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The global gravitational-wave detector network achieves higher detection rates, better parameter
estimates, and more accurate sky localization as the number of detectors I increases. This paper quantifies
network performance as a function of I for BayesWave, a source-agnostic, wavelet-based, Bayesian
algorithm which distinguishes between true astrophysical signals and instrumental glitches. Detection
confidence is quantified using the signal-to-glitch Bayes factor BS;G. An analytic scaling is derived for BS;G

versus I , the number of wavelets, and the network signal-to-noise ratio SNRnet, which is confirmed
empirically via injections into detector noise of the Hanford-Livingston (HL), Hanford-Livingston-Virgo
(HLV), and Hanford-Livingston-KAGRA-Virgo (HLKV) networks at projected sensitivities for the fourth
observing run (O4). The empirical and analytic scalings are consistent; BS;G increases with I . The accuracy
of waveform reconstruction is quantified using the overlap between injected and recovered waveform,Onet.
The HLV and HLKV network recovers 87% and 86% of the injected waveforms with Onet > 0.8,
respectively, compared to 81% with the HL network. The accuracy of BayesWave sky localization is ≈10
times better for the HLV network than the HL network, as measured by the search areaA, and the sky areas
contained within 50% and 90% confidence intervals. Marginal improvement in sky localization is also
observed with the addition of the Kamioka Gravitational Wave Detector.
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I. INTRODUCTION

The Laser Interferometer Gravitational-Wave
Observatory (LIGO) [1–3] has completed three observing
runs, O1 [4,5], O2 [5,6] and O3 [7] between 2015 and
2020, including joint searches with Italian partner Virgo
[8], in the final month of O2 and the whole of O3. In April
2019, Advanced LIGO commenced its third observing run
in collaboration with Advanced Virgo as a three-detector
network: the Hanford-Livingston-Virgo (HLV) network.
The Kamioka Gravitational Wave Detector (KAGRA)
[9–11] also began observing in February 2020 [7].
With access to these upgraded instruments, there is a

burgeoning interest in detecting short-duration gravita-
tional-wave (GW) signals by combining data from multi-
detector networks. These signals typically have durations
of milliseconds up to a few seconds, with the most common
sources being compact binary coalescences (CBCs) such as
black hole or neutron star mergers, along with other
potential sources like core-collapse supernovae (SNe) of
massive stars [12], pulsar glitches of astrophysical origin
[13] and cusps in cosmic strings [14]. In addition to these

known sources, it is also plausible to detect transient signals
of unknown astrophysical origin.
Searches for generic GW transients, or burst searches,

require the ability to distinguish such signals from any
noise artifacts present in the detector data. Hence, it is
crucial to understand the noise properties of the detector
data. Results from the initial LIGO-Virgo science runs
revealed nonstationary and non-Gaussian detector noise,
which includes short-duration noise transients denoted by
the term “glitches” [15–17]. If not accounted for properly,
these features could resemble GWs and consequently limit
the ability to detect low-amplitude signals.
Since CBC signals come from known and well-studied

sources, such signals are accurately modeled in most
regions of parameter space and therefore can be detected
with high confidence usingmatched-filter searches [18–20].
Other GW burst signals, on the other hand, may originate
from either complex or unanticipated sources. Given the
stochastic nature and complexity of the potential sources
(e.g., core collapse supernovae), there are no robust models
available to date to assist with the searches of generic burst
signals, making it challenging to distinguish them from
other non-Gaussian features like glitches in the detector
data, as well as to accurately reconstruct the underlying
signal waveform.
There are a number of unmodeled burst searches per-

formed inLIGOandVirgo data [21,22]. In thisworkwe look
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at an unmodeled search algorithm called BayesWave
[23–25], which was proposed to enable the joint detection
and characterization ofGWbursts and instrumental glitches.
BayesWave reconstructs both signals and glitches as a sum
of sine-Gaussian wavelets, where the number of wavelets
and their parameters are determined via a reversible-jump
Markov chain Monte Carlo (RJMCMC) algorithm.
Bayesian model selection is then used to determine the
likelihood of an event being a true signal or a noise artifact.
Previous studies have quantified the performance of

BayesWave in recovering simulated waveforms from
simulated noise with a two-detector network (HL network)
[26,27]. However, with Virgo joining GW searches along-
side the HL network in O2 and O3, KAGRA coming online
toward the end of O3, and future detectors like LIGO-India
in the planning stages [28], the network of GW detectors is
expanding rapidly. Expanding detector networks will
increase the likelihood of detecting more events with
higher confidence. These improvements are evident in
previous studies and will be elaborated further in Sec. II.
In this paper, we aim to evaluate BayesWave’s perfor-

mance in searching for GW bursts from detector data
beyond the HL network. We achieve this by using
BayesWave to recover injected signals from simulated
noise with the HLV and the HLKV detector networks
and comparing the outcomes with those of the HL network.
We quantify the performance of BayesWave based on the
following metric: (i) Bayes factor between signal and glitch
models, (ii) overlap (match) between injected and recov-
ered waveforms, and (iii) accuracy of recovered sky
location. In Sec. III, we provide a detailed overview of
the BayesWave algorithm. We derive the analytic scaling
relation of the signal-to-glitch Bayes factor in Sec. IV. We
then discuss the methods of injecting simulated waveforms
into simulated detector noise samples in Sec. V, followed
by comparisons and analyses of the metrics mentioned
above: Bayes factor in Sec. VI A, overlap in Sec. VI B and
sky localization in Sec. VI C. Finally, we present a
summary of the results along with their implications in
Sec. VII.

II. BENEFITS OF EXPANDING
DETECTOR NETWORKS

Increasing the number of operational ground-based
detectors has several major benefits for GW astronomy,
including a higher rate of detection of GW transients and
better characterization of those signals. Here we discuss
some of the benefits of adding new detectors to the existing
network.

A. SNR and search volume

One major advantage of a larger detector network is the
ability to confidently detect quieter events. The strain
amplitude sðiÞ in detector i of the network consists of a

signal hðiÞ (if present) and detector noise nðiÞ which can be
expressed as

sðiÞ ¼ hðiÞ þ nðiÞ: ð1Þ

The squared matched-filter signal-to-noise ratio (SNR) of

signal hðiÞs in detector i is then given by [29]

SNR2
i ¼ ðhðiÞs jhðiÞs Þ; ð2Þ

where ð:j:Þ on the right-hand side of the expression is the
noise-weighted inner product. We define the noise-
weighted inner product between two arbitrary waveforms
haðtÞ and hbðtÞ as [30]

ðhajhbÞ ¼
Z

∞

0

h̃a
�ðfÞh̃bðfÞ þ h̃aðfÞh̃b�ðfÞ

SnðfÞ
df; ð3Þ

where h̃ðfÞ is the Fourier-transformed waveform, h̃�ðfÞ is
its complex conjugate and SnðfÞ is the one-sided power
spectral density (PSD) of stationary, Gaussian detec-
tor noise.
For a network with I detectors, the overall network SNR

is given by [26]

SNR2
net ¼

XI
i¼1

SNR2
i : ð4Þ

According to Eq. (4), adding more detectors to the network
increases the SNR of all detected GW signals. This enables
detection pipelines to estimate waveform parameters more
accurately [31]. With improved parameter estimates, more
accurate models can be constructed to represent the
detected waveform [32].
In addition, the SNR of GW signals scales with lumi-

nosity distance DL as [33]

SNRi ∝
1

DL
: ð5Þ

By combining Eqs. (4) and (5) and assuming coherent
searches, the overall SNR for a network of I detectors with
equal sensitivities is given by SNRnet ∝

ffiffiffiffi
I

p
=DL. Assuming

that GW sources are uniformly distributed across the sky,
an I-detector network can detect

ffiffiffiffi
I

p
times further and up

to
ffiffiffiffiffi
I3

p
more sources compared to a single-detector net-

work since the search volume scales as V ∝ D3
L.

B. Sky coverage

The sensitivity of a detector toward a particular sky
location is determined by the antenna pattern in that given
direction. Adding more detectors to the network at different
geographical locations and orientations increases the
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sensitivity of the network to a wider region of the sky
(increased sky coverage), consequently increasing the
detection rate and volume along those directions [34].
Reference [35] presented a visual comparison between

the network antenna pattern across the whole sky between a
three-detector (HLV) network and a four-detector (HLKV)
network, where “K” denotes KAGRA. As expected, results
show that both networks are more sensitive to some regions
in the sky than others. However, the HLKV network has a
higher overall network antenna power pattern and an
overall increase in sky coverage is also reflected in the
expansion of regions with relatively higher sensitivity.

C. Observing time

Adding detectors to the existing network also increases
the duty cycle where two or more detectors are functional
and simultaneously observing. This consequently increases
the chances of the detectors picking up a coherent astro-
physical signal and leading to higher detection rates [34].

D. Sky localization

Sky localization of a GW source is of vital importance
for locating and identifying any existing electromagnetic
counterparts to the GW event [36]. Ground-based GW
detectors are nearly omnidirectional, so with a single
detector we are not able to impose a strict constrains to
the sky location of a GW event. Nevertheless, sky locali-
zation of GW signals improves significantly with multiple
interferometers. The times of arrival at two detectors
constrain the position of the source to an error ellipse in
the sky map. Thus, having more detectors will reduce
localization volume by imposing stricter constraints to the
location of the sources, improving the accuracy of locating
the source in the sky [36,37].
To sum up the points above, the advantages of having

more detectors in the network include (i) improvement in
SNR and increased search volume, (ii) alignment-depen-
dent sky coverage, (iii) increased rates of detection, and
(iv) improved sky localization.

III. BAYESWAVE OVERVIEW

BayesWave is a Bayesian data analysis algorithm that
detects transient features in a stretch of detector data and
identifies whether they are an astrophysical signal or
instrumental noise. BayesWave reconstructs non-
Gaussian features in the data using a sum of sine-
Gaussian (also called Morlet-Gabor) wavelets. The number
of wavelets and their respective parameters are sampled
using a transdimensional Markov chain Monte Carlo
algorithm, otherwise known as the RJMCMC. The
RJMCMC is implemented to allow for adjustable number
of wavelets and hence variable model dimensions.
BayesWave outputs posterior distributions and Bayesian
evidences for three separate models: (i) Gaussian noise

only, (ii) Gaussian noise with glitches and (iii) Gaussian
noise with GW signal. The model evidences are then used
for Bayesian model selection between the three scenarios.

A. Wavelet frames

BayesWave uses a sum of sine-Gaussian (also called
Morlet-Gabor) wavelets to reconstruct non-Gaussian fea-
tures (either signals or glitches) in the detector data. Even
though sine-Gaussian wavelets form a nonorthogonal
frames,1 their shape is variable in the time-frequency plane
and can optimally reconstruct a transient GW signal with
no a priori assumption on the signal source or morphology.
The number of wavelets used in the reconstruction is

marginalized via the RJMCMC, where signals with com-
plex structure in the time-frequency plane will use more
wavelets in the reconstruction. Previous studies [26,38]
have shown that the number of wavelets scales linearly with
SNR such that

N ≈ γ þ βSNR; ð6Þ

where γ and β are constants which depend on waveform
morphology. The results from Ref. [26] show that β and
hence N increase with waveform complexity. For binary
black hole (BBH) waveforms, the typical numbers are
γ ¼ 5.6 and β ¼ 0.066 for sine-Gaussian wavelet recon-
structions [38].
In BayesWave, each wavelet in the time domain has five

intrinsic parameters t0, f0, Q, A, and ϕ0 which represent
central time, central frequency, quality factor, amplitude
and phase offset, respectively. These intrinsic parameters
can be expressed as a single parameter vector λ ¼
ft0; f0; Q; A;ϕ0g and the mathematical representation of
a sine-Gaussian wavelet is given by

Ψðt; t0; f0; Q; A;ϕ0Þ ¼ Ae−Δt
2=τ2 cosð2πf0Δtþ ϕ0Þ ð7Þ

with τ ¼ Q=ð2πf0Þ and Δt ¼ t − t0 [26].
The glitch model in BayesWave is independent between

detectors owing to the fact that noise artifacts are uncorre-
lated across different detectors. Hence, the set of glitch
model parameters must contain the respective parameters
for each individual detector across the network. The
complete set of glitch model parameters for a network
of detectors comprising Hanford, Livingston, and Virgo
(HLV) can be written as [26]

1Discrete wavelets can form orthogonal bases for signal or
glitch representations, but projecting the signal wavelets onto
each detector requires the time translation operator which is
computationally expensive. Despite the lack of orthogonality,
sine-Gaussian wavelets are flexible in shape and have an analytic
Fourier representation. Hence the analysis can be done in the
frequency domain without the need of a time-translation operator.
Further details can be found in Sec. 3 of [24].
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θG ¼ fλH ∪ λL ∪ λVg ð8Þ

with λi ¼ fλi0 ∪ λi1 ∪ � � � ∪ λi
NG

i
g, where the numerical

subscripts indicate a single wavelet used in the glitch
model and NG is the total number of wavelets in the glitch
model. The superscripts indicates the ith detector in the
network.
In contrast to the glitch model, the signal model is

common across all detectors in the network. As a result,
signal models should have a single set of intrinsic wavelet
parameters λ⊕ ¼ fλ0 ∪ λ1 ∪ � � � ∪ λNSg, along with a set
of extrinsic parameter Ω ¼ fα; δ;ψ ; ϵg which sequentially
describes the right ascension (RA), declination (dec),
polarization angle and ellipticity of the GW signal. The
sky location (RA, dec) and polarization angle of a source
determine antenna beam patterns of the detector network,
as well as provide information on the amplitude and the
arrival-time delay of the signal in each detector [39].
Ellipticity defines the relative phase and amplitude of
the plus and cross polarizations, hþ and h×, respectively,
with h× ¼ ϵhþeiπ=2. The ellipticity parameter ϵ takes
values between 0 and 1 with the lower and upper bounds
denoting linear to circular polarizations, respectively [24].
Altogether a complete set of signal model parameters is
given by [26]

θS ¼ fλ⊕ ∪ Ωg: ð9Þ
BayesWave produces posterior distributions of the

parameters described above. Each draw from the posterior
contains a unique set of wavelet parameters (and extrinsic
parameters for the signal model), which are then summed to
produce a posterior on the waveform, hðtÞ. By using this
basis of sine-Gaussian wavelets, hðtÞ is reconstructed with
no a priori assumption on the source of the GW signal.

B. Model selection

In addition to waveform reconstruction, BayesWave
performs model selection between the signal and glitch
hypotheses described above. The ratio of model evidences,
otherwise known as the Bayes factor, is the key to model
selection in Bayesian inference as it assesses the plausibil-
ity of two different models,Mα andMβ, parameterized by

their respective parameter sets θ⃗α and θ⃗β. In other words, it
quantifies which model is better supported by the data. The
model evidence (also called the marginalized evidence) is
given by

pðs⃗jMαÞ ¼
Z

pðθ⃗αjMαÞpðs⃗jθ⃗α;MαÞdθ⃗α; ð10Þ

where s⃗ is the observed data,Mα is the model, and θ⃗α is the
parameter vector for model Mα. The prior probability of
parameters θ⃗α before the data are observed is given by

pðθ⃗αjMαÞ, and pðs⃗jθ⃗α;MαÞ is the likelihood of obtaining
the observed data s⃗, given the modelMα. Hence, the Bayes
factor between modelsMα andMβ, parameterized by their

respective parameter vectors θ⃗α and θ⃗β, is

Bα;βðs⃗Þ ¼
pðs⃗jMαÞ
pðs⃗jMβÞ

: ð11Þ

Bα;βðs⃗Þ > 1 implies that model Mα is more strongly
supported by the data than modelMβ. To reduce computa-
tional costs, the BayesWave algorithm calculates model
evidence using thermodynamic integration [40].
BayesWave calculates the Bayes factor between the

signal model (i.e., the data contain a real astrophysical
signal) and the glitch model (i.e., the data contain an
instrumental glitch). In Sec. IV we discuss how the signal-
to-glitch Bayes factor scales with SNR, the number of
wavelets used in the MCMC, and the number of detectors
in the network.

C. Overlap

In addition to distinguishing between signals and
glitches, BayesWave also produces a posterior distribution
of the wavelet-expanded waveforms, hðtÞ, to match the true
waveform, hsðtÞ. One way to quantify the agreement or
similarity between hðtÞ and hsðtÞ is through the overlap O.
Reconstructed waveforms in BayesWave are analogous to
waveform templates; hence, the overlap between recon-
structed models and the injected waveform can be com-
puted the same way as the overlap in matched filtering.
The normalized overlap between the two waveforms can

be written as [32]

O ¼ ðhjhsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhjhÞðhsjhsÞ
p ; ð12Þ

where ð:j:Þ is the noise-weighted inner product as defined in
Eq. (3). Since Eq. (12) is normalized, O takes values
between −1 and 1. When O ¼ 1, there is a perfect match
between the injected and recovered waveform; O ¼ 0
implies that there is no match at all and O ¼ −1 implies
a perfect anticorrelation.
Equation (12) only applies to a single detector. A

network overlap Onet is required to fully evaluate
BayesWave’s performance in recovering waveforms from
all the detectors combined. In order to define the network
overlap, we sum each factor in Eq. (12) over all I detectors
in the network such that

Onet ¼
P

I
i¼1 ðhðiÞjhðiÞs ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

I
i¼1 ðhðiÞjhðiÞÞ

P
I
i¼1 ðhðiÞs jhðiÞs Þ

q ; ð13Þ

where hðiÞ and hðiÞs denote the recovered waveform and
waveform present in detector i, respectively.
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IV. ANALYTIC BAYES FACTOR SCALING

In this work, we aim to understand the behavior of the
Bayes factor between signal and glitch models for networks
comprising different numbers of GW detectors. Hence it is
in our interest to analytically understand the conditions of
model selection. We want to know under what circum-
stances a model is favored over another.

A. Occam penalty

A key to understanding Bayes factor behavior when
using a transdimensional model, as BayesWave does, is the
role of the Occam penalty.
The parameter value at which the posterior distribution

peaks is known as the maximum a posteriori (MAP) value,
denoted as θ⃗MAP. For high SNR events, the integrand of
model evidence in Eq. (10) peaks sharply in the vicinity of
the MAP. Following the Laplace-Fisher approximation, the
integral can be estimated as

pðs⃗jMÞ ≃ pðs⃗jθ⃗MAP;MÞpðθ⃗MAPjMÞð2πÞD=2
ffiffiffiffiffiffiffiffiffiffi
detC

p
;

ð14Þ

where pðs⃗jθ⃗MAP;MÞ is the MAP likelihood; pðθ⃗MAPjMÞ
is the prior evaluated at the MAP parameter values;D is the
dimension of the model; and detC is the determinant of the
full covariance matrix for the N wavelets used in waveform
reconstruction. If the covariance matrix for a single wavelet
is Cn, then we have

detC ¼
YN
n¼1

detCn; ð15Þ

assuming minimal overlap between the wavelet parameter
spaces. Since the Laplace-Fisher approximation is associ-
ated with the MAP likelihood, the covariance matrix can be
approximated as the inverse of the Fisher information
matrix (FIM), Γ [41]. A comprehensive discussion of the
FIM and its relation to wavelet parameter jump proposal is
presented in Appendix A.
By definition, detC measures the variance of the like-

lihood. Thus,
ffiffiffiffiffiffiffiffiffiffi
detC

p
quantifies the characteristic spread of

the likelihood function. The product of
ffiffiffiffiffiffiffiffiffiffi
detC

p
and

ð2πÞD=2, which account for the dimensionality of the
model, can then be used as a measure for the volume of
the uncertainty ellipsoid (posterior volume), ΔVM for a
given model M [26,42,43]. Assuming uniform priors for
all wavelet parameters, one can also write pðθ⃗MAPjMÞ ¼
1=VM, where VM represents the total parameter space
volume. Hence, the last three factors of Eq. (14) can
collectively be interpreted as the fraction of the prior
occupied by the posterior distribution, such that the model
evidence is now given by

pðs⃗jMÞ ≃ pðs⃗jθ⃗MAP;MÞΔVM

VM
; ð16Þ

where ΔVM=VM is the “Occam penalty factor.”
Following Eqs. (11) and (16), the Bayes factor between

two models can be reexpressed as

Bα;βðs⃗Þ ¼ Λα;βðs⃗Þ
ΔVα

Vα

Vβ

ΔVβ
; ð17Þ

where the ratio of MAP likelihoods is given by

Λα;βðs⃗Þ ¼
pðs⃗jθ⃗MAP;αÞ
pðs⃗jθ⃗MAP;βÞ

: ð18Þ

Equation (17) suggests that the Bayes factor is dependent
on the likelihood ratio and the ratio of the Occam penalty
factors. The Occam factor penalizes models that require an
unnecessarily large parameter space volume to fit the data
by suppressing the model evidence. Note that the Occam
penalty is not an intentionally added component to the
Bayes factor; rather, it is inherently imposed as a result of
using the Bayes theorem.
As a heuristic explanation as to how the Occam penalty

aids in BayesWave’s ability to distinguish between signals
and glitches, recall that signal models (S) for each detector
share the same intrinsic parameters and four extrinsic
parameters. Since there are five intrinsic parameters (t0,
f0, Q, A, and ϕ0) per wavelet, the dimension of signal
models scales as

DS ∼ 5N þ 4; ð19Þ

where N is the number of wavelets. Glitch models (G), on
the other hand, have no extrinsic parameters but the glitch
model of each detector is described by a unique set of
intrinsic parameters. Assuming that signal and glitch
models use the same number of wavelets such that NG ¼
NS ¼ N (see Appendix B), the dimension of glitch models
scales as [24]

DG ∼ 5NI : ð20Þ

One therefore hasDG > DS for I ≥ 2. This implies that the
total parameter space volume for the glitch model is larger
than that of the signal model (i.e., VG > VS). If both models
fit the data equally well (i.e., ΛS;G ≈ 1 andΔVS ≈ VG), then
by Occam’s razor we should expect to see a selection bias
toward the signal model as I increases. In other words,
Eq. (17) gives

BS;Gðs⃗Þ ¼ ΛBS;G
ðs⃗ÞΔVS

ΔVG

VG

VS
> 1 ð21Þ

with increasing I .
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In Sec. IV B, we use the Laplace approximation to the
Bayesian evidence to derive an analytic scaling of the
Bayes factor.

B. Dependence of Bayes factor on number of detectors

In Ref. [26], Littenberg et al. put forth an analytic scaling
of the log signal-to-glitchBayes factor, lnBS;G, in an effort to
fully understandBayesWave’s ability to robustly distinguish
astrophysical signals from instrumental glitches. They
showed that the primary scaling of the Bayes factor goes as

lnBS;G ∝ N lnðSNRnetÞ; ð22Þ
where N is the number of wavelets used in the
reconstruction, which is related to the signal morphology
and SNR as described in Eq. (6). The dependence of Bayes
factor onN (and therefore the complexity of the signal in the
time frequency plane) differentiates BayesWave from other
unmodeled searches whose detection statistics scale pri-
marily with SNR. The scaling found in Ref. [26] assumes a
network comprising two GW detectors. Here we extend this
work to an arbitrary number of detectors I .
We begin with the Laplace approximation of model

evidences for the signal and glitch models. From Eq. (14),
we find

lnpðdjSÞ ≃ SNR2
net

2
−
5NS

2
− NS lnðVλÞ

þ
XNS

n¼1

ln

�
Q̄n

SNR5
net;n

�
þDΩ

2
þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detCΩ

p
VΩ

;

ð23Þ

lnpðdjGÞ ≃ SNR2
net

2
−
XI
i¼1

�
5NG

i

2
þ NG

i lnðVλÞ

−
XNG

i

n¼1

ln

�
Q̄n

SNR5
i;n

��
ð24Þ

with Q̄n ≡ ð2πÞ5=2
ffiffi
2

p
Qn
π . Vλ is the prior volume of intrinsic

parameters and Nx
i is the total number of wavelets for

model x. The subscript i refers to detector i in the network
and n labels an individual wavelet from the set of wavelets
for a given model. For instance, SNRi;n is the SNR of
wavelet n in the ith detector.2 In the last two terms of
Eq. (23), DΩ ¼ 4, CΩ and VΩ denote the dimension,
covariance matrix and the prior volume of extrinsic
parameters, respectively. The full derivation from
Eq. (14) to Eqs. (23) and (24) can be found in Sec. III
(A) of Ref. [26].

To simplify the expressions for these evidences, we
follow the same assumptions used in Ref. [26] and which
are detailed further in Appendix B. One simplifying
assumption we highlight here again is that the number
of wavelets used in the signal model will be approximately
the same as the glitch model, and so we set NS ¼ NG ≡ N
[i.e., the N in Eq. (22)]. Upon implementing the assump-
tions in Appendix B, the theoretical log Bayes factor
between the signal and glitch model for a network of I
detector(s) is given by lnBS;G ≃ lnpðdjSÞ − lnpðdjGÞ:

lnBS;G ≃ ðI − 1Þ
�
5N
2

þ N lnðVλÞ −
XN
n¼1

lnðQ̄nÞ

þ 5N ln

�
SNRnetffiffiffiffi

N
p

��
−
5

2
IN lnðIÞ

þ
�
2þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detCΩ

p
VΩ

�
: ð25Þ

The equation shows explicit dependence of the Bayes
factor on network SNR, number of wavelets and number of
detectors. We pay close attention to the scaling

lnBS;G ∝ IN ln SNRnet ð26Þ
which now has an extra scaling factor of I compared
to Eq. (22).
The dependence on the number of wavelets used implies

that the signal model is favored over the glitch model with
increasingwaveform complexity (higherN). In other words,
amore complexwaveform ismore likely to be classified as a
signal [26]. This analytic result agrees with the discussion in
Sec. IVAwhere if two models fit the data equally well, the
less complex model will be selected to represent the wave-
form. The proportionality lnBS;G ∝ I suggests that for
signals with equal SNR and N, the Bayes factor should
increase if we increase the number of detectors in the
network. Again, this result agrees with the discussion in
Sec. IVA; includingmore detectors in the network increases
the dimensionality of the glitch model and thus the signal
model will be even more strongly preferred.

V. INJECTION DATASET

To empirically test the Bayes factor scaling given by
Eq. (25), as well as investigate the effect on waveform
reconstructions with detector networks of different sizes,
we inject a set of simulated BBH signals into simulated
detector noise and recover them using BayesWave. While
BayesWave is a flexible algorithm that can detect a variety
of signals from different sources, we use BBH waveforms
as our test bed because they are well-understood sources
and have previously been used to study the performance of
BayesWave [26,32,44].
In this work, we use tools from the LIGO Analysis

Library [45] to inject a set of nonspinning BBHs with equal

2Each individual wavelet used in signal or glitch model
reconstruction has an amplitude which can be converted into
to SNR. For details, see [24].
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component masses of 30 M⊙. We use the phenomenologi-
cal waveform IMRPhenomD to model spinning but non-
precessing binaries using a combination of analytic
post-Newtonian, effective-one-body and numerical relativ-
ity methods [46,47]. The GW sources are distributed
isotropically across the sky, and the inclinations ι are
distributed uniformly in arccos ι. SNRnet is distributed
uniformly in SNRnet ∈ f10; 50g where this SNR is calcu-
lated from a network comprising the HL detectors.
We inject 150 BBH signals into Gaussian noise colored

by the projected PSD of LIGO, Virgo and KAGRA for the
fourth observing run O4, as given in the LIGO, Virgo and
KAGRA observing scenario [48]. The noise curves are
shown in Fig. 1.
We then recover the injected signals with BayesWave in

three different scenarios: (i) running only on Hanford and
Livingston (HL) data (a two-detector network), (ii) running
on the Hanford, Livingston, and Virgo (HLV) data (a three-
detector network) and (iii) running on the Hanford,
Livingston, KAGRA and Virgo (HLKV) data (a four-
detector network). All three detector configurations use
the exact same injection dataset.
In the two following sections, Secs. VI A and VI B, we

analyze two figures of merit: (i) Bayes factor and (ii) the
overlap. By comparing these quantities between the HL and
HLV networks, we can evaluate the performance of
BayesWave in recovering the injected waveforms from
detector networks of different sizes. As an extension to
previous studies on sky localization with expanded detector
networks, we also compare the accuracy of BayesWave in
recovering the sky location from detector networks of
different sizes in Sec. VI C.

VI. RESULTS

A. Recovered Bayes factors

After analyzing the injections described in Sec. V, we use
the model evidences calculated by BayesWave to

understand the impact of GW detector network size on the
log signal-to-glitch Bayes factor lnBS;G. For all the analyses
in this paper, we use only injections that have been identified
as inconsistent withGaussian noise (this can be either a signal
or glitch) byBayesWave. Injections indicated to be consistent
with the Gaussian noise model (N ) by BayesWave are
removed from the dataset, since it would be meaningless
to evaluate their respective signal and glitchmodel evidences.
In other words, injections with lnBS;N error bars encompass-
ing values below zero are removed from the dataset. The
widths of lnBS;N error bars are given by [24]

Δ½lnBS;N � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fΔ½lnpðdjSÞ�g2 þ fΔ½lnpðdjN Þ�g2

q
;

ð27Þ
where Δ½lnpðdjMÞ� is the uncertainty for the logarithmic
evidence of modelM. A total of 14 data points are removed
under this constraint. These events are all low SNRnet
injections.
The top left panel of Fig. 2 shows lnBS;G as a function of

SNRnet for the HL, HLV and HLKV networks. All three
networks show a clear trend of increasing Bayes factor with
increasing network SNR as expected. Our results also show
that the HLKV injections have the highest SNR overall,
agreeing with Eq. (4) which indicates that increasing I
increases SNRnet. Furthermore, we can see that injections at
comparable SNRs are recovered with higher lnBS;G in the
HLV network than the HL network. In other words, even
after accounting for the increased SNR, we observe further
enhancement in detection confidence for an expanded
detector network, suggesting that lnBS;G is related to I ,
and not just the SNR of the signal as predicted by Eq. (25).
The top right panel of Fig. 2 shows the median number of

wavelets used in the BayesWave reconstruction, N versus
the injected SNR in the respective detector networks,
SNRnet. The median here refers to the median of posterior
distribution for N. We see that N increases systematically
with SNRnet in both the HL and HLV networks. This is
expected since the detectors are able to pick up more
complex features of the waveform at high SNR. At low
SNR (SNR≲ 15) there is a slight deviation from the linear
trend described by Eq. (6) between N and SNR in both
detector networks. This is primarily due to the prior on the
number of wavelets. This prior is determined empirically
from runs in LIGO data after O1 and peaks around N ¼ 3
[25]. N also depends on waveform morphology and
complexity [26,38]. Injecting the same set of BBH wave-
forms into all three detector configurations results in similar
trends between N and SNRnet.
Equation (25) shows that lnBS;G also scales with the

number of wavelets used in the reconstruction. Hence we
also show empirically how the dimensionality of signal
model (i.e., the number of wavelets) also contributes to the
increase in lnBS;G for different I . We show this in the
bottom panel of Fig. 2 by plotting lnBS;G versus N. Color

FIG. 1. Projected LIGO, Virgo and KAGRA strain noise (i.e.,
amplitude spectral density),

ffiffiffiffiffi
Sn

p
as a function of frequency for

the fourth observing run O4. The data used to generate the noise
curves above are retrieved from [48].
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bars indicate the SNRnet of each data point. For all three
detector configurations, lnBS;G generally increases with N,
as predicted by Eq. (25). At low SNRs (i.e., SNR < 15),
detector networks recover the waveform with N ≤ 3 and
lnBS;G ≤ 50 because low SNR injections have low-
amplitude features which are harder to reconstruct resulting
in lower detection confidence. It is clear for injections
recovered withN > 3 that lnBS;G in the HLKV network are
generally higher than that of the HL and HLV networks at
comparable N and SNRnet. This again emphasizes the point
that the Bayes factor scales with I .
A more thorough investigation of the relation between

the empirical and analytic Bayes factor can be found in
Appendix C, where we use a simplified injection set of
single sine-Gaussian wavelets. By recovering sine-
Gaussian wavelets with sine-Gaussian wavelets, Eq. (6)
reduces to N ¼ 1. The results show that the empirical
scaling of the Bayes factor with I agrees with the analytical
scaling in Eq. (25) to a good approximation.
In summary,we showby comparingBayes factors between

the HL, HLV and HLKV networks that expanding detector
networks increases detection confidence. Our empirical

results are consistent with the analytic results discussed
Sec. IV, viz. lnBS;G ∝ IN ln SNRnet. Heuristically, this can
be understood via Occam’s razor: if coincident identical

FIG. 2. The top left panel shows the log signal-to-glitch Bayes factor lnBS;G of BBH injection recoveries versus network signal-to-noise
ratio SNRnet. Each data point represents one BBH injection. The top right panel shows the median number of wavelets used in signal model
reconstruction for each injection,N versus SNRnet. The bottom panel shows lnBS;G versusN, and the three color bars indicate the network
SNR of each data point in the corresponding detector network. In the top panels, the horizontal axis corresponds three different network
SNRs: (i) For the blue dot data points it corresponds to SNRnet of the HL network, (ii) for the orange star data points it corresponds to
SNRnet of the HLV network, and (iii) for the green cross data points it corresponds to SNRnet of the HLKV network.

FIG. 3. Median overlap between the injected and recovered
waveform Onet of the HL (blue dot) and HLV (orange star)
network, as a function of SNRnet. The horizontal blue line
indicates Onet ¼ 0.8 and the vertical blue line indicates
SNRnet > 15.
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glitches are unlikely in two detectors, they are even more
unlikely in three or more detectors. Therefore when identical
waveforms are detected simultaneously across larger net-
works, they have a higher likelihood of being a signal.

B. Recovered waveform overlap

In the previous section, we showed that for a set of BBH
waveforms lnBS;G increases with a larger number of
detectors in the network, meaning with more detectors
our confidence in detection is strengthened. In this section,
we quantify the accuracy of BayesWave in waveform

recovery by comparing the overlap (also sometimes called
the match) between the injected and recovered waveforms
for the HL, HLV and HLKV detector networks. The
network overlap Onet is given by Eq. (13). For the rest
of this paper, any mention of overlap refers to the network
overlap.
Figure 3 shows the median overlap Onet as a function of

network SNR, where Onet of all three detector networks
show positive correlation with their respective network
SNR. This observation is consistent with previous results,
which show that network overlap scales with SNR [38,44].
To illustrate how waveform reconstruction improves with

FIG. 4. The top panel shows, for an injection with SNRnet ¼ 11.61 andO ¼ 0.52, the injected waveform (black line), the detector data
(blue line) and the 90% credible interval of the recovered waveform (red line) for each detector in the HLKV network. Similarly in the
bottom panel but for an injection with SNRnet ¼ 52.72 and O ¼ 0.98.
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SNR, Fig. 4 shows the injected waveform (black line), the
detector data (blue line) and the 90% credible interval of the
recovered waveform (red line) for two events in the HLKV
network. The top and bottom panels show the waveforms
for the injection recovered with the smallest overlap
(Omin ¼ 0.52) and largest overlap (Omax ¼ 0.98) of the
whole injection dataset, respectively. The event with the
smallest overlap has SNRnet ¼ 11.6 and was recovered
with lnBS;G ¼ 9.66, while the event with the largest
overlap has SNRnet ¼ 52.72 and was recovered with
lnBS;G ¼ 218.0. This is consistent with the observed trend
between overlap and network SNR in Fig. 3. The similar
trend between overlap and network SNR between all
three detector configurations indicates that waveform
reconstruction fidelity is not directly related to the number
of detectors in the network.
However, as noted earlier, increasing the number of

detectors does increase the network SNR. By comparing
the percentage of waveforms recovered with overlap above
a given threshold for all three detector configurations, we
show that having an additional detector allows us to better
reconstruct the signal waveform. The threshold is arbitrar-
ily defined here to be Onet > 0.8 and is indicated by the
horizontal blue line in Fig. 3. We found that 81% of the
injections were recovered with Onet > 0.8 for the HL
network, 86% for the HLV network and 87% for the
HLKV network.
While the inclusion of additional detector(s) does not

have an extra benefit in the same way it does for the Bayes
factor as shown in the previous section, it nonetheless
allows us to better reconstruct the signal waveform due to
increased SNR. However, the improvement is less signifi-
cant upon the addition of KAGRA, since it is less sensitive
compared to Virgo as shown in Fig. 1 and therefore the
increase in SNR is less compared to when Virgo is added to
the network. The overall results also show that BayesWave
is able to reconstruct waveforms reasonably well with all
three detector configurations for injections with SNRnet >
18 as indicated by the vertical blue line in Fig. 3.

C. Sky localization

Expanding detector networks improves sky localization
of GW events, as has been shown by various studies on
coherent network detections e.g., [34,36,49]; see Sec. II. In
this section, we compare the accuracy of BayesWave in
locating the source with the HL and HLV networks. We use
two separate measures: (i) sky area enclosed within the
50% and 90% credible intervals (CI) and (ii) search areaA.
For every injection, BayesWave produces posterior

distributions for the sky location (in the form of right
ascension and declination) of the GW signal. We first look
at the sky area enclosed within 50% and 90% credible
intervals (CIs) of the posterior distribution of source
location. In the left panel of Fig. 5, we show the plot
for sky area enclosed within the 50% CI versus network
SNR for each injection, and similarly for the 90% CI on the
right panel. For all three detector configurations, we note
that the area within the 50% and 90% CIs measured in
square degrees (deg2) fundamentally reduces with increas-
ing network SNR due to improved accuracy in arrival time
differences [36]. However, both sky areas are generally an
order of magnitude smaller for the HLV network compared
to the HL network. Upon addition of the KAGRA detector,
we observe further reduction in the sky area, but not as
drastic as that between the HL and HLV networks since
KAGRA is less sensitive than Virgo. The areas enclosed
within both 50% and 90% CIs reduces with increasing I
due to the additional arrival time differences which further
constrain the location of each source. These results reiterate
that accuracy of sky localization improves at fixed CI as I
increases.
We also compare the inferred sky location with the true

injected location of the source. We introduce another
metric—the search area A, the hypothetical sky area
observed by a detector before it correctly points toward
the true location. To define this quantity mathematically, we
first denote the posterior probability density function (PDF)
of sky location aspskyðϕ; θÞ. If the true location of the source

FIG. 5. The left panel shows the sky area enclosed within the 50% credible interval (CI) in square degrees versus the network SNR of
the corresponding detector network. Similarly on the right panel, except for the 90% CI.
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is ðϕt; θtÞ and p0 ¼ pskyðϕt; θtÞ, then all points within A
should have psky ≥ p0. Mathematically, we write [32,50]

A ¼
Z

H½pskyðϕ; θÞ − p0�dΩ; ð28Þ

whereH is the Heaviside step function and dΩ is the surface
area element on the celestial sphere, i.e., dΩ ¼ cos δdθdϕ.
In Fig. 6 we plot the search areaA against network SNR for
both the HL and HLV networks. The HLKV search area is
slightly smaller than the HLV search area, which in turn is
significantly smaller than the HL search area, consistent
with Fig. 5.
Overall, we see that sky localization improves remark-

ably when a detector of high sensitivity is added to the
network. If a less sensitive detector is added, the improve-
ments are small but not negligible.

VII. CONCLUSION

The aim of this study is to compare the performance of
BayesWave in recovering GW waveforms from detector
networks of different sizes. We derive an analytic scaling
for the Bayes factor between the signal and glitch models,
BS;G. We then inject a set of simulated BBH signals of fixed
masses at different SNRs into simulated O4 detector data of
the HL, HLVandHLKV network.We quantify BayesWave’s
performance in signal identification with BS;G and the
performance in waveform reconstruction with overlap Onet.
We also compare the accuracy of sky localization between the
two networks.
We find that events of similar injected SNR analyzed

using the HLVand HLKV network have higher lnBS;G than
those using the HL network. This agrees with theoretical
prediction of the Bayes factor scaling:

lnBS;G ∝ IN ln SNRnet: ð29Þ
Previous work [26] demonstrated that BayesWave is unique
among GW unmodeled burst searches in that the so-called

“complexity” of the signal in the time-frequency plane
plays a crucial role in the detection statistic, rather than just
the signal’s strength. This is understood through the factor
of N in Eq. (29): a signal with more complex structure
needs more wavelets to accurately reconstruct the wave-
form. In this work, we expose another novel feature of the
BayesWave algorithm: the detection statistic is also influ-
enced by the number of detectors, i.e., the factor of I in
Eq. (29). Events of similar injected SNR (SNRnet) analyzed
using larger detector networks have higher lnBS;G, indicat-
ing detection confidence increases more than we would
expect purely from the increase in SNRnet.
The network overlap Onet between the injected and

recovered waveforms increases with SNRnet. We also show
that 87% of the HLKV network, 86% of the HLV network
and 81% of the HL network injections have O > 0.8.
Since larger detector networks can detect signals at
higher SNR, they pick up more details of the true wave-
form. Thus, BayesWave can reconstruct the waveforms
more accurately.
Finally, in Sec. VI C, we quantify accuracy of sky

localization with the sky area enclosed within the 50%
and 90% CI. We find that both areas decrease with
increasing SNRnet and are generally an order of magnitude
smaller for the HLV networks than the HL network. The
reduction of sky area is less significant upon the addition of
the KAGRA detector due to its low sensitivity compared to
Virgo. The search area A also decreases with increasing
SNRnet and increasing number of detectors. The overall
results suggest that increasing the number of detectors at
different geographical locations improves sky localization,
consistent with previous analyses [34,36,49].
With the global detector network growing in size, the

outlook for improving detection confidence with unmod-
eled burst searches is promising. Prospective work along
the lines of the research presented in this paper may include
injecting different waveform morphologies to compare
detection confidence between detector networks of differ-
ent sizes. We also recommend looking into quantifying and
comparing the outcomes of BayesWave in recovering
simulated signals from more realistic detector noise (i.e.,
in the presence of glitches) between different detector
configurations.
In summary, BayesWave shows significant improve-

ments in terms of waveform recovery and parameter
estimation when working with a larger detector network.
This promising result suggests that, with more detectors
joining the global network in the future, we will be able to
reconstruct generic GW burst signals more accurately using
BayesWave making detections with higher Bayes factor
and hence with higher confidence.
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APPENDIX A: FISHER INFORMATION MATRIX

Each wavelet has its Fisher information matrices (FIMs),
Γ written in terms of its five intrinsic parameters
ft0; f0; Q; lnA;ϕ0g:

Γ¼ SNR2

0
BBBBBBBB@

4π2f2
0
ð1þQ2Þ
Q2 0 0 0 −2πf0

0 3þQ2

4f2
0

− 3
4Qf0

− 1
2f0

0

0 − 3
4Qf0

3
4Q2

1
2Q 0

0 − 1
2f0

1
2Q 1 0

−2πf0 0 0 0 1

1
CCCCCCCCA
:

ðA1Þ

FIMs contain information on local curvature of the like-
lihood of wavelet parameters which accelerates conver-
gence by proposing jumps in the MCMC algorithm toward
regions of higher likelihood [24]. BayesWave uses FIMs to
update wavelet parameters by drawing proposals from a
multivariate Gaussian distribution

qðyjxÞ ¼ detΓ
ð2πÞ2 exp

�
−
1

2
ΓijΔxiΔxj

�
; ðA2Þ

where Δxi ¼ xi − yi denotes the displacement in intrinsic
parameter i before and after the update.

APPENDIX B: ASSUMPTIONS FOR BAYES
FACTOR SCALING

Laplace approximations for the logarithmic signal (S)
and glitch (G) model evidences are given by Eqs. (23) and
(24), respectively. In order to see how BS;G scales with the
waveform parameters, we make some assumptions to
simplify the two logarithmic evidences. In this work we
use the same assumptions as in Ref. [26].
Loud signals typically have optimal extrinsic parameters

across the detector network, so the SNR in each detector
will be approximately equal such that

SNRi;n ≈
SNRnet;nffiffiffiffi

I
p ; ðB1Þ

where SNRi;n is the SNR of the nth wavelet in detector i.
We use a further simplifying assumption that the SNR of
each wavelet is the same

SNRnet;n ≈
SNRnetffiffiffiffi

N
p ; ðB2Þ

which has been empirically validated. We assume that the
glitch model in each detector uses similar reconstruction
parameters as the signal model, and as such the quality
factors of all wavelets are approximately equal:

QG
i;n ≈QS

n ≡Q ðB3Þ
and, similarly,

NG ≈ NS ≡ N: ðB4Þ
Recall that NG indicates the number of wavelets used in the
glitch model for a single detector, so for an I-detector
network, the total number of wavelets used in glitch models
across the entire network is IN.
Equations (23) and (24) can be simplified to

lnpðdjSÞ ≃ SNR2
net

2
−
5N
2

− N lnðVλÞ

þ
XN
n¼1

lnðQ̄nÞ − 5N ln

�
SNRnetffiffiffiffi

N
p

�

þ
�
2þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detCΩ

p
VΩ

�
; ðB5Þ

lnpðdjGÞ ≃ SNR2
net

2
− I

�
5N
2

þ N lnðVλÞ

−
XN
n¼1

lnðQ̄nÞ þ 5N ln

�
SNRnetffiffiffiffiffiffiffi

NI
p

��
: ðB6Þ

APPENDIX C: SCALING
OF BAYES FACTOR WITH I

Our results in Sec. VI A show that lnBS;G scales with
SNR,N, and I . As per Eq. (6), N itself depends on both the
SNR of the signal and the waveform morphology. In order
to specifically test the scaling of lnBS;G with I alone, we
inject a set of sine-Gaussian wavelets as coherent signals
into detector noise for the HL, HLV and HLKV network
and then recover them using BayesWave. Because sine-
Gaussian wavelets are the basis of reconstruction for
BayesWave, the number of wavelets used is N ¼ 1, with
no dependence on SNR.
The dataset used this analysis is a set of 150 single sine-

Gaussian wavelets. The parameters of each wavelet are
randomly drawn from the following distributions: t0 ∈
½1.5; 2.5� s (where t ¼ 1 s is the center of the analysis
window), f0∈ ½32;1000�Hz, Q∈ ½0.1;40� and ϕ0 ∈ ½0; 2π�.
The SNR of the signals are drawn randomly from a uniform
distribution and SNR ∈ ½10; 50�, and the amplitude is then
found, viz.
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A ¼ SNR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffi
2π

p
f0Snðf0Þ
Q

s
ðC1Þ

(see [38] for details). As we are injecting a coherent
signal, we also require four extrinsic parameters as
described in Sec. III A. These parameters are also drawn
randomly from uniform distributions such that α ∈ ½0; 2π�,
δ ∈ ½−π=2; π=2�, ψ ∈ ½0; 2π� and ϵ ∈ ½−0.99; 0.99�.
In Fig. 7, we plot lnBS;G of each injection against SNRnet

for the HL, HLV and HLKV network injections. We note
that lnBS;G increases with SNRnet and is generally higher
for networks with greater I, as predicted from Eq. (26).
Since N in this case does not depend on SNR, we can be
certain that the differences in lnBS;G between the different
detector configurations at comparable SNRnet are entirely
due to I .
In order to compare the analytic and empirical scaling of

lnBS;G with I , we fit analytic approximation of lnBS;G for
each detector network with a generalized expression

lnBS;G ≈ ðI − 1Þ½5 ln SNRnet þ a� þ 5

2
I ln I þ b: ðC2Þ

This expression is derived from Eq. (25) with N ¼ 1.
We define the constants a ¼ 5

2
− lnðVλÞ þ lnðQÞ and

b ¼ 2þ ln
ffiffiffiffiffiffiffiffiffi
detCΩ

p
VΩ

. The prior volumes Vλ and VΩ are,
respectively, the same for all detector configurations. We
do not have an analytic expression for detCΩ as the FIM
approximation is inadequate; the extrinsic parameter space
contains degeneracy between parameters, resulting in

multimodal, non-Gaussian likelihood distribution which
spans the full extent of the prior range (see [26] for details).
We present the fits as three solid lines in Fig. 7, where we
have determined by eye a ¼ −10 and b ¼ 4. The same
values of a and b are used for all three fits and they are
broadly consistent with the empirical results.
We see general agreement between the empirical results

and predicted scaling for lnBS;G, which further confirms
our results in Sec. VI A that the Bayes factor does not only
depend on SNRnet but also on I . We again note that these
scalings are estimations, and due to the different sensitiv-
ities of the detectors we do not expect exact agreement
between analytic prediction and empirical results.

[1] J. Aasi, B. P. Abbott, R. Abbott, T. Abbott et al., Advanced
LIGO, Classical Quantum Gravity 32, 074001 (2015).

[2] B. P. Abbott, R. Abbott, R. Adhikari, P. Ajith et al., LIGO:
The laser interferometer gravitational-wave observatory,
Rep. Prog. Phys. 72, 076901 (2009).

[3] G. M. Harry, Advanced LIGO: The next generation of
gravitational wave detectors, Classical Quantum Gravity
27, 084006 (2010).

[4] B. P. Abbott, R. Abbott, T. D. Abbott et al., All-sky search
for short gravitational-wave bursts in the first Advanced
LIGO run, Phys. Rev. D 95, 042003 (2017).

[5] B. P. Abbott, R. Abbott, T. D. Abbott et al., GWTC-1: A
Gravitational-Wave Transient Catalog of Compact Binary
Mergers Observed by LIGO and Virgo during the First and
Second Observing Runs, Phys. Rev. X 9, 031040 (2019).

[6] B. P. Abbott, R. Abbott, T. D. Abbott et al., All-sky search
for short gravitational-wave bursts in the second Advanced
LIGO and Advanced Virgo run, Phys. Rev. D 100, 024017
(2019).

[7] I. Georgescu, O3 highlights, Nat. Rev. Phys. 2, 222
(2020).

[8] F. Acernese, M. Agathos, K. Agatsuma, D. Aisa, N.
Allemandou et al., Advanced Virgo: A second-generation
interferometric gravitational wave detector, Classical
Quantum Gravity 32, 024001 (2015).

[9] T. Akutsu, M. Ando, K. Arai et al., First cryogenic test
operation of underground km-scale gravitational-wave
observatory KAGRA, Classical Quantum Gravity 36,
165008 (2019).

[10] T. Akutsu, M. Ando, K. Arai, Y. Arai et al., Overview of
KAGRA: Detector design and construction history,
arXiv:2005.05574.

[11] Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa,
T. Sekiguchi, D. Tatsumi, and H. Yamamoto, Interferometer
design of the KAGRA gravitational wave detector, Phys.
Rev. D 88, 043007 (2013).

[12] C. L. Fryer and K. C. B. New, Gravitational waves from
gravitational collapse, Living Rev. Relativity 14, 1 (2011).

FIG. 7. Log signal-to-glitch Bayes factor lnBS;G of sine-
Gaussian wavelet recoveries versus network signal-to-noise ratio
SNRnet. The solid lines with colors corresponding to the data
symbols are analytic predictions of lnBS;G given by Eq. (C2).

ENHANCING THE GRAVITATIONAL-WAVE BURST DETECTION … PHYS. REV. D 103, 062002 (2021)

062002-13

https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0034-4885/72/7/076901
https://doi.org/10.1088/0264-9381/27/8/084006
https://doi.org/10.1088/0264-9381/27/8/084006
https://doi.org/10.1103/PhysRevD.95.042003
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevD.100.024017
https://doi.org/10.1103/PhysRevD.100.024017
https://doi.org/10.1038/s42254-020-0179-3
https://doi.org/10.1038/s42254-020-0179-3
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/1361-6382/ab28a9
https://doi.org/10.1088/1361-6382/ab28a9
https://arXiv.org/abs/2005.05574
https://doi.org/10.1103/PhysRevD.88.043007
https://doi.org/10.1103/PhysRevD.88.043007
https://doi.org/10.12942/lrr-2011-1


[13] E. Stopnitzky and S. Profumo, Gravitational waves from
gamma-ray pulsar glitches, Astrophys. J. 787, 114 (2014).

[14] T. Damour and A. Vilenkin, Gravitational radiation from
cosmic (super)strings: Bursts, stochastic background, and
observational windows, Phys. Rev. D 71, 063510 (2005).

[15] L. Blackburn, L. Cadonati, S. Caride, S. Caudill, S. Chatterji
et al., The LSC glitch group: Monitoring noise transients
during the fifth LIGO science run, Classical Quantum
Gravity 25, 184004 (2008).

[16] J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. Abbott et al.,
Characterization of the LIGO detectors during their sixth
science run, Classical Quantum Gravity 32, 115012 (2015).

[17] J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott
et al., The characterization of Virgo data and its impact on
gravitational-wave searches, Classical Quantum Gravity 29,
155002 (2012).

[18] S. A. Usman, A. H. Nitz, I. W. Harry et al., The PyCBC
search for gravitational waves from compact binary
coalescence, Classical Quantum Gravity 33, 215004
(2016).

[19] S. Sachdev, S. Caudill, H. Fong et al., The GstLAL search
analysis methods for compact binary mergers in Advanced
LIGO’s second and Advanced Virgo’s first observing runs,
arXiv:1901.08580.

[20] S. Hooper, S. K. Chung, J. Luan, D. Blair, Y. Chen, and L.
Wen, Summed parallel infinite impulse response filters for
low-latency detection of chirping gravitational waves, Phys.
Rev. D 86, 024012 (2012).

[21] R. Lynch, S. Vitale, R. Essick, E. Katsavounidis,
and F. Robinet, Information-theoretic approach to the
gravitational-wave burst detection problem, Phys. Rev. D
95, 104046 (2017).

[22] S. Klimenko, I. Yakushin, A. Mercer, and G. Mitselmakher,
A coherent method for detection of gravitational wave
bursts, Classical Quantum Gravity 25, 114029 (2008).

[23] T. B. Littenberg and N. J. Cornish, Bayesian inference for
spectral estimation of gravitational wave detector noise,
Phys. Rev. D 91, 084034 (2015).

[24] N. J. Cornish and T. B. Littenberg, Bayeswave: Bayesian
inference for gravitational wave bursts and instrument
glitches, Classical Quantum Gravity 32, 135012 (2015).

[25] N. J. Cornish, T. B. Littenberg, B. Bécsy, K. Chatziioannou,
J. A. Clark, S. Ghonge, and M. Millhouse, BayesWave
analysis pipeline in the era of gravitational wave observa-
tions, Phys. Rev. D 103, 044006 (2021).

[26] T. B. Littenberg, J. B. Kanner, N. J. Cornish, and M. Mill-
house, Enabling high confidence detections of gravitational-
wave bursts, Phys. Rev. D 94, 044050 (2016).

[27] J. B. Kanner, T. B. Littenberg, N. Cornish, M. Millhouse, E.
Xhakaj, F. Salemi, M. Drago, G. Vedovato, and S. Kli-
menko, Leveraging waveform complexity for confident
detection of gravitational waves, Phys. Rev. D 93,
022002 (2016).

[28] C. S. Unnikrishnan, IndIGO and Ligo-India scope and plans
for gravitational wave research and precision metrology in
India, Int. J. Mod. Phys. D 22, 1341010 (2013).

[29] C. Cutler and É. E. Flanagan, Gravitational waves from
merging compact binaries: How accurately can one extract
the binary’s parameters from the inspiral waveform?, Phys.
Rev. D 49, 2658 (1994).

[30] D. G. Keppel, Signatures and dynamics of compact binary
coalescences and a search in LIGO’s S5 data, PhD thesis,
California Institute of Technology, 2009.

[31] S. M. Gaebel and J. Veitch, How would GW150914 look
with future gravitational wave detector networks?, Classical
Quantum Gravity 34, 174003 (2017).
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