Fibre-Based Optomechanical Acoustic Sensing

L.R. McQueen ${ }^{1}$, G.I. Harris ${ }^{1}$, N. Bawden ${ }^{1}$, W.P. Bowen ${ }^{1}$

${ }^{1}$ ARC Centre of Excellence for EQUS, School of Mathematics and Physics, University of Queensland, St. Lucia QLD 4072, Australia

Acoustic Sensor Applications

UNIVERSITY OF Queensland
australa

Acoustic Sensor Applications

Acoustic sensors have many realworld applications

Acoustic Sensor Applications

Acoustic sensors have many realworld applications

Acoustic Sensor Applications

Acoustic sensors have many realworld applications

Acoustic Sensor Applications

Acoustic sensors have many realworld applications

However, most commercially available sensors are limited by size (resolution) and electric noise (sensitivity)

Optomechanical Sensing

Optomechanical Sensing

Cavity optomechanical ultrasound sensing involves using dual optical and mechanical resonances to enhance
the ultrasound signal

Optomechanical Sensing

THE UNIVERSITY OF Queensland

Optomechanical Sensing

THE UNIVERSITY OF Queensland australia

Cavity optomechanical ultrasound sensing involves using dual optical and mechanical resonances to enhance the ultrasound signal

Basic dynamics modelled with Hamiltonian

Optical driving of system

Uncoupled optical and mechanical modes
$H_{\text {free }}+H_{\text {int }}$

Optomechanical Sensing

Cavity optomechanical ultrasound sensing involves using dual optical and mechanical resonances to enhance the ultrasound signal

Basic dynamics modelled with Hamiltonian

This approach should result in improved sensitivity, and potentially enable both miniaturisation and increased spatial resolution of the ultrasound sensors

Optomechanical Acoustic Sensing

Optomechanical Acoustic Sensing

> Significant milestones in sensitivity achieved, but limited by robustness and can be difficult to mass produce

Optomechanical Acoustic Sensing

> Significant milestones in sensitivity achieved, but limited by robustness and can be difficult to mass produce

laser

Guggenheim et al. (2017)

Silicon-related technology has evolved with the semiconductor industry

Silicon micro-resonators can be easily fabricated on chip and silicon-on-insulator (SOI) wafers can be massively produced

Optomechanical Acoustic Sensing

Silicon-related technology has evolved with the semiconductor industry

Silicon micro-resonators can be easily fabricated on chip and silicon-on-insulator (SOI) wafers can be massively produced

errogation
laser

Guggenheim et al. (2017)

Optomechanical Acoustic Sensing

The University OF QUEENSLAND
australia

Silicon-related technology has evolved with the semiconductor industry

Silicon micro-resonators can be easily fabricated on chip and silicon-on-insulator (SOI) wafers can be massively produced

$$
\begin{aligned}
& \text { Significant milestones in sensitivity } \\
& \text { achieved, but limited by } \\
& \text { robustness and can be difficult to } \\
& \text { mass produce }
\end{aligned}
$$

laser

Guggenheim et al. (2017)

However, can be limited
by sensitivity and robustness

Concept and Architecture

- We develop and demonstrate acoustic sensing using a nanometre-sized acoustic sensor based on 1D photonic crystals (PhC)

Concept and Architecture

- We develop and demonstrate acoustic sensing using a nanometre-sized acoustic sensor based on 1D photonic crystals (PhC)

Concept and Architecture

- We develop and demonstrate acoustic sensing using a nanometre-sized acoustic sensor based on 1D photonic crystals (PhC)
- Light is coupled into the device waveguide, and the resonant wavelength is trapped in the PhC defect "cavity"

Concept and Architecture

- We develop and demonstrate acoustic sensing using a nanometre-sized acoustic sensor based on 1D photonic crystals (PhC)
- Light is coupled into the device waveguide, and the resonant wavelength is trapped in the PhC defect "cavity"
- Acoustic pressure changes the refractive index of the surrounding material, changing the resonant wavelength

Acoustic Characterisation

Acoustic Characterisation

The University Of Queensland

Devices are submerged in bucket of water and response to signal is monitored with heterodyne system

Device Characterisation Results

Device Characterisation Results

THE UNIVERSITY Of Queensland australia

[^0]
Device Characterisation Results

Single tone response at 32 kHz

Network response with noise floor measured with spectrum analyser

Device Characterisation Results

The University Of Queensland australia

Sensitivity calculated using formula:

Device Characterisation Results

Sensitivity calculated using formula:

$$
\tau=\Delta f^{-1}, \text { where } \Delta f \text { is }
$$ the resolution bandwidth

$$
P_{\min }(\omega)=\sqrt{\frac{\tau}{S N R}} \times P_{\text {applied }}(\omega)
$$

Device Characterisation Results

Sensitivity calculated using formula:

$$
\tau=\Delta f^{-1}, \text { where } \Delta f \text { is }
$$

the resolution bandwidth

$$
P_{\min }(\omega)=\sqrt{\frac{\tau}{S N R}} \times P_{\mathrm{applied}}(\omega)
$$

Optomechanical device demonstrates comparable sensitivity to commercial hydrophone ($\sim \mathrm{mPa} / \sqrt{\mathrm{Hz}}$) but 10 orders of magnitude smaller

Future Outlooks
The University Of Queensland austral australia

Future Outlooks

Sins Of Queensland

Biological sensing applications

- Use fibre-based 1D PhC sensors to try and sense acoustic vibrations from cells
- Currently building set-up for biological sensing

Future Outlooks

THE UNIVERSITY Of Queensland

Biological sensing applications

- Use fibre-based 1D PhC sensors to try and sense acoustic vibrations from cells
- Currently building set-up for biological sensing

Defence/engineering applications

- Currently organising for field deployment in UQ swimming pool
- Deploy and characterize fibre-based sensors

Device Preparation

The University
australa

Once devices are fabricated, there are two key next steps:

Device
testing

Laser light is coupled to the device

Dips in reflected spectrum are resonances. High quality-factor and dip depth are desirable

All wavelengths except the resonant wavelength are reflected back

Device is lifted off the chip with optical fibre, and then coated in polymer coatings for protection

Testing, Preparation and Characterisation Challenges

Acoustic reflections in container
Move from small glass to large plastic container

3

[^0]: Single tone response at 32 kHz

