 transition). Figure 2 illustrates the key ad-
vantages of our scheme by plotting how �(t), �(t) =R t
0
dt

0
�(t0) and |Q(t)| = |

R
dru⇤

1
(r, t)u2(r, t)| vary during

the interferometer sequence. All three scattering lengths
are of similar magnitude, so during the short duration
where the two modes are strongly overlapped, �(t) is
almost zero and little spin squeezing is produced. How-
ever, the two modes rapidly separate (⇠ 1ms) whilst the
interatomic interactions are still significant, substantially
increasing �(t). Most of this increase occurs over the next
10ms; after this, free expansion rapidly reduces the col-
lisional energy and therefore �(t). Fortunately, this ex-
pansion is self-similar, largely preserving the mode shape,
allowing high spatial-mode overlap (|Q| ⇠ 1) at the in-
terferometer output.

Spin squeezing results.— Although this analytic model
provides qualitative insights into our scheme’s viability,
quantitative modelling requires a multimode description
that, unlike the GPE, incorporates the e↵ect of quantum
fluctuations. This description is provided by the trun-
cated Wigner (TW) method, which has successfully mod-
elled BEC dynamics in regimes where nonclassical parti-
cle correlations become important [76, 77, 89–95]. In this
approach, the BEC dynamics are e�ciently simulated by
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FIG. 2. Analytic spin squeezing model parameters deter-
mined from a GPE simulation of our scheme up to t = 2TOAT,
with TOAT = 20ms and an N = 104 atom BEC initially pre-
pared in a spherical harmonic trap of frequency 50Hz. (a) Ef-
fective squeezing rate �(t) (blue, solid) and squeezing degree
�(t) (orange, dashed). (b) Mode overlap |Q(t)|. (Bottom)
Normalized density slices at radial coordinate r = 0.

a set of stochastic di↵erential equations (SDEs), with av-
erages over the solutions of these SDEs corresponding to
symmetically-ordered operator expectations [74].
Figure 3 compares the spin squeezing parameter com-

puted from our analytic model Eq. (3), with � and |Q|

determined from 3D GPE simulations, to a direct compu-
tation of ⇠ via 3D TW simulations. We consider two sce-
narios: an initial spherical BEC prepared in a spherical
harmonic trap of frequency 50 Hz [Fig. 3(a)] and an ini-
tial ‘pancake’ BEC prepared in a cylindrically-symmetric
harmonic trap with frequencies (fr, fz) = (32, 160)Hz in
the radial and z directions [Fig. 3(b)]. Although the an-
alytic model correctly captures the atom-number depen-
dence, it overestimates the degree of squeezing by roughly
a factor of two. An exception is for the largest atom num-
bers considered in the spherical case, where TW predicts
much worse squeezing. For these atom numbers, the in-
teratomic interactions are su�ciently strong such that
intercomponent scattering strongly degrades the mode
overlap, even though the clouds are initially overlapped
for only ⇠ 1ms [Figs. 3(e) and (f)]. This is not seen in
the GPE simulations [Figs. 3(c) and (d)] which neglect
spontaneous scattering processes that clearly matter. In
contrast, for an initially pancake-shaped BEC that is spa-
tially tight in z, the two modes spatially separate on a
timescale much faster than the spherical case. This mit-
igates the e↵ect interatomic interactions have on mode
matching [Figs. 3(g) and (h)], allowing significant squeez-
ing even for N = 106 atoms.

Simulation of full interferometer sequence.— Although
the spin squeezing parameter shows that our scheme pro-
duces significant spin squeezing, it does not confirm that
this spin squeezing leads to a more sensitive measure-
ment of g. Residual interatomic interactions may further
degrade mode overlap during the remainder of the inter-
ferometer sequence and can couple to quantum fluctua-
tions in Ĵz, causing phase di↵usion [67, 68]. Both e↵ects
may degrade the sensitivity from the value predicted by
Eq. (1). We confirm that these e↵ects are not signifi-


