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Surface codes are one of the leading quantum error correction schemes to implement fault-tolerant quantum 

computing. With remarkable recent progress in quantum hardware development, quantum devices are 

approaching sizes and error rates required to already demonstrate small-scale surface code implementations 

[1].  One of the challenging aspects in the working of surface codes is to construct an accurate and efficient 

classical decoder which can process syndrome measurements over large qubit arrays and suggest appropriate 

corrections. Leading classical algorithms for the processing of syndrome measurements, such as minimum 

weight perfect matching (MWPM) [2], can achieve satisfactory decoding accuracy. However, demonstrating 

acceptable performance in real-time remains an open problem. More recently, artificial neural networks 

(ANNs) have been investigated for this task and have shown promising results on small systems and/or when 

implementing single logical qubit memory operations [3,4,5,6]. We have developed an ANN decoding 

technique readily applicable to large-scale systems (consisting of up to four million physical qubits) and 

demonstrated its working with microsecond latency [7]. The ANN decoder is benchmarked for surface codes 

subject to a variety of noise models and containing multiple logical qubits in configurations facilitating multi-

qubit logical operations. We discuss possible generalizations using techniques applicable in a fault tolerant 

setting where errors can occur during syndrome measurement circuits and logical operations. 

 
Figure 1: A system of merged surface code patches experiencing depolarizing noise and subsequent correction with ANN decoding. 
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