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Dark Matter

@ No confirmed detection of
dark matter (DM) to date

@ Searches focus on Weakly
Interacting Massive Particles
(WIMPs) at GeV to TeV
scale

@ Sub-GeV WIMPs are less
researched
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Dark Matter

SM DM

Direct Detection

o Could scatter off atomic SM DM

electrons at detectable
rates [1]
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Direct Detection: XENON Experiments

XENON detectors are dual
phase xenon time-projection
chambers

Gives two types of scintillation
signals:
@ S1: prompt scintillation
signal in liquid xenon (LXe)
o S2: delayed
electroluminescence in
gaseous xenon (GXe)

More detectors planned with
same working principle
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Calculations

@ To compare theory to direct detection experiments, we need
to calculate the DM-electron cross-section,

(dov) Te

f(V) a+ 2 “w 2
= :2me/dvv/c/q apqdq| Fy'(q) |° K(E,q)
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Calculations

@ To compare theory to direct detection experiments, we need
to calculate the DM-electron cross-section,

(dov) Te

f(v) @, " )
dE :2me/dVv/C/q apqdq| Fx(q) |7TK(E, q)

K(E, q) is the ‘atomic excitation factor’:

Knjt = En Y Y | (1™ njim) | o¢ (E)
m f
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Considerations when calculating K

The nucleus is a very important region for DM-electron scattering!

Kne(q, E) = En Y > | (fle"97|nkm) of (E)
m f
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Considerations when calculating K

The nucleus is a very important region for DM-electron scattering!
Knw(a, E) = En Y Y | (fle'T7|nim) [Por (E)
m f

Final state wavefunctions cannot be Initial state wavefunctions
approximated as plane waves [3] need to be relativistic [1,4]

So, for a ‘full’ calculation, we need to:
© use the relativistic Hartree-Fock method for each bound state,
then;
© take the resulting Hartree-Fock potential, and;
© solve the Dirac equation for each continuum state in the
energy and momentum grid.
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Approximating K

Another complicating factor: K, is a 2D function, meaning the
computation time is long and the results are difficult to use.
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Solution: Approximate K, as a step function,
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Approximating K

Solution: Approximate K, as a step function,

Knx(q, E) = an(q)@(E — )

@ Accurate for argon and xenon when continuum energy is small

@ Much faster when using pre-generated tables for K,
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Approximating K

g~ 1.0MeV
—Full K,,,. calc.
se=s Approx. K.

0.01 0.1 1 10
E (keV)
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Event Rates

For a perfect detector, the event rate, dR/dE, is directly
proportional to the (velocity-averaged differential) cross section
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Event Rates

For XENONI1T, we reach the observable event rate, dS/dE, by
accounting for:

@ the energy resolution [2] by smearing dR/dE using a
Gaussian, g with an energy-dependent width, o, and;

e the detection efficiency [2] by correcting the smeared rate
with the total efficiency, ¢(E).

das * p dR(E") . _,
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Event Rates: Theoretical vs. Observable
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Event Rates: Theoretical vs. Observable
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@ The low-energy detector response has a significant impact on
the results for DM-electron scattering
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@ The low-energy detector response has a significant impact on
the results for DM-electron scattering

@ The Gaussian energy resolution allows low energy events to
‘leak’ into the high energy regions
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Conclusion & Next Steps

@ Accurate atomic physics depiction necessary for DM-electron
scattering

Detector response in low energy range has a large effect on
event rates

Consider many-body effects
Release atomic factors for public use

o K—values largely independent of DM model, so easy for others
to use

Compare to XENONNT results
Public release of code
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