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a. Acoustic sensitivity: 105dB re Hz/Pa
b. Frequency range: 10Hz- 5kHz

Performance

Demonstration of fibre laser hydrophone array in

Gulf St Vincent (2013)

Extremely small sensor footprint
Ease of demodulation
Low power requirement
It is the stable reference – no additional reference sources 
required for demodulation – it is the stable 'clock'
Multiplexing capability – 32 sensor arrays reported



Ultra-remote deployment

• <10 km  deployments are fairly ‘trivial’
• Cranch, G. A., et al. "Large-scale remotely pumped and interrogated fiber-optic 

interferometric sensor array." IEEE Photonics Technology Letters 15.11 (2003): 1579-1581.

• 40 km link demonstrated

• How far can this be extended for a DFB approach?
• Pump delivery

• Background loss management 

• Non-linearity management

• Pump source management



• Remotely powered EDFAs

• Stimulated Raman Scattering becomes a limiting factor
• Large mode area telecomm fibre is essential

• Lowest losses essential also

• Hollow-core fibre has an opportunity to significantly disrupt this area 
by allowing for a much higher power launch

Papernyi, Serguei & karpov, Vladimir & Ivanov, Vladimir & Clements, Wally & Araki, Tetsuaki & Koyano, 
Yasushi. (2004). Cascaded Pump Delivery for Remotely Pumped Erbium Doped Fiber Amplifiers.

Remote pump delivery



• Choice of pump wavelength begins to affect power budget at 
link lengths of >50 km

• 0.16 dB/km @ 1480 nm

• 0.146 dB/km @ 1530 nm

• 0.142 dB/km @ 1550 nm

Y. Tamura, H. Sakuma, K. Morita, M. Suzuki, Y. Yamamoto, K. Shimada, Y. Honma, K. Sohma, T. Fujii and T. 
Hasegawa, “Lowest-ever 0.1419-dB/km loss optical fiber,,” in Proc. Opt. Fiber Commun. Conf. 2017, Th5D.1 
(2017)

• Commercially available fibres typically at +0.03 dB/km

• 150 µm2 effective area
• Cut-off wavelength is red-shifted

• gR ~ 0.19 /W/km

Propagation losses in ultra-low loss fibres



• Conventional pumping at 1480 nm

• Opportunity to pump at wavelengths up to 1530 nm

• Transparency and gain achieved at 30-50% inversion
• Pump attenuation at these inversion is nearly 

constant from 1480 – 1520 nm

• More interesting behavior at 1530 – 1540 nm

Resonant pumping of Erbium doped fibres



DFB performance
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Pump Wavelength Dependence
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• Large parameter space of pump wavelength vs propagation loss vs required 
operation vs array size
• To energise a single sensor – 2.5 - 3 mW required

• To energise an array of 8 sensors – 20 mW required (as a minimum)

Discussion

Pump 2 W

Actual length 100 km

alpha (dB/km) 0.2 dB/km

alpha (1/km) 0.02 1/km

Leff 43.23 km

G_raman 70.10 dB

Pump transmitted 20 mW

Pump 0.8 W

Actual length 100 km

alpha (dB/km) 0.16 dB/km

alpha (1/km) 0.016 1/km

Leff 49.88 km

G_raman 32.35 dB

Pump transmitted 20.10 mW

Pump 5 W

Actual length 150 km

alpha (dB/km) 0.16 dB/km

alpha (1/km) 0.016 1/km

Leff 56.83 km

G_raman 230.36 dB

Pump transmitted 19.91 mW



• Improves power budget
• Reduces propagation loss by 0.014 dB/km

• Raman is no longer within band
• Allows for aggressive filtering of any Raman to avoid SRS parasitics

• Compatibility with more conventional fibre types

Pumping at 1520 nm 

Pump 1.26 W

Actual length 100 km

alpha (dB/km) 0.18 dB/km

alpha (1/km) 0.018 1/km

Leff 46.37 km

G_raman 47.37 dB

Pump transmitted 19.97 mW

Pump 0.5 W

Actual length 100 km

alpha (dB/km) 0.142 dB/km

alpha (1/km) 0.0142 1/km

Leff 53.40 km

G_raman 21.65 dB

Pump transmitted 19.01 mW



• Remote pumping of EDFAs well known/explored (100km +)

• Remote interrogation of passive sensor arrays well known/explored (40 km +)

• Here we investigate key considerations for remote pumping of Erbium DFB fibre lasers
• Optimisation of pump source is significant in remotely deployed configurations

• For <50 km deployment, 1480 nm pumping is suitable

• Further optimization opens up potential for >100 km deployment of DFB sensors

• Key technologies to watch
• Low nonlinearity/low loss hollow core fibres

• Large mode area, ultra low loss telecomm fibres

• Low loss fluoride fibres?

• Low SWaP semiconductor sources at 14XX – 15XX nm

• Further optimization of DFB devices (fibres/dopant concentration/splice losses)

Conclusion
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