Sub-wavelength quantum imaging for astronomy

Zixin Huang¹, Cosmo Lupo², Pieter Kok², Ugo Zanforlin³, Peter Connolly³, Gerald Buller³

 Centre for Engineered Quantum Systems, Macquarie University
 Department of Physics & Astronomy, University of Sheffield, UK
 School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK

AIP Congress, 2022

Outline

Motivation: surpassing Rayleigh's criterion

Quantum-limited estimation for LIDARs

Quantum hypothesis testing for exoplanet detection

Experiment: quantum super-resolution imaging and hypothesis testing

Exoplanet atmostpheric spectroscopy

The Rayleigh Criterion

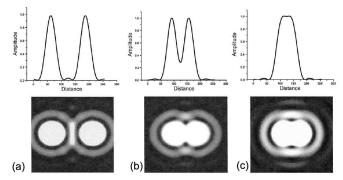


Figure: taken from www.globalsino.com

Minimum resolvable angular separation

$$\theta \approx 1.22 \frac{\lambda}{D}$$

The Rayleigh Criterion

Task: estimate θ_2

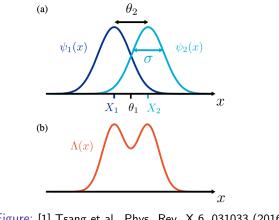


Figure: [1] Tsang et al., Phys. Rev. X 6, 031033 (2016)

Quantum metrology

Cramer-Rao bound:

$$\Delta^2arphi = \langle arphi^2
angle - \langle arphi
angle^2 \geq rac{1}{
u I(arphi)}$$

Fisher information:

$$I(\varphi) = \sum_{i} p(i|\varphi) \left(\frac{\partial \log[p(i|\varphi)]}{\partial \varphi}\right)^{2}$$

Quantum state:

$$\rho_{\varphi} = \sum_{j} \lambda_{j} \left| j \right\rangle \left\langle j \right|$$

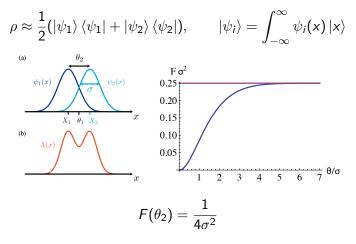
Quantum Fisher information

$$F(
ho_{arphi}) = \sum_{\lambda_j + \lambda_k
eq 0} 2 rac{|\langle j| rac{\partial
ho}{\partial arphi} |k
angle|^2}{\lambda_j + \lambda_k},$$

・ロト・日本・山下・山下・山下・ 日・ うくぐ

Superresolution of two sources

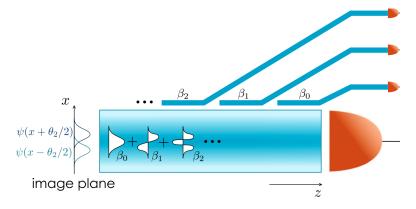
Model: two incoherent, quasi-monochromatic point sources



[1] Tsang et al., Phys. Rev. X 6, 031033 (2016)

Optimal measurement

Optimal measurement: FI = QFI



[1] Tsang et al., Phys. Rev. X 6, 031033 (2016)

Outline

Motivation: surpassing Rayleigh's criterion

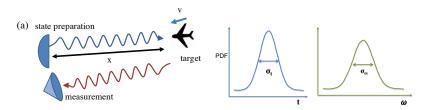
Quantum-limited estimation for LIDARs

Quantum hypothesis testing for exoplanet detection

Experiment: quantum super-resolution imaging and hypothesis testing

Exoplanet atmostpheric spectroscopy

Position and velocity estimation



Range x and velocity v:

$$\bar{t} = rac{2x}{c}, \qquad \bar{\omega} \approx \omega_0 \left(1 - 2rac{v}{c}
ight)$$

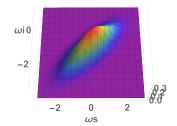
The energy-time uncertainty relation [2]

$$\sigma_t \sigma_\omega \ge 1/2.$$

[2] E. Arthurs and J. Kelly, the Bell System Technical Journal 44, 725 (1965)

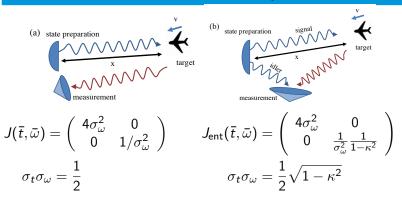
Time-frequency entanglement (SPDC) [3] :

$$\ket{\Psi_0} = \int d\omega \int d\omega_i \; ilde{\Psi}_0(\omega,\omega_i,\kappa) \ket{\omega} \ket{\omega_i}, \qquad \kappa \in \{0,1\}$$



[3] MacLean et al., Phys. Rev. Lett. 120, 053601

Position and velocity estimation



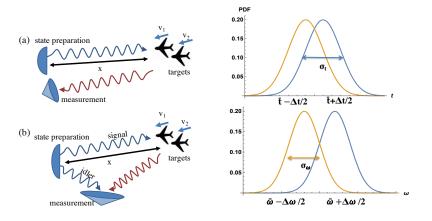
Joint optimal estimation condition [5] not satisfied,

$$\operatorname{Tr}\left(
ho[L_{\overline{t}},L_{\overline{\omega}}]
ight)=-4i$$

[5] S. Ragy, et al. Phys. Rev. A 94, 052108 (2016).
[6] Q. Zhuang, et al., Phys. Rev. A 96, 040304 (2017).

Position and velocity separation estimation

$$\rho = \frac{1}{2} (\ket{\psi_1} \bra{\psi_1} + \ket{\psi_2} \braket{\psi_2})$$



12 / 37

Quantum metrology for superresolution

PRL 117, 190802 (2016) PHYSICAL REVIEW LETTERS

week ending 4 NOVEMBER 2016

4 (1) × 4 (2) × 4 (2) × 4 (2) ×

9

Ultimate Precision Bound of Quantum and Subwavelength Imaging

Cosmo Lupo¹ and Stefano Pirandola¹² ¹York Centre for Quantum Technologies (YCQT), University of York, York YO10 5GH, United Kingdom ²Computer Science, University of York, York YO10 5GH, United Kingdom (Received 6 July 2016; published 4 November 2016)

PRL 117, 190802 (2016) PHYSICAL REVIEW LETTERS week ending 4 NOVEMBER 2016

S

Ultimate Precision Bound of Quantum and Subwavelength Imaging

Cosmo Lupo¹ and Stefano Pirandola^{1,2} ¹York Centre for Quantum Technologies (YCQT), University of York, York YO10 5GH, United Kingdom ²Computer Science, University of York, York YO10 5GH, United Kingdom (Received 6 July 2016; published 4 November 2016)

PHYSICAL REVIEW LETTERS 122, 140505 (2019)

Towards Superresolution Surface Metrology: Quantum Estimation of Angular and Axial Separations

Carmine Napoli,^{12,4} Samanta Piano,²¹ Richard Leach,²² Gerardo Adesso,¹⁴ and Tommaso Tufarelli¹⁴ School of Muthematical Science and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Versity of Noningham, University Brac Company, Noningham NC 2020, United Rangfom ¹Manufacturing Metrology Tom, Faculty of Expirenzi, University of Noningham, Jubilet Company, Noningham NG BB, United Knapfom

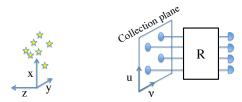
PHYSICAL REVIEW LETTERS 121, 180504 (2018)

Quantum Limited Superresolution of an Incoherent Source Pair in Three Dimensions

Zhixian Yu and Sudhakar Prasad[®] Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA

(Received 26 May 2018; published 31 October 2018)

Arbitrary number of sources



 N_s incoherent sources, quasi-monochromatic, coordinate $\vec{r_s}$. N_c collectors, position $\vec{\omega_j}$. Photon impinging $\rightarrow |j\rangle$

$$egin{aligned} |\psi(r_{s})
angle &=rac{1}{\sqrt{N_{c}}}\sum_{j}^{N_{c}}e^{i\phi(ec{r_{s}},ec{\omega}_{j})}\left|j
ight
angle,\ &
ho &=\sum_{s}^{N_{s}}p(s)\left|\psi(r_{s})
ight
angle\left\langle\psi(r_{s})
ight
angle \end{aligned}$$

C Lupo, Z Huang, P Kok, Phys. Rev. Lett. 124, 080503 (2020)

Outline

Motivation: surpassing Rayleigh's criterion

Quantum-limited estimation for LIDARs

Quantum hypothesis testing for exoplanet detection

Experiment: quantum super-resolution imaging and hypothesis testing

Exoplanet atmostpheric spectroscopy

1 or 2 sources?

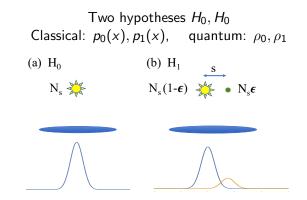


Figure: (a) H_0 : there is only 1 source. (b) H_1 : two near-by sources present.

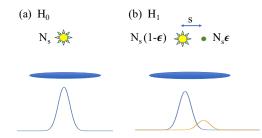
Huang & Lupo, Phys. Rev. Lett. 127, 130502 (2021); Editor's Selection and Featured in Physics 1. Symmetric discrimination: trace distance - quantum Chernoff bound [6], $P_e \sim \exp[-n f(T)]$

$$T_c(p_0, p_1) = 1/2 \int dx |p_0(x) - p_1(x)|$$
$$T_Q(\rho_0, \rho_1) = 1/2 ||\rho_0 - \rho_1||_1$$

2. Asymmetric: relative entropy - quantum Stein lemma [7], $P_e \sim \exp[-nD(\rho_0||\rho_0) + O(\alpha^{-1}, \ln n)]$ $D_c(p_0||p_1) = \int dx \ p_0(x)(\ln p_0(x) - \ln p_1(x))$ $D_O(\rho_0||\rho_1) = \operatorname{Tr}[\rho_0(\ln \rho_1 - \ln \rho_1)]$

[6] Audenaert et al., Phys. Rev. Lett. 98, 160501 (2007)
[7] F. Hiai, D. Petz, Commun. Math. Phys. 143, 99 (1991)

Density matrices

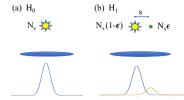


Two hypotheses associated with the density matrices

$$\begin{split} \rho_{0} &= \left| \psi_{\mathbf{x}_{0}} \right\rangle \left\langle \psi_{\mathbf{x}_{0}} \right| \,, \\ \rho_{1} &= (1 - \epsilon) \left| \psi_{\mathbf{x}_{0}} \right\rangle \left\langle \psi_{\mathbf{x}_{0}} \right| + \epsilon \left| \psi_{\mathbf{x}_{0} + s} \right\rangle \left\langle \psi_{\mathbf{x}_{0} + s} \right| \,. \end{split}$$

Huang & Lupo, Phys. Rev. Lett. 127, 130502

Classical probability distributions



On-screen probability distributions:

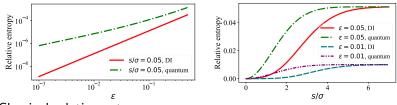
$$egin{aligned} p_0(x) &= |\psi(x-x_0)|^2, \ p_1(x) &= (1-\epsilon)|\psi(x-x_0)|^2 + \epsilon |\psi(x-(x_0+s))|^2. \end{aligned}$$

Classical relative entropy:

$$D(p_0||p_1)pprox rac{s^2\epsilon^2}{2\sigma^2}+O(\epsilon^3)$$

Huang & Lupo, Phys. Rev. Lett. 127, 130502

Classical vs Quantum



Classical relative entropy:

 $D(p_0||p_1) \approx rac{s^2\epsilon^2}{2\sigma^2}$

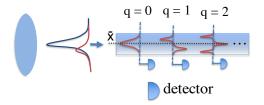
Quantum relative entropy;

$$D(
ho_{\mathsf{a}}||
ho_{\mathsf{b}}) pprox rac{s^2\epsilon}{4\sigma^2} + O(\epsilon^2 s^2).$$

Huang & Lupo, Phys. Rev. Lett. 127, 130502

Optimal measurement - SPADE

Near-optimal measurement: SPADE



For our case, we point the optical imaging system towards the optical "center of mass".

$$\bar{x} = (1 - \epsilon)x_0 + \epsilon(x_0 + s).$$
(1)

Huang & Lupo, Phys. Rev. Lett. 127, 130502 (2021)

Outline

Motivation: surpassing Rayleigh's criterion

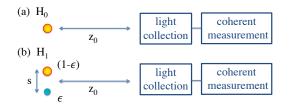
Quantum-limited estimation for LIDARs

Quantum hypothesis testing for exoplanet detection

 $\mathsf{Experiment:}\xspace$ quantum super-resolution imaging and hypothesis testing

Exoplanet atmostpheric spectroscopy

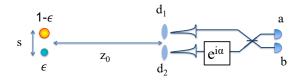
The experiment



- Sub-Rayleigh quantum state discrimination
- Optimal angular separation estimation (equally bright sources)
- Two tasks achieved with a single measurement
- Binary stars, microscopy

Experimental scheme

Instead of a lens, place two collectors at d_1 , d_2 :



$$|\psi_{ ext{star}}
angle = rac{1}{\sqrt{2}}(|d_1
angle + e^{i\phi} \, |d_2
angle), \quad |\psi_{ ext{planet}}
angle = rac{1}{\sqrt{2}}(|d_1
angle + e^{-i\phi} \, |d_2
angle)$$

In the limit of $\epsilon \ll 1$, $\theta = s/z_0$ (angular)

$$D(
ho_0||
ho_1)pprox rac{\epsilon heta^2k^2d^2}{4}$$

Simplifying the experiment

 H_0 : the probabilities of photon arriving at detectors a and b are

$$p_{H_0}(a) = \frac{1}{2}(1 + \nu \cos(\phi + \alpha))$$
$$p_{H_0}(b) = \frac{1}{2}(1 - \nu \cos(\phi + \alpha))$$

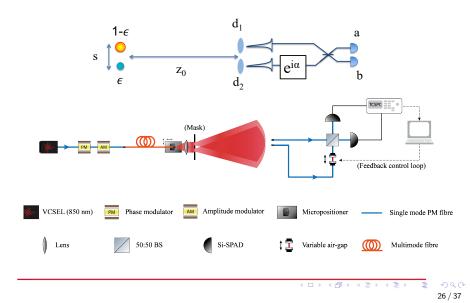
 H_1 :

$$p_{H_1}(a) = \frac{1}{2} [(1-\epsilon)(1+\nu\cos(\phi+\alpha)) + \epsilon(1+\nu\cos(-\phi+\alpha))]$$

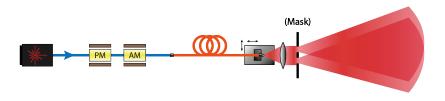
$$p_{H_1}(b) = \frac{1}{2} [(1-\epsilon)(1-\nu\cos(\phi+\alpha)) + \epsilon(1-\nu\cos(-\phi+\alpha))]$$

$$D_c(p_0||p_1) = \sum_x p_0(x) (\log p_0(x) - \log p_1(x)), \qquad x = a, b$$

The experimental setup



The experimental setup



Results - relative entropy

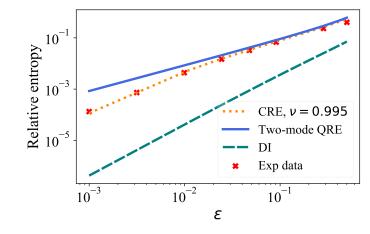


Figure: Relative entropy of the two hypothesises

Angular separation measurement

When the source intensities are equal, the QFI for the angular separation is

$$\mathsf{QFI} = \frac{k^2}{4}(d_1 - d_2)^2$$

The probabilities of detecting the photon at either detector are

$$p_1 = \frac{1}{2} (1 + \nu \cos(\alpha) \cos[\phi]), \quad \phi = kd\theta/2$$
$$p_2 = \frac{1}{2} (1 - \nu \cos(\alpha) \cos[\phi])$$

We use Baye's theorem to update the probability distribution.

Sample distribution

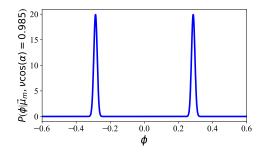


Figure: Sample distribution: after 10,000 detection events, 204 arrived at detector b.

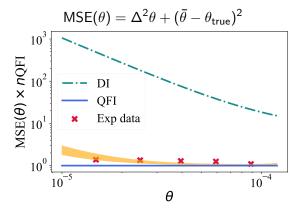
$$\nu \cos(\alpha) \in [-1,1]$$

Estimator:

$$\hat{\theta}_{\text{est}} = 2\hat{|}\phi_{\text{est}}|/(kd) \tag{2}$$

3

Results - MSE



Two sources 15 μ rad apart, we resolve θ to 1.7% accuracy. Factor 2 within QCR bound.

Outline

Motivation: surpassing Rayleigh's criterion

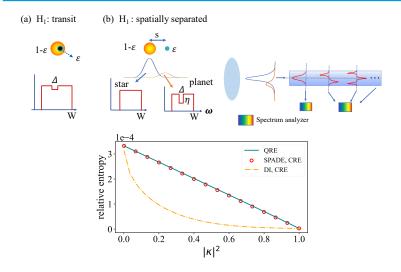
Quantum-limited estimation for LIDARs

Quantum hypothesis testing for exoplanet detection

Experiment: quantum super-resolution imaging and hypothesis testing

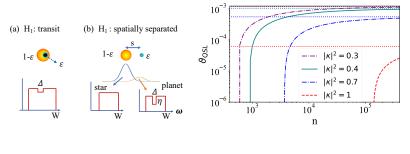
Exoplanet atmostpheric spectroscopy

Application to spectroscopy



Huang, Schwab, Lupo, arXiv:2211.06050 (2022)

Application to spectroscopy



$$\vartheta_{\mathsf{QSL}} := D(\rho_0 \| \rho_1) + \sqrt{\frac{V(\rho_0 \| \rho_1)}{n}} \, \Phi^{-1}(\alpha) + O\left(\frac{\log n}{n}\right)$$

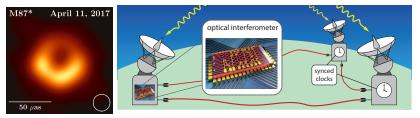
Huang, Schwab, Lupo, arXiv:2211.06050 (2022)

- We compute the type-II error probability exponent of discriminating between 1 or two sources with arbitrary intensity.
- ▶ in the limit that $\epsilon \ll 1$, the quantum relative entropy is larger than that of direct imaging by a factor of $1/\epsilon$.
- For a lens: two measurement methods that are optimal in this regime
- We significantly simplified the scheme to a two-mode interferometer, demonstrates sub-Rayleigh scaling and approach the QCRB.

Huang & Lupo, Phys. Rev. Lett. 127, 130502 Zanforlin, et al., Nat. Commun. 13, 5373 (2022)

To the future

 \pounds 360K (\approx AU \$650K) grant from the EPSRC DECRA Fellowship (2023) from the ARC This work is funded by the Sydney Quantum Academy



- Long-distance optical coherence, entanglement-assisted network
- Quantum error correction to combat to loss to decoherence
- Current collaborations: Bristol, Heriot-Watt, Erlangen, UWA

PhD scholarship available

Questions?

Thank you for your attention.

Figure: (Left) my hamster in the UK; (right) my jenday conure

PhD scholarship available