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world applications

Biomedical
diagnostics

SONAR and
microphones

an’l-\
\\\; A oe;z.m'

N

HBK (2022) Zhou et al. (2021)

However, most commercially available sensors are limited
by size (resolution) and electric noise (sensitivity)
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Cavity optomechanical ultrasound sensing involves
using dual optical and mechanical resonances to enhance
the ultrasound signal
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Cavity optomechanical ultrasound sensing involves
using dual optical and mechanical resonances to enhance
the ultrasound signal
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Cavity optomechanical ultrasound sensing involves

using dual optical and mechanical resonances to enhance |
the ultrasound signal ———

Basic dynamics modelled with Hamiltonian
H = Hgrive + Hfree + Hint —

/ /‘ \ Mechanical mode 6(®,.7) Lietal (2021)
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. - Uncoupled
Optical driving optical and Optomechanical
of system mechanical interaction between
modes optical and mechanical
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Cavity optomechanical ultrasound sensing involves

using dual optical and mechanical resonances to enhance _
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Basic dynamics modelled with Hamiltonian
H = Hgrive + Hfree + Hint —
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This approach should result in improved sensitivity, and potentially enable both
miniaturisation and increased spatial resolution of the ultrasound sensors
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Significant milestones in sensitivity
achieved, but limited by
robustness and can be difficult to Optical

mass produce e

200 um

Interrogation
laser Guggenheim et al. (2017)

Basari-Esfahani et al. (2019)
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Silicon-related technology has
evolved with the semiconductor
industry
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Silicon micro-resonators can be
easily fabricated on chip and
silicon-on-insulator (SOI) wafers
can be massively produced
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However, can be limited
by sensitivity and
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* We develop and demonstrate acoustic sensing
using a nanometre-sized acoustic sensor
based on 1D photonic crystals (PhC)
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Simulation of Mode
*  We develop and demonstrate acoustic sensing ) O O O O 0000 ivivay VEVEVEY

using a nanometre-sized acoustic sensor N )
based on 1D photonic crystals (PhC)

Johnson et al. (2008)

Tapered within
:é N »: Cavity, Nmi

Tapered outside R
Cavity, Nto Cavity length, ¢
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Concept and Architecture

Simulation of Mode

* We develop and demonstrate acoustic sensing ) O O O O O OO oeww VRV

using a nanometre-sized acoustic sensor N
based on 1D photonic crystals (PhC)

E ; Tapered within Johnson et al. (2008)
é N -> : Cavity, Nn

-

 Light is coupled into the device waveguide, o
and the resonant wavelength is trapped in the Tk et e
PhC defect “cavity”

* Acoustic pressure changes the refractive
index of the surrounding material,
changing the resonant wavelength

Tapered fibre
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Acoustic Characterisation

Commercial
hydrophone

= —_ DAQ

Polarisation
PSU Driver controller

40 MHz AOM

PD

Driver PSU

PD

Polarisation
controller

1550 nm laser
nn Isolator Splitter
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Circulator

Device

Devices are submerged in bucket of water and response to
signal is monitored with heterodyne system
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Single Tone Response for Optomechanical Acoustic Sensor
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Device Characterisation Results

Single Tone Response for Optomechanical Acoustic Sensor Optomechanical Acoustic Sensor Network Response
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Sensitivity calculated using formula:

7 = Af~1, where Af is

/ the resolution bandwidth

Pain(@) = |1 X Pappiica @)
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Signal-to-noise Applied pressure,
ratio modelled with
commercial hydrophone
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Device Characterisation Results

Optomechanical Acoustic Sensor Sensitivi
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Device Characterisation Results

Sensitivity calculated using formula:

7 = Af~1, where Af is

/ the resolution bandwidth

Pain(@) = |1 X Pappiica @)
]

Signal-to-noise Applied pressure,
ratio modelled with
commercial hydrophone

Optomechanical device demonstrates
comparable sensitivity to commercial

hydrophone (~mPa/+/Hz) but 10 orders

of magnitude smaller

Sensitivity (Pa HZ'UZ)
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Optomechanical Acoustic Sensor Sensitivity
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Biological sensing applications

 Use fibre-based 1D PhC sensors to try and sense
acoustic vibrations from cells

 Currently building set-up for biological sensing

Pelling et al. (2004)
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Defence/engineering applications

* Currently organising for field deployment in UQ
swimming pool

* Deploy and characterize fibre-based sensors
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Device Preparation

Once devices are fabricated, there are two key next steps:

Dips in reflected

Dev.lce spectrum are

testing resonances. High
quality-factor and dip

depth are desirable

Laser light is coupled to All wavelengths except the resonant
the device wavelength are reflected back

Device Device is lifted off the
) chip with optical fibre,

preparation and then coated in

polymer coatings for
protection




Testing, Preparation and
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Characterisation Challenges

Reduced light coupling

Adjust tapered fibre position
relative to cavity

Acoustic reflections in
container

Move from small glass to
large plastic container

Devices breaking off tapered
fibre

New device preparation
procedure

Optical noise in signal
response

New heterodyne set-up

.EQUS



