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% The global detector network

* Types of GW sources

% Instrumental glitches

¥ Overview of the BayesWave pipeline

* My work: Quantifying network performance as a function of number

of detectors, . for BayesWave with the Hanford-Livingston (HL), HL-
Virgo (HLV) and HL-KAGRA-Virgo (HLKV) networks.

% Ongoing/Future work



etectors

 The LIGO Scientific, Virgo and KAGRA (LVK) Collaboration detectors

(1) Laser Interferometer Gravitational-Wave Observatory (LIGO)
Hanford and Livingston, United States

(2) Virgo, Italy
(3) Kamioka Gravitational wave Detector (KAGRA), Japan.
* Three observing runs O1, O2 and O3.
* 90 detections of Compact Binary Coalescence (CBC)
* Binary black hole (BBH) mergers
* Binary neutron stars (BNS) mergers

* Neutron star-black hole (NSBH) mergers

Livingston | Hanford

3 [Image credits: LIGO Lab Caltech]



Tvypes of GW Sources
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Whyv search for “unmodeled” bursts?

* Detection of known potential sources

* Supernovae (SNe)
* Gamma-ray Bursts (GRB)

e New discoveries!

* We may not know the source, but we know what the waveform looks like

Example Burst Gravitational Wave
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Inspiral Merger Ringdown
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[Image: A. Stuver/LIGO using data from C. Ott, D. Burrows, et al.]

Modelled, well-understood waveforms (CBC) Sample unmodeled GW burst waveform



GW Detector Data

Data

Signal + Noise

(maybe)
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Glitchece
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Non-astrophysical and non-Gaussian power spikes in the detector

[Image from Gravity Spy]



BavesWave

* Joint detection of instrumental glitches and GW bursts

 Wave = Reconstruction of bursts and glitches through sine-
Gaussian (Morlet-Gabor) wavelets.

e Reconstruct non-Gaussian, transient features in the data
with no a priori assumptions

* Bayes = Bayesian model selection

* Variable model complexity (decided by the data!)

Bayes Wave publications:
Cornish + Littenberg, Class. Quant. Grayv 32, 130512 (2015)
Cornish + Littenberg, Phys. Rev. D 97, 104057 (2021)
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Image courtesy of Dr. Meg Millhouse

BayesWave publications:
Cornish + Littenberg, Class. Quant. Grav 32, 130512 (2015)
Cornish + Littenberg, Phys. Rev. D 97, 104057 (2021)
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Trans-Dimensional Markov chain Monte Carlo (MCMC)

- Purpose:
To explore different model spaces and their respective parameter spaces
To estimate posterior distribution of models that fit the data
* Monte Carlo:
Random drawing of samples from a proposal distribution
* Markov Chain:
The next step in the chain depends entirely on the current state
* Trans-Dimensional:

Model has varying dimensions (i.e. varying number of wavelets)
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[Image: Phil Gregory]
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Tranc-Dimancional?
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BavesWave Waveform Posterior

* At each MCMC iteration, we get:

(1) Number of wavelets, N

& LIGO Hanford Observatory: GW150914
(i1)Parameters of each of the N wavelets

e At each iteration, we can construct waveform

model by summing all the N wavelets g

. 3

e Waveform Posterior: =
Combine waveform models across all 10— GW150914

iterations

[Image courtesy of Jonah Kanner, Tyson Littenberg, and Meg Millhouse]
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BavesWave models

* Attempts to fit the data using 3 independent models:

* Gaussian noise only

e Gaussian noise + Instrumental glitch, &

e Gaussian noise + GW signal, &

e But which one best fits the data?
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Bayes Factor for Model Selection
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Bayes Factor = Evidence Ratio
p(s|3S)
p(s|%)

i.e. %Csvg:
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Bayes Factor for Model Selection

f o o —

Bayes Factor = Evidence Ratio
p(s|3S)
p(s|%)

i.e. %05)?:

& : gaussian noise + signal model

& . gaussian noise + instrumental glitch model
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Bayes Factor for Model Selection

Bayes Factor = Evidence Ratio
p(s|3S)
p(s|%)

i.e. %05)?:

& : gaussian noise + signal model

& . gaussian noise + instrumental glitch model

If B >1= & is more strongly supported by data than &
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BavesWave and Burst Searches

e Used in follow-up searches for GW events in O1, O2 and O3

To assess consistency with matched-filter (model-based) searches

* Also used as a follow-up to background (non-astrophysical) events found

by coherent WaveBurst (cWB) to increase detection confidence

LGW150914 GW170809

Bl BAYESWAVE B LALInference

GWTC-1: Phys. Rev. X 9, 031040 (2019),
GWTC-2: Phys. Rev. X 11, 021053 (2021),
GWTC-3: arXiv:2111.03606
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https://arxiv.org/abs/2111.03606

Aim of study

YS. C. Lee et al. (2021), Phys. Rev. D 103, 062002

To evaluate network performance of BayesWave as a
function of number of detectors, ¥

Detection confidence - Figure of Merit:
Signal versus Glitch model Bayes Factor, 9% ¢ «
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iViethod overview

e Derive analytic scaling of 9% ¢ » with &

following Littenberg et al. 2016
(Phys. Rev. D, 94, 044050)

* Using BayesWave to recover 150 injected
BBH waveforms from simulated Gaussian

noise at projected LIGO, Virgo and
KAGRA sensitivities for O4

Noise curves from: Observing scenarios paper

https://dcc.ligo.org/LIGO-T2000012/public
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https://dcc.ligo.org/LIGO-T2000012/public

Multi-detector Bayes Factor Scaling

Previous work: “Enabling high confidence detections of gravitational wave bursts”
Littenberg, T. B., Kanner, J. B., Cornish, N. J., et al. 2016, Phys. Rev. D, 94, 044050
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SNR, . : Injected SNR

net °

¥ : Number of detectors in the network
N : Number of wavelets used in BayesWave reconstruction

Main Scaling
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Multi-detector Bayze

Previous work: “Enabling high confidence detections of gravitational wave bursts”
Littenberg, T. B., Kanner, J. B., Cornish, N. J., et al. 2016, Phys. Rev. D, 94, 044050

SNR, . : Injected SNR

¥ : Number of detectors in the network

N : Number of wavelets used in BayesWave reconstruction

Main Sc

In ggév,cg 3 @[jN In SNRnet]

18



ctor Comparison

Assessing detection confidence with different detector configurations
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Ongolng work

BayesWave s detection confidence in presence of o

% |ne1'r| immentalalitéthes??!

(1) Glitches negatlvely 1mpact detectron conﬁdence of GW burst searches A

. (2) Unmodelled burst searches like BayesWave: |
' More sens1t1ve to ghtches compared to modelled searches !
P 3) Expandrng global detector network:
More detector hrgher SN R better detectron conﬁdence
BUT.....more ghtches’ . '

| (4) So how does the 1ncreased glitch rate affect detectlon? | )

W111 larger and hence ghtchy-er detector networks st111 perform better?

ANSWER COMING VERY. SOON’

FoIIoW-u ' st.ud. to: YS.' C. Lee et al. (2'021)',P..hys.. Rev. D 10'3, 062002 -
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Summary

* Analytic results:

Showed that log $ ¢ ¢ ~ O(F N log SNR,,;)
i.e. Bayes Factor scales with the number of detectors

* Empirical results:

Higher &% ¢ ¢ (detection confidence) in the HLV and HLKV

networks, compared to HL
1.e. agreement with analytic results

* Future work:
Overall performance of BayesWave in the presence of instrumental
glitches

21 Phys. Rev. D 103, 062002



