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Talk Overview
The global detector network 

Types of GW sources 

Instrumental glitches 

Overview of the BayesWave pipeline 

My work: Quantifying network performance as a function of number 
of detectors,  for BayesWave with the Hanford-Livingston (HL), HL-
Virgo (HLV) and HL-KAGRA-Virgo (HLKV) networks. 

Ongoing/Future work
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• The LIGO Scientific, Virgo and KAGRA (LVK) Collaboration detectors 

(1)Laser Interferometer Gravitational-Wave Observatory (LIGO) 
Hanford and Livingston, United States 

(2)Virgo, Italy 

(3)Kamioka Gravitational wave Detector (KAGRA), Japan.  

• Three observing runs O1, O2 and O3. 

• 90 detections of Compact Binary Coalescence (CBC) 

• Binary black hole (BBH) mergers 

• Binary neutron stars (BNS) mergers 

• Neutron star-black hole (NSBH) mergers
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Gravitational wave Detectors

[Image credits: LIGO Lab Caltech]
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Types of GW Sources

Slide from Dr. Millhouse
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Types of GW Sources
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Why search for “unmodeled” bursts?
•Detection of known potential sources 

•Supernovae (SNe) 
•Gamma-ray Bursts (GRB) 

•New discoveries!  
•We may not know the source, but we know what the waveform looks like

[Image: M. Favata/SXS/K. Thorne] [Image: A. Stuver/LIGO using data from C. Ott, D. Burrows, et al.]

Modelled, well-understood waveforms  (CBC) Sample unmodeled GW burst waveform
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Data Signal Noise+=
(maybe)

⃗s h( ⃗θ ) ⃗n

Noise components:  
⃗n = ⃗nG + ⃗g

Slide from Dr. Millhouse

GW Detector Data
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[Image from Gravity Spy]

Non-astrophysical and non-Gaussian power spikes in the detector

Glitches
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• Joint detection of instrumental glitches and GW bursts 
• Wave = Reconstruction of bursts and glitches through sine-

Gaussian (Morlet-Gabor) wavelets.  
• Reconstruct non-Gaussian, transient features in the data 

with no a priori assumptions 
• Bayes = Bayesian model selection 
• Variable model complexity (decided by the data!)

BayesWave publications:  
Cornish + Littenberg, Class. Quant. Grav 32, 130512 (2015) 
Cornish + Littenberg, Phys. Rev. D 97, 104057 (2021)

BayesWave

8



• Joint detection of instrumental glitches and GW bursts 
• Wave = Reconstruction of bursts and glitches through sine-

Gaussian (Morlet-Gabor) wavelets.  
• Reconstruct non-Gaussian, transient features in the data 

with no a priori assumptions 
• Bayes = Bayesian model selection 
• Variable model complexity (decided by the data!)

BayesWave publications:  
Cornish + Littenberg, Class. Quant. Grav 32, 130512 (2015) 
Cornish + Littenberg, Phys. Rev. D 97, 104057 (2021)

BayesWave

8

𝚺
Wavelet parameters (Intrinsic parameters) 

 - Central time 
 - Central frequency 

 - Quality factor 
 - Amplitude 
 - Phase offset 
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Image courtesy of Dr. Meg Millhouse
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• Purpose:  
To explore different model spaces and their respective parameter spaces 
To estimate posterior distribution of models that fit the data 

• Monte Carlo: 
Random drawing of samples from a proposal distribution  

• Markov Chain: 
The next step in the chain depends entirely on the current state 

• Trans-Dimensional:  
Model has varying dimensions (i.e. varying number of wavelets)

[Image: Phil Gregory]
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Trans-Dimensional Markov chain Monte Carlo (MCMC)
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Trans-Dimensional?



[Images: N. Cornish] 11

Posterior distribution of suitable fits



[Image courtesy of Jonah Kanner, Tyson Littenberg, and Meg Millhouse]
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BayesWave Waveform Posterior

• At each MCMC iteration, we get:  
(i) Number of wavelets, N 
(ii)Parameters of each of the N wavelets 

• At each iteration, we can construct waveform 
model by summing all the N wavelets 

• Waveform Posterior:  
Combine waveform models across all 
iterations 



[Image courtesy of Jonah Kanner, Tyson Littenberg, and Meg Millhouse]
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• Attempts to fit the data using 3 independent models: 
• Gaussian noise only 

• Gaussian noise + Instrumental glitch,  

• Gaussian noise + GW signal,  

• But which one best fits the data?

𝒢
𝒮

BayesWave models
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Bayes Factor = Evidence Ratio 

i.e.   ℬ𝒮,𝒢 =
p( ⃗s |𝒮)
p( ⃗s |𝒢)

Bayes Factor for Model Selection
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Bayes Factor = Evidence Ratio 

i.e.   ℬ𝒮,𝒢 =
p( ⃗s |𝒮)
p( ⃗s |𝒢)

 gaussian noise + signal model            

 gaussian noise + instrumental glitch model 

𝒮 :

𝒢 :

If  ⇒  ℬ𝒮,𝒢 > 1 𝒮 is more strongly supported by data than 𝒢

Bayes Factor for Model Selection
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• Used in follow-up searches for GW events in O1, O2 and O3 
To assess consistency with matched-filter (model-based) searches 

• Also used as a follow-up to background (non-astrophysical) events found 
by coherent WaveBurst (cWB) to increase detection confidence

BayesWave and Burst Searches

GWTC-1: Phys. Rev. X 9, 031040 (2019),  
GWTC-2: Phys. Rev. X 11, 021053 (2021),  
GWTC-3: arXiv:2111.03606 15

https://arxiv.org/abs/2111.03606


Aim of study

To evaluate network performance of BayesWave as a 
function of number of detectors,  

Detection confidence - Figure of Merit: 

Signal versus Glitch model Bayes Factor, 

ℐ

ℬ𝒮,𝒢
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YS. C. Lee et al. (2021), Phys. Rev. D 103, 062002



Method overview

• Derive analytic scaling of  with  
following Littenberg et al. 2016  
(Phys. Rev. D, 94, 044050) 

• Using BayesWave to recover 150 injected 
BBH waveforms from simulated Gaussian 
noise at projected LIGO, Virgo and 
KAGRA sensitivities for O4

ℬ𝒮,𝒢 ℐ

Noise curves from: Observing scenarios paper 
https://dcc.ligo.org/LIGO-T2000012/public
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Multi-detector Bayes Factor Scaling
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ln ℬ𝒮,𝒢 ≃ (ℐ − 1)[ 5N
2

+ N ln(Vλ) −
N

∑
n=1

ln (Q̄n) + 5N ln (
SNRnet

N )] −
5
2

ℐN ln(ℐ) + (2 + ln
det CΩ

VΩ ) .

SNR  : Injected SNR 

 :  Number of detectors in the network 
 : Number of wavelets used in BayesWave reconstruction

net
ℐ

N

Main Scaling

ln ℬ𝒮,𝒢 ∼ 𝒪[ℐN ln SNRnet]

Previous work: “Enabling high confidence detections of gravitational wave bursts” 
Littenberg, T. B., Kanner, J. B., Cornish, N. J., et al. 2016, Phys. Rev. D, 94, 044050 
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Bayes Factor Comparison
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Assessing detection confidence with different detector configurations

Agrees with ln ℬ𝒮,𝒢 ∼ 𝒪[ℐN ln SNRnet]
KEY RESULT: Phys. Rev. D 103, 062002



(1) Glitches negatively impact detection confidence of GW burst searches 
(2) Unmodelled burst searches like BayesWave: 

More sensitive to glitches compared to modelled searches  
(3) Expanding global detector network:  

More detector, higher SNR, better detection confidence… 
BUT…..more glitches! 

(4) So how does the increased glitch rate affect detection?  
Will larger, and hence glitchy-er, detector networks still perform better? 
ANSWER COMING (VERY) SOON!

Ongoing work:  
BayesWave’s detection confidence in presence of  

instrumental glitches??

20Follow-up study to: YS. C. Lee et al. (2021), Phys. Rev. D 103, 062002



Summary
•Analytic results:   

Showed that  
i.e. Bayes Factor scales with the number of detectors  

•Empirical results:  
Higher  (detection confidence) in the HLV and HLKV 
networks, compared to HL 
i.e. agreement with analytic results 

•Future work: 
Overall performance of BayesWave in the presence of instrumental 
glitches

log ℬ𝒮,𝒢 ∼ 𝒪(ℐN log SNRnet)

ℬ𝒮,𝒢

21 Phys. Rev. D 103, 062002
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