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Why use VHF radar for satellite observations?

The number of satellites in Low Earth Orbit (LEO) 1s exponentially increasing.

Proposed corporate mega constellations mean that there may be an additional 100,000
satellites in LEO, compared to 4871 1n 2021.

Increased the risk of Kessler Syndrome events.

VHF radar provides a low-cost alternative to traditional satellite detection methods.
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Buckland Park Stratosphere Troposphere (BPST)
VHF radar.
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Buckland Park Stratosphere Troposphere (BPST)
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Doppler measurements from BPST
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Potential causes for observed perturbations

Variation in Doppler due to translational motion COSMOS-2227-22284: 20211125 S

has been mostly removed.

Our hypothesis 1s the Doppler variation 1s due to
an 1onospheric effect caused by the radio wave
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Doppler measurement Doppler measurement
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Potential causes for the 1onospheric
disturbances

* Atmospheric Gravity Wave (AGW) generated 1onospheric disturbances.

- AGWs are disturbances 1n the neutral atmosphere, created by
many Sources.

* Plasma waves generated in the magnetosphere which propagate along
geomagnetic field lines to the Earth.
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The plasma waves propagate as transverse waves in the Pc1-2 frequency range until they reach the 1onosphere. e university
They then mode convert into compressional plasma waves moving in the 1onosphere F2 waveguide. #DEEDE




Spectral Peak Detection

Peak detection criteria
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Spectral Peak Detection

The peak detection algorithm:
-Detected 183 peaks.

-Failed to identify 12 peaks.
-Incorrectly 1dentified 4 peaks.

The peak detection algorithm had an accuracy of 91.3%.
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0.025
Expected frequency range of
medium scale 1onospheric
disturbances caused by AGWs  0.02 |t
0.015 ft
O
<
=
=
S
< 001
0.005 1
0
0

20211119-061500 STARLINK-1022-44727 E

I I |

I

I [

—+—— WindowedData

0.2

0.4 0.6 0.8
Frequency (Hz)

Expected frequency
range of the plasma

waves

THE UNIVERSITY

o ADELAIDE



Results - Frequency
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Disturbance frequency 1s

RES“ltS - Frequency the frequency of the

1onospheric disturbance.

Histogram of observed disturbance frequencies over 247 days 1.20 -
1000 ,
900 | § 1.00 -
S

o0 £ 0.80 -

700 t § /
. =4
DO 600 T 0.60 - 230 events
= S| |

500 = 1 |
= g 0.40 ‘,
2 400 S

: < 0.20 4 |

g 300 4
Z 200 0.00 - e Do d\ e LI 71

100 0,10 0.20 0.30 040 050 060 0.70 080 0.0 1.00

. Frequency (Hz)
0 0.2 0.4 0.6 0.8 1 1.2
-&-Clear Poleward Propagation -~ Irregular Propagation
Frequency (Hz) b b o

After Kim et. Al (2011); ground-based magnetometers

. . THE UNIVERSITY
measurements inside the Auroral oval JADELAIDE




Results — Temporal Variation

Seasonal Variation
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Results — Temporal variation

* Temporal results were compared to Wang et al. 2022 using Swarm satellites.
* BPST observes peaks in the diurnal distributions absent in Wang.

*  Wang shows no diurnal distribution during winter

* BPST results show a clear winter diurnal distribution.  «o
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Attenuation in the F2 waveguide

BPST and Wang show preferred source regions for plasma waves; nightside plasmapause,

magnetotail and magnetopause.
Due to attenuation in the F2 waveguide.

Attenuation maximized during low electron density as waveguide boundaries reflect

plasma waves less efficiently.
Optimal plasma wave generation times may correspond to large waveguide attenuation.

Less optimal times for plasma wave generation may correspond to times conducive to

wave propagation. JADELAIDE
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Summary

Fourier analysis was applied to Doppler satellite observations.
A peak finding algorithm was developed and applied to the amplitude spectra.
The spectral results suggest that plasma waves are causing the observed perturbations.

The preferred source regions for these plasma waves are the nightside plasmapause,

magnetopause and magnetotail.

The seasonal and diurnal results suggest that VHF radar is more sensitive to the plasma

waves than magnetometers.
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Spectral Analysis of Doppler Peak Data
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Spectral Analysis of Doppler Peak Data
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Spectral Analysis of Doppler Peak Data
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Sensitivity of VHF radar to plasma waves

BPST observing peaks unseen by the Swarm or Antarctic results suggests that VHF radar 1s
more sensitive 1n detecting the plasma waves than the magnetometers used by the Swarm

satellites or Antarctic results.
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Frequency Correction

A, = virtual wavelength.
Magnetic North
A = true wavelength.
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