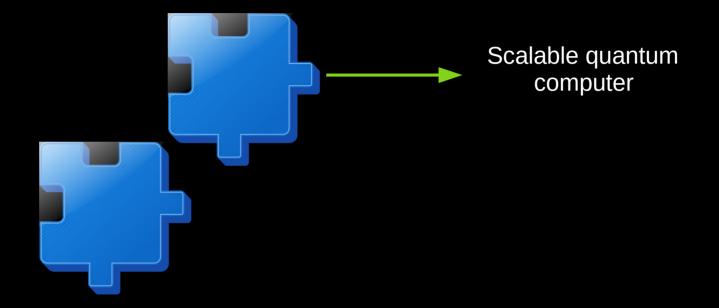
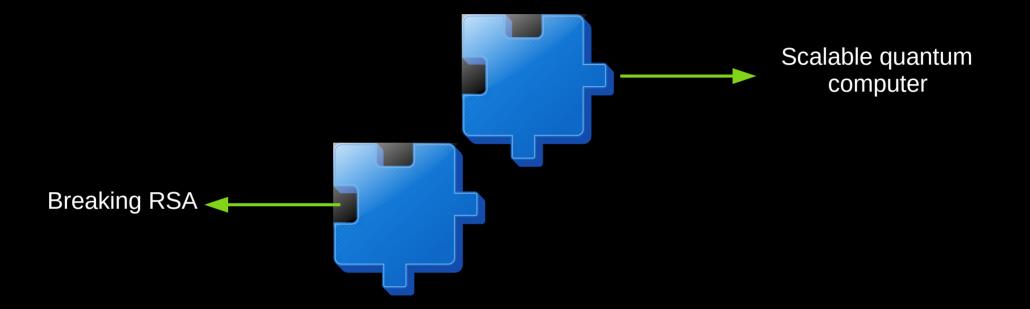
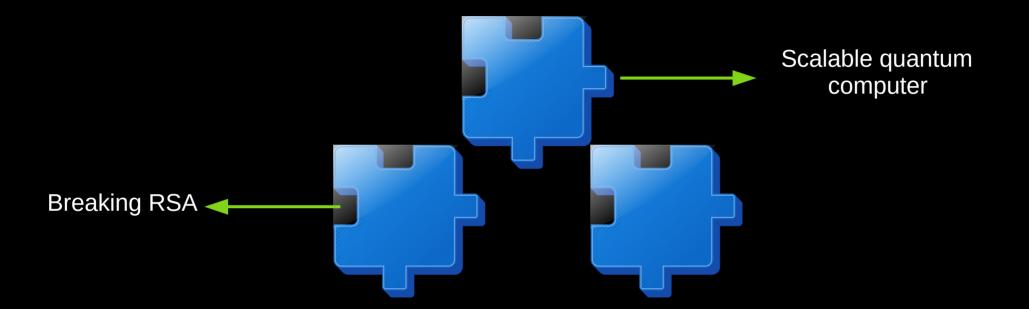
SINGLE STEP PARITY CHECK GATE SET for QUANTUM ERROR CORRECTION

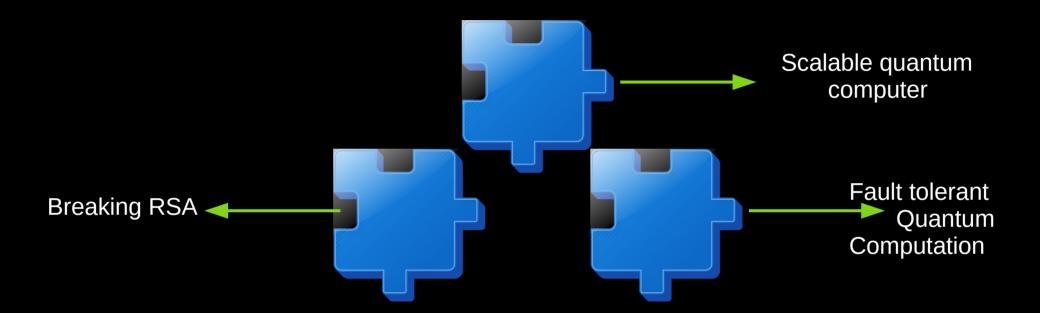
Gözde Üstün^{1,2} Andrea Morello^{1,2} & Simon Devitt³

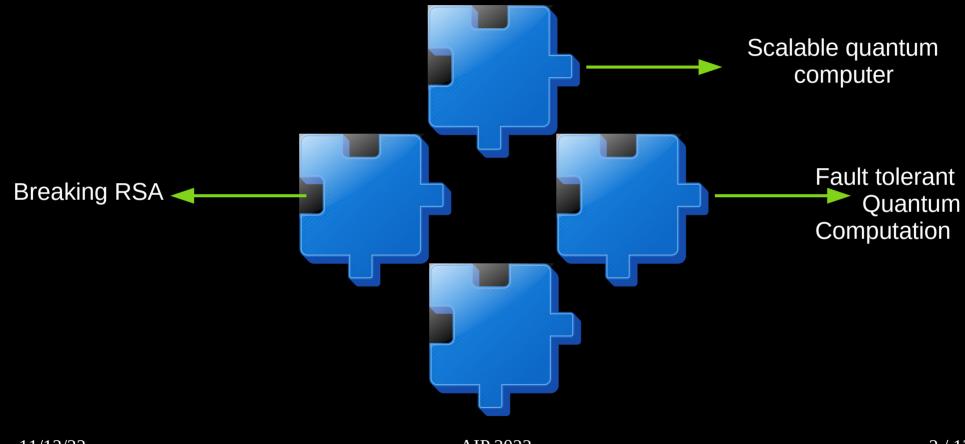
¹University of New South Wales, Sydney ²Centre for Quantum Computation & Communication Technologies ³University of Technology Sydney

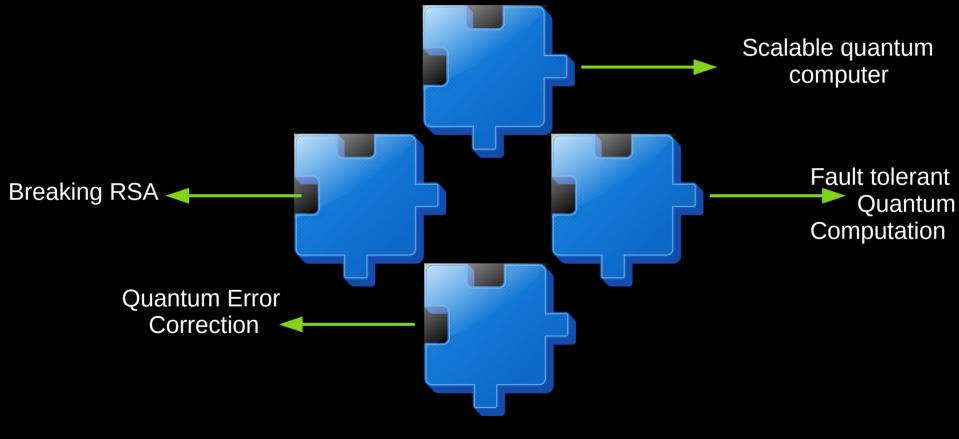


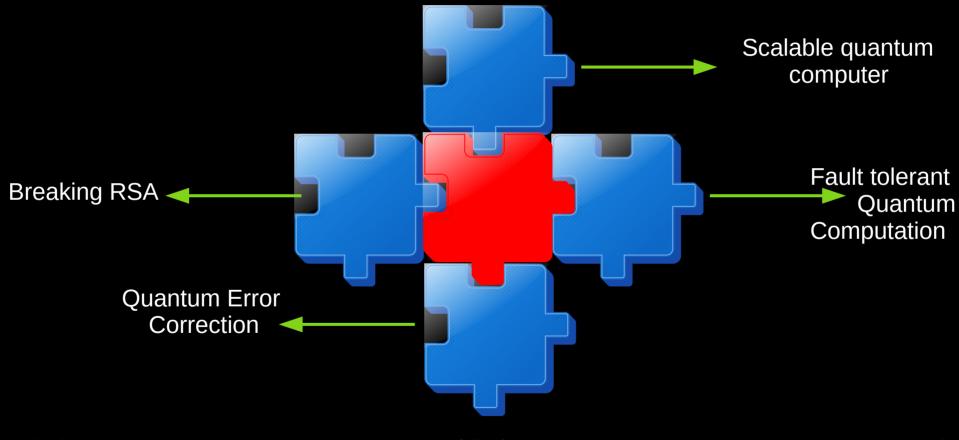


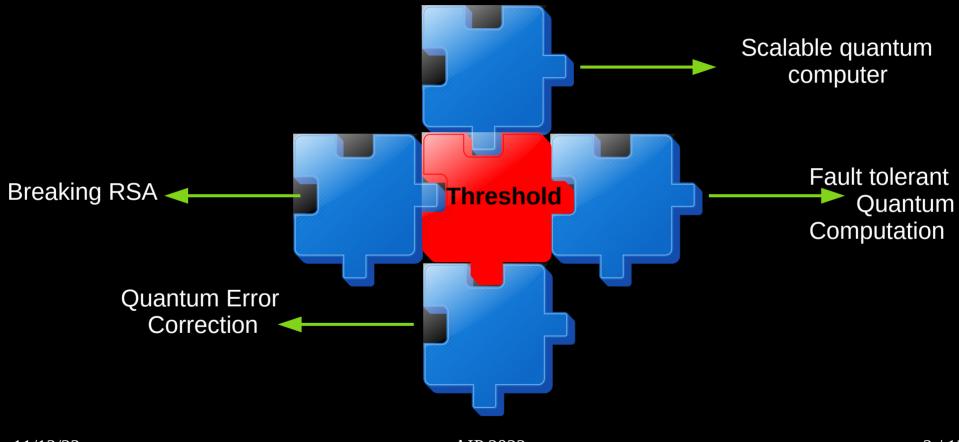


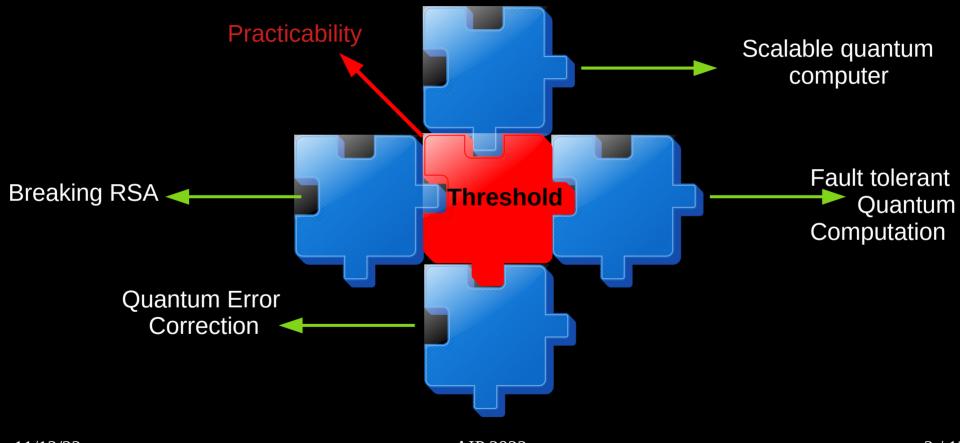


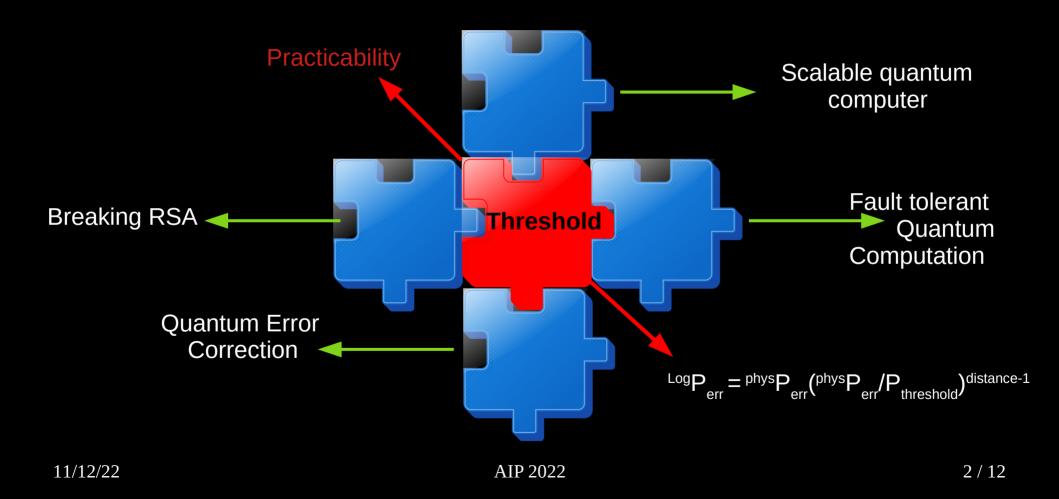


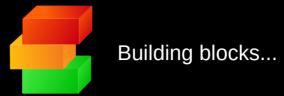


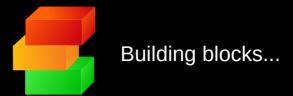


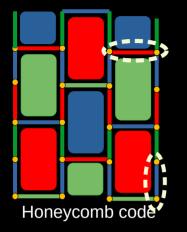


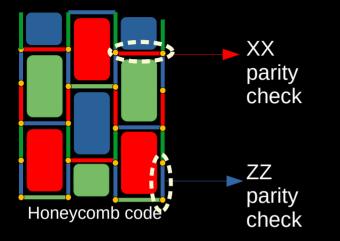


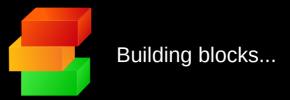


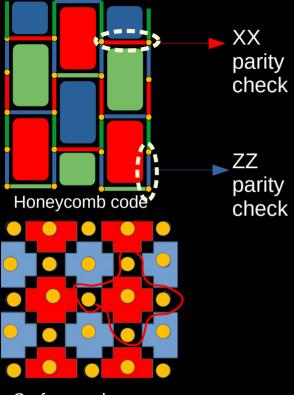




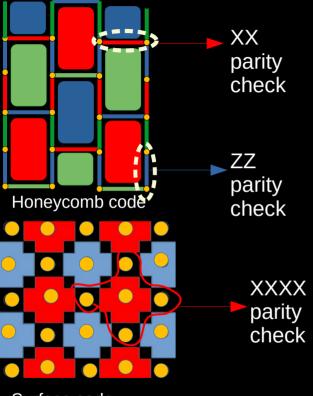




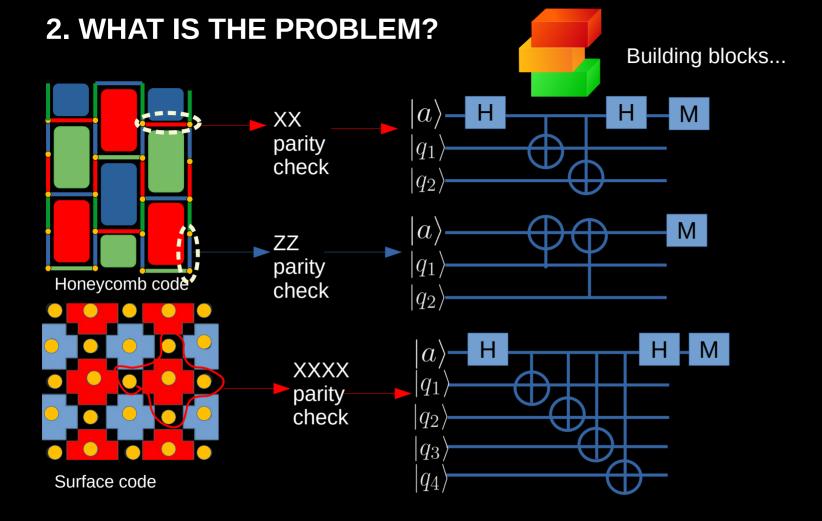


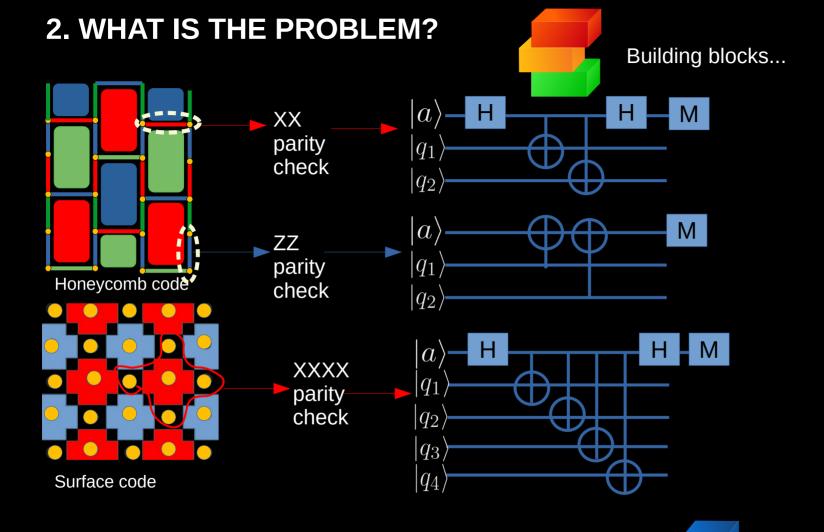


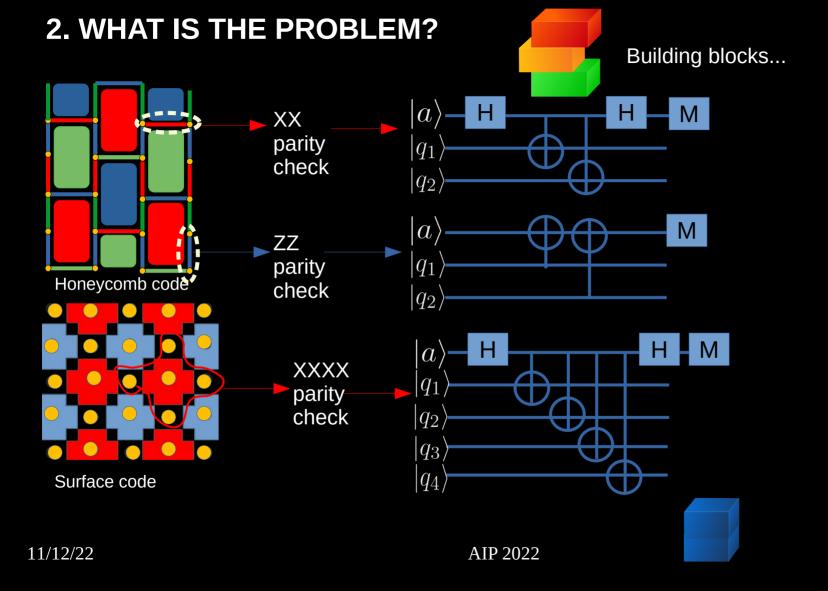
Surface code

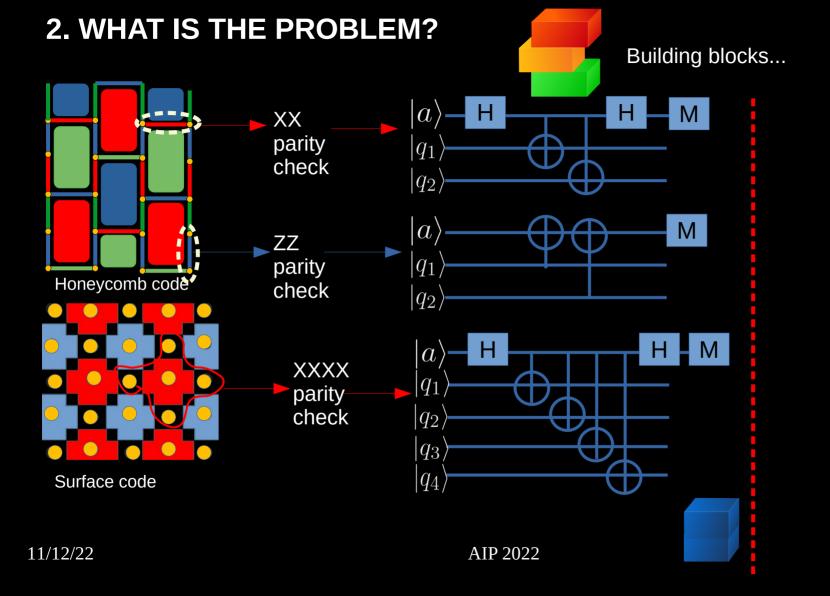


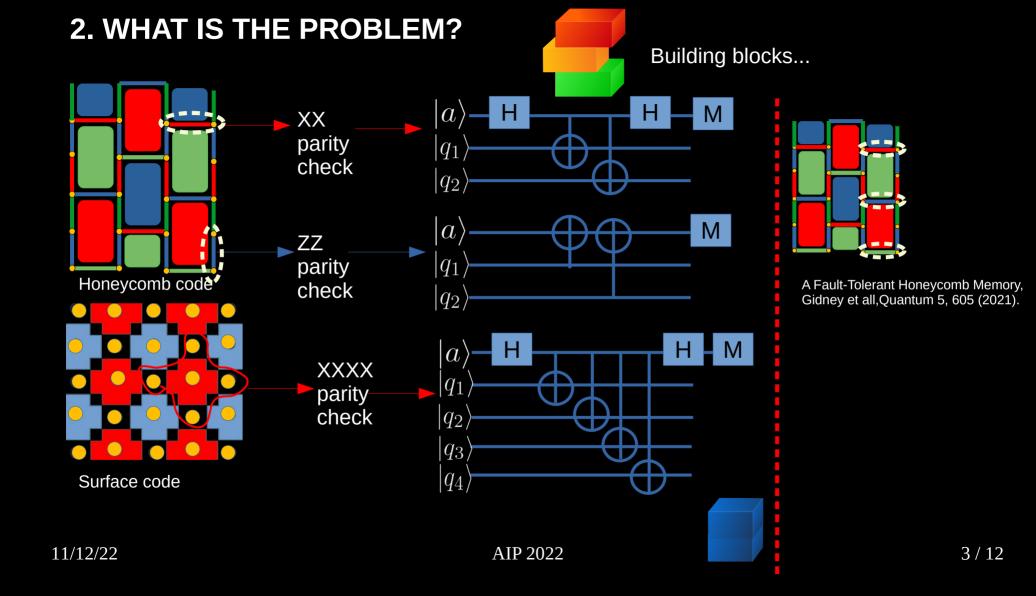
Surface code

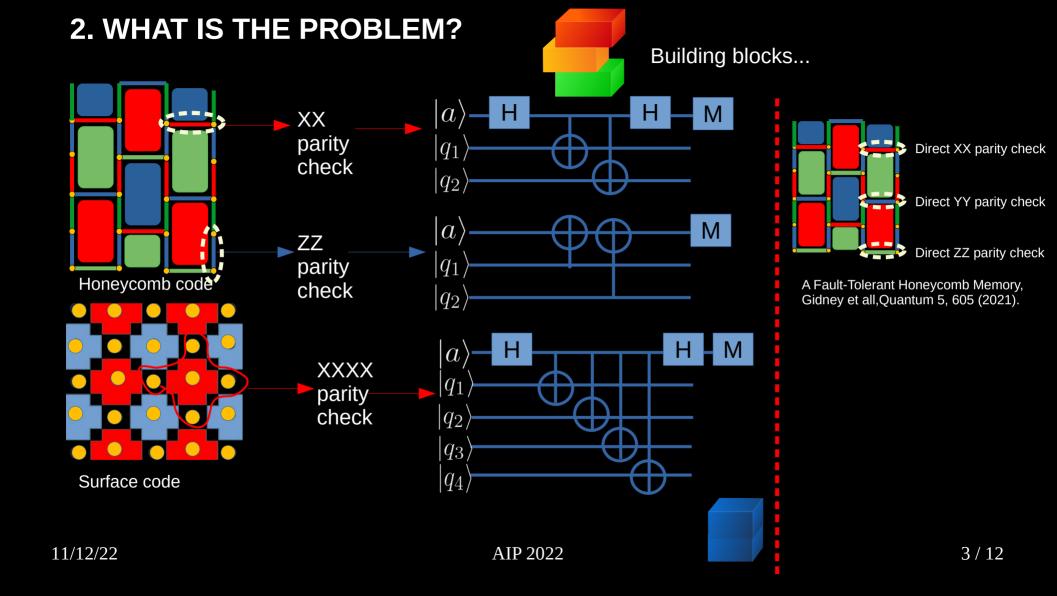


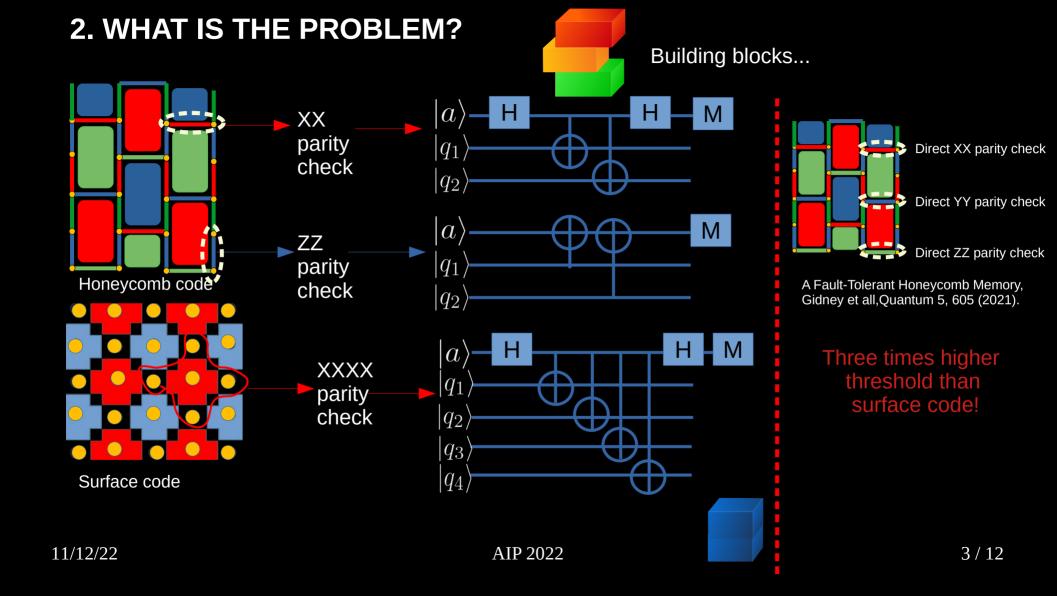


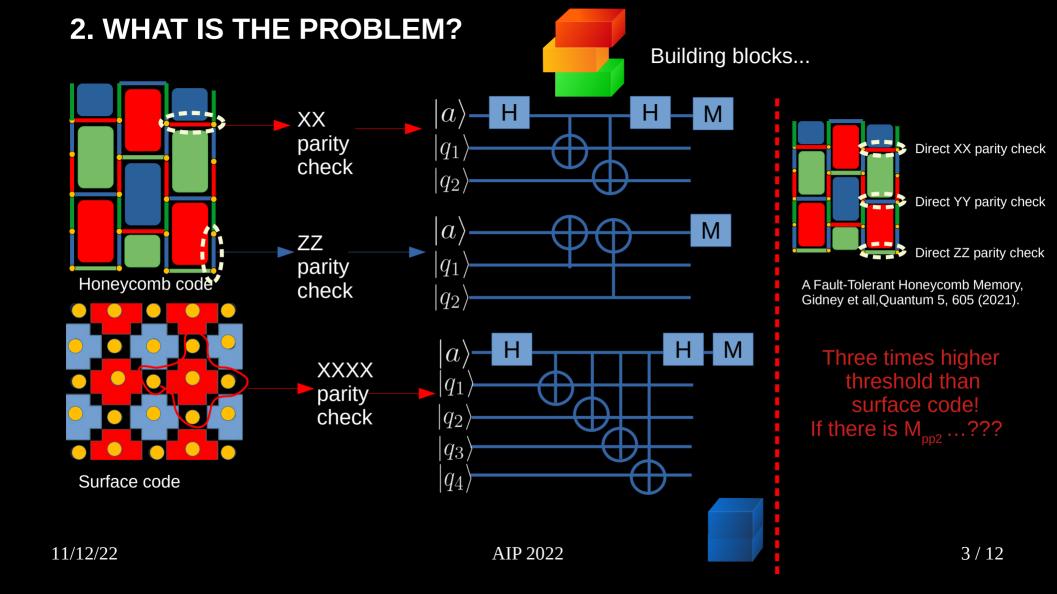






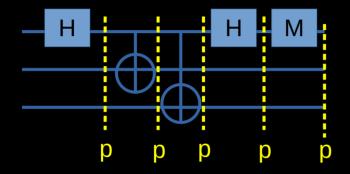






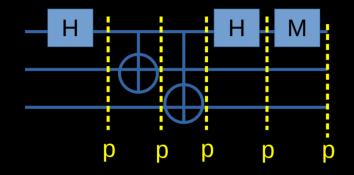
From fidelity to p

From fidelity to p

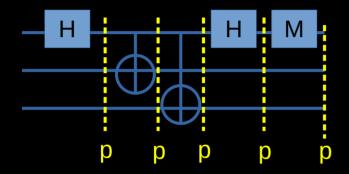


From fidelity to **p**

1. Take GST matrices

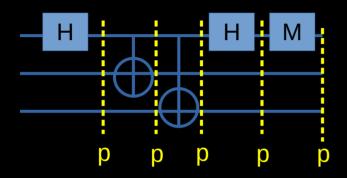


From fidelity to **p**



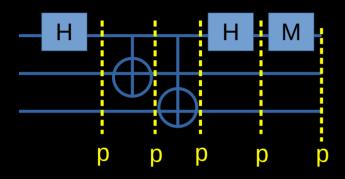
- 1. Take GST matrices
- 2. They are actually PTM matrices

From fidelity to **p**



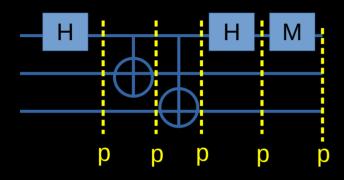
- 1. Take GST matrices
- 2. They are actually PTM matrices
- 3. Find Kraus Operators

From fidelity to **p**



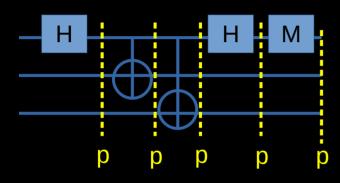
- 1. Take GST matrices
- 2. They are actually PTM matrices
- 3. Find Kraus Operators
- 4. Write Kraus operators in terms of Pauli Matrices

From fidelity to **p**



- 1. Take GST matrices
- 2. They are actually PTM matrices
- 3. Find Kraus Operators
- 4. Write Kraus operators in terms of Pauli Matrices
- 5. Write final density matrices

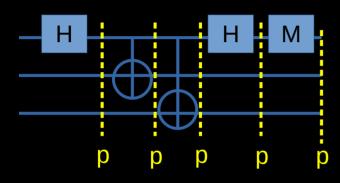
From fidelity to **p**



- 1. Take GST matrices
- 2. They are actually PTM matrices
- 3. Find Kraus Operators
- 4. Write Kraus operators in terms of Pauli Matrices
- 5. Write final density matrices

As a result, we analysed the succession/perfection rate in terms of accumulated error in the stochastic Pauli channels

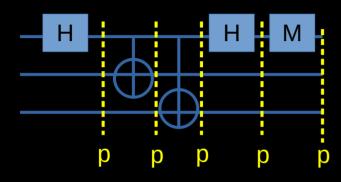
From fidelity to **p**



- 1. Take GST matrices
- 2. They are actually PTM matrices
- 3. Find Kraus Operators
- 4. Write Kraus operators in terms of Pauli Matrices
- 5. Write final density matrices

As a result, we analysed the succession/perfection rate in terms of accumulated error in the stochastic Pauli channels

From fidelity to p

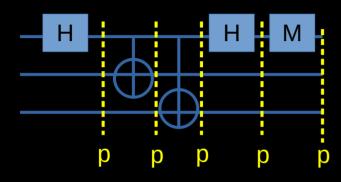


- 1. Take GST matrices
- 2. They are actually PTM matrices
- 3. Find Kraus Operators
- 4. Write Kraus operators in terms of Pauli Matrices
- 5. Write final density matrices

As a result, we analysed the succession/perfection rate in terms of accumulated error in the stochastic Pauli channels

 Each gate is created with 99.43% fidelity

From fidelity to p

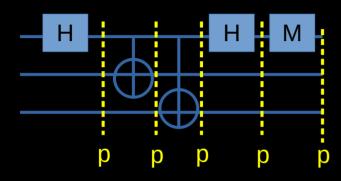


- 1. Take GST matrices
- 2. They are actually PTM matrices
- 3. Find Kraus Operators
- 4. Write Kraus operators in terms of Pauli Matrices
- 5. Write final density matrices

As a result, we analysed the succession/perfection rate in terms of accumulated error in the stochastic Pauli channels

 Each gate is created with 99.43% fidelity

From fidelity to **p**

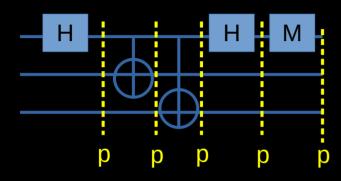


- 1. Take GST matrices
- 2. They are actually PTM matrices
- 3. Find Kraus Operators
- 4. Write Kraus operators in terms of Pauli Matrices
- 5. Write final density matrices

As a result, we analysed the succession/perfection rate in terms of accumulated error in the stochastic Pauli channels

 Each gate is created with 99.43% fidelity

From fidelity to **p**

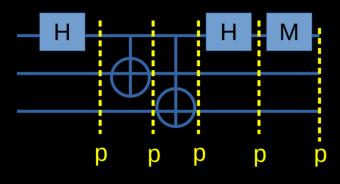


- 1. Take GST matrices
- 2. They are actually PTM matrices
- 3. Find Kraus Operators
- 4. Write Kraus operators in terms of Pauli Matrices
- 5. Write final density matrices

As a result, we analysed the succession/perfection rate in terms of accumulated error in the stochastic Pauli channels

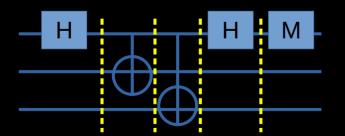
- Each gate is created with 99.43% fidelity
- Phase flip errors are used to simulate process matrices - 0.0085

From fidelity to **p**



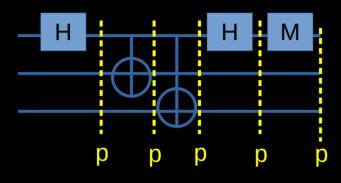
- 1. Take GST matrices
- 2. They are actually PTM matrices
- 3. Find Kraus Operators
- 4. Write Kraus operators in terms of Pauli Matrices
- 5. Write final density matrices

As a result, we analysed the succession/perfection rate in terms of accumulated error in the stochastic Pauli channels



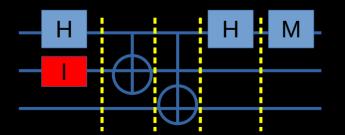
- Each gate is created with 99.43% fidelity
- Phase flip errors are used to simulate process matrices - 0.0085

From fidelity to **p**



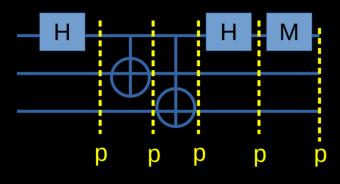
- 1. Take GST matrices
- 2. They are actually PTM matrices
- 3. Find Kraus Operators
- 4. Write Kraus operators in terms of Pauli Matrices
- 5. Write final density matrices

As a result, we analysed the succession/perfection rate in terms of accumulated error in the stochastic Pauli channels



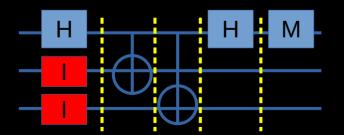
- Each gate is created with 99.43% fidelity
- Phase flip errors are used to simulate process matrices - 0.0085

From fidelity to p



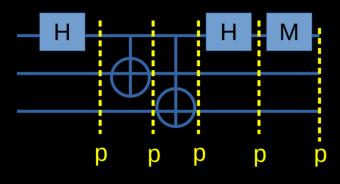
- 1. Take GST matrices
- 2. They are actually PTM matrices
- 3. Find Kraus Operators
- 4. Write Kraus operators in terms of Pauli Matrices
- 5. Write final density matrices

As a result, we analysed the succession/perfection rate in terms of accumulated error in the stochastic Pauli channels



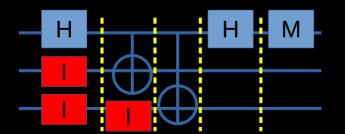
- Each gate is created with 99.43% fidelity
- Phase flip errors are used to simulate process matrices - 0.0085

From fidelity to **p**



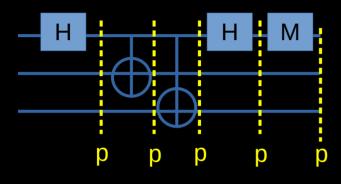
- 1. Take GST matrices
- 2. They are actually PTM matrices
- 3. Find Kraus Operators
- 4. Write Kraus operators in terms of Pauli Matrices
- 5. Write final density matrices

As a result, we analysed the succession/perfection rate in terms of accumulated error in the stochastic Pauli channels



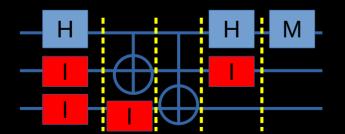
- Each gate is created with 99.43% fidelity
- Phase flip errors are used to simulate process matrices - 0.0085

From fidelity to **p**



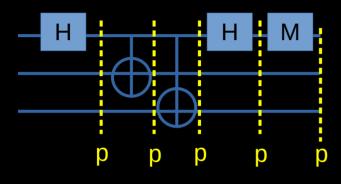
- 1. Take GST matrices
- 2. They are actually PTM matrices
- 3. Find Kraus Operators
- 4. Write Kraus operators in terms of Pauli Matrices
- 5. Write final density matrices

As a result, we analysed the succession/perfection rate in terms of accumulated error in the stochastic Pauli channels



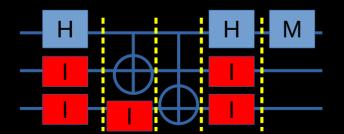
- Each gate is created with 99.43% fidelity
- Phase flip errors are used to simulate process matrices - 0.0085

From fidelity to **p**



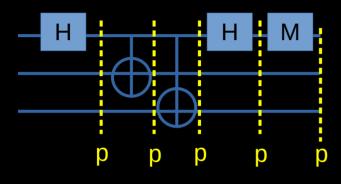
- 1. Take GST matrices
- 2. They are actually PTM matrices
- 3. Find Kraus Operators
- 4. Write Kraus operators in terms of Pauli Matrices
- 5. Write final density matrices

As a result, we analysed the succession/perfection rate in terms of accumulated error in the stochastic Pauli channels



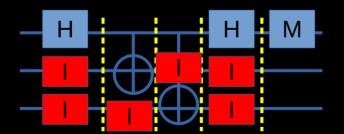
- Each gate is created with 99.43% fidelity
- Phase flip errors are used to simulate process matrices - 0.0085

From fidelity to **p**



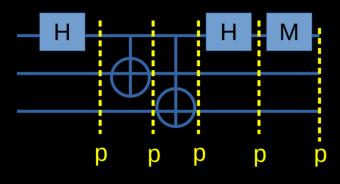
- 1. Take GST matrices
- 2. They are actually PTM matrices
- 3. Find Kraus Operators
- 4. Write Kraus operators in terms of Pauli Matrices
- 5. Write final density matrices

As a result, we analysed the succession/perfection rate in terms of accumulated error in the stochastic Pauli channels



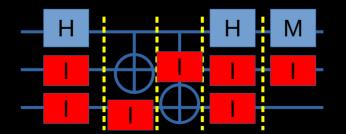
- Each gate is created with 99.43% fidelity
- Phase flip errors are used to simulate process matrices - 0.0085

From fidelity to p



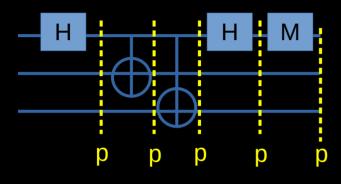
- 1. Take GST matrices
- 2. They are actually PTM matrices
- 3. Find Kraus Operators
- 4. Write Kraus operators in terms of Pauli Matrices
- 5. Write final density matrices

As a result, we analysed the succession/perfection rate in terms of accumulated error in the stochastic Pauli channels



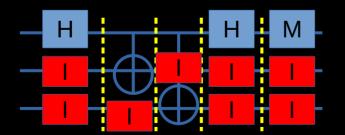
- Each gate is created with 99.43% fidelity
- Phase flip errors are used to simulate process matrices - 0.0085

From fidelity to p



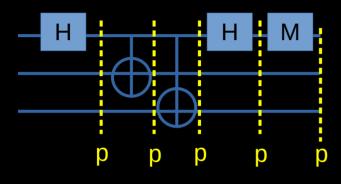
- 1. Take GST matrices
- 2. They are actually PTM matrices
- 3. Find Kraus Operators
- 4. Write Kraus operators in terms of Pauli Matrices
- 5. Write final density matrices

As a result, we analysed the succession/perfection rate in terms of accumulated error in the stochastic Pauli channels



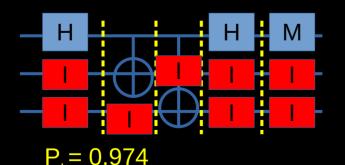
- Each gate is created with 99.43% fidelity
- Phase flip errors are used to simulate process matrices - 0.0085

From fidelity to **p**



- 1. Take GST matrices
- 2. They are actually PTM matrices
- 3. Find Kraus Operators
- 4. Write Kraus operators in terms of Pauli Matrices
- 5. Write final density matrices

As a result, we analysed the succession/perfection rate in terms of accumulated error in the stochastic Pauli channels



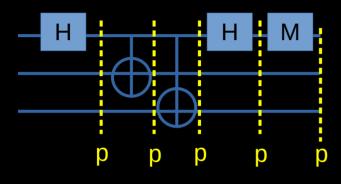
11/12/22

- Each gate is created with 99.43% fidelity
- Phase flip errors are used to simulate process matrices - 0.0085

Surface codes: Towards practical large-scale quantum computation, Fowler et all,Phys. Rev. A 86, 032324

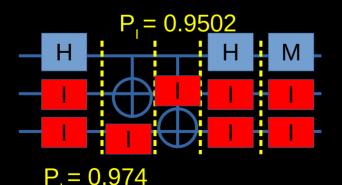
AIP 2022

From fidelity to **p**



- 1. Take GST matrices
- 2. They are actually PTM matrices
- 3. Find Kraus Operators
- 4. Write Kraus operators in terms of Pauli Matrices
- 5. Write final density matrices

As a result, we analysed the succession/perfection rate in terms of accumulated error in the stochastic Pauli channels



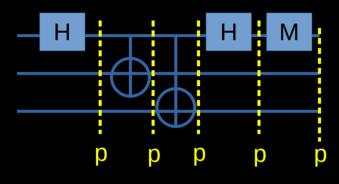
11/12/22

- Each gate is created with 99.43% fidelity
- Phase flip errors are used to simulate process matrices - 0.0085

Surface codes: Towards practical large-scale quantum computation, Fowler et all,Phys. Rev. A 86, 032324

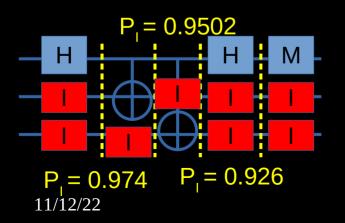
AIP 2022

From fidelity to **p**



- 1. Take GST matrices
- 2. They are actually PTM matrices
- 3. Find Kraus Operators
- 4. Write Kraus operators in terms of Pauli Matrices
- 5. Write final density matrices

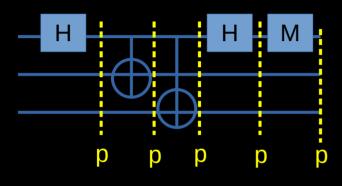
As a result, we analysed the succession/perfection rate in terms of accumulated error in the stochastic Pauli channels



- Each gate is created with 99.43% fidelity
- Phase flip errors are used to simulate process matrices - 0.0085

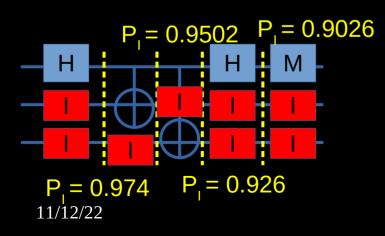
AIP 2022

From fidelity to **p**



- 1. Take GST matrices
- 2. They are actually PTM matrices
- 3. Find Kraus Operators
- 4. Write Kraus operators in terms of Pauli Matrices
- 5. Write final density matrices

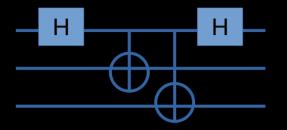
As a result, we analysed the succession/perfection rate in terms of accumulated error in the stochastic Pauli channels



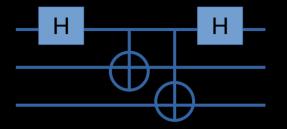
- Each gate is created with 99.43% fidelity
- Phase flip errors are used to simulate process matrices - 0.0085

AIP 2022

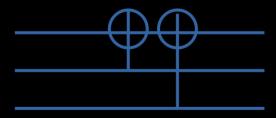
CAN WE FIND A BETTER WAY?



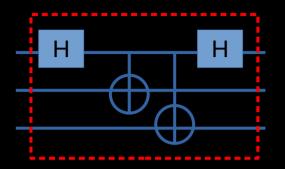
XX parity check circuit



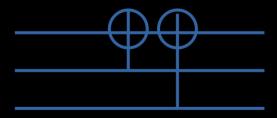
XX parity check circuit



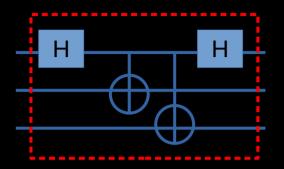
ZZ parity check circuit



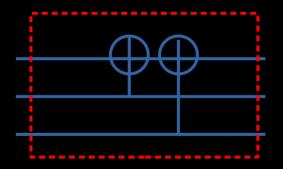
XX parity check circuit



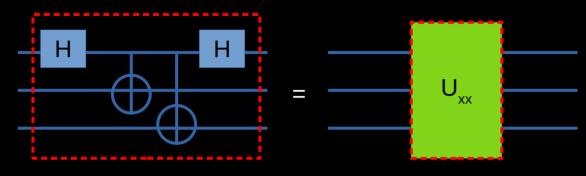
ZZ parity check circuit



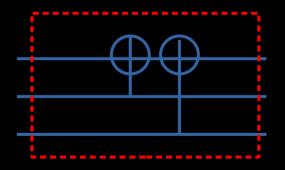
XX parity check circuit



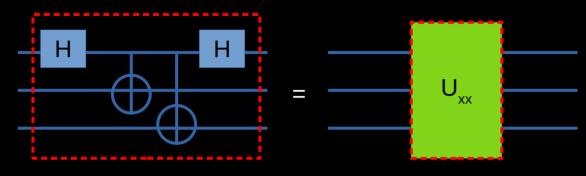
ZZ parity check circuit



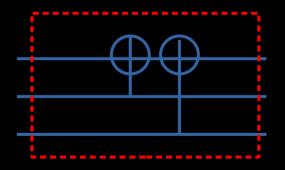
XX parity check circuit



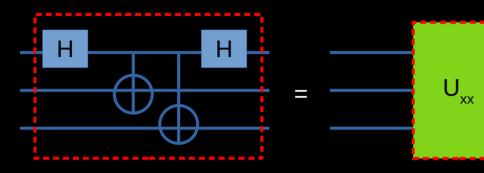
ZZ parity check circuit



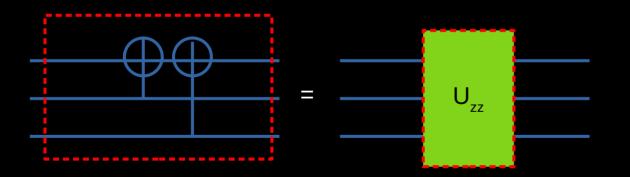
XX parity check circuit



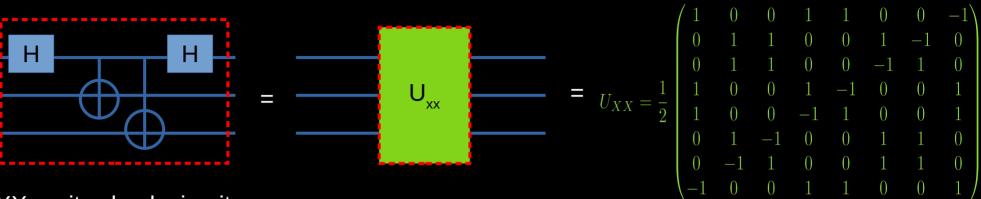
ZZ parity check circuit



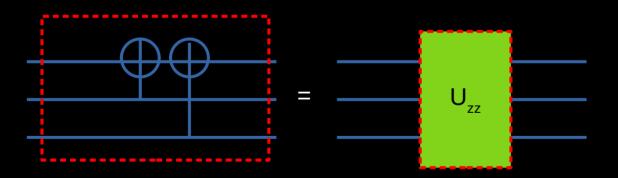
XX parity check circuit



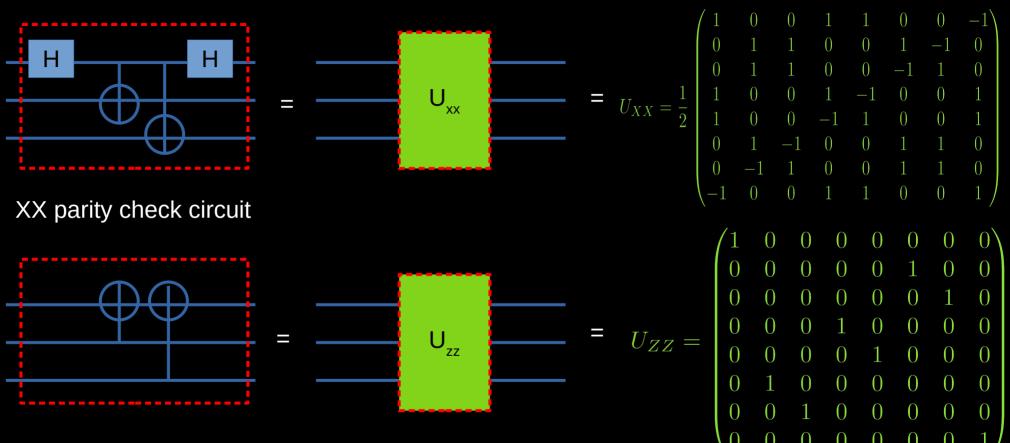
ZZ parity check circuit



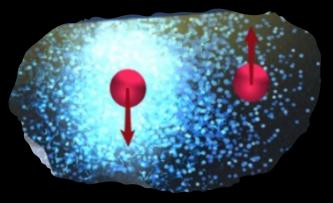
XX parity check circuit

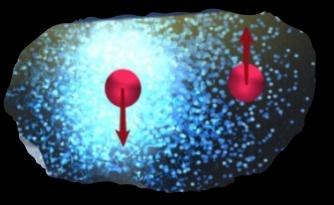


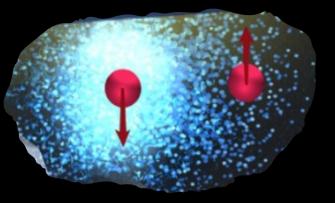
ZZ parity check circuit

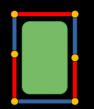


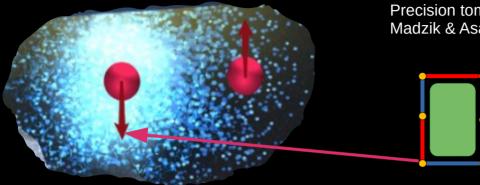
ZZ parity check circuit

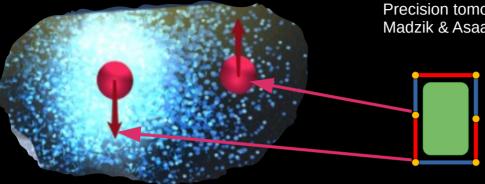




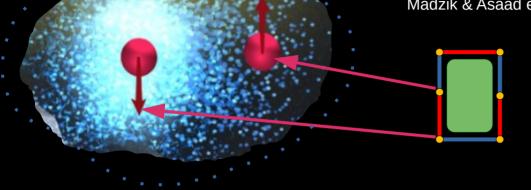






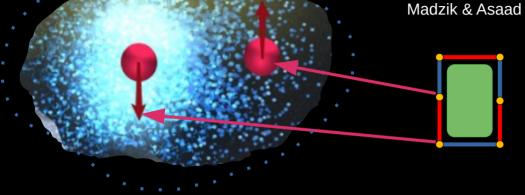


Precision tomography of a three-qubit donor quantum processor in silicon by Madzik & Asaad et all, Nature. 2022 Jan;601(7893):348-353.



$\vec{H}_d = -\gamma_e B_0 \hat{S} - \gamma_n B_0 (\hat{I}_{z1} + \hat{I}_{z2}) + A_1 \vec{S} \cdot \vec{I}_1 + A_2 \vec{S} \cdot \vec{I}_2$

Precision tomography of a three-qubit donor quantum processor in silicon by Madzik & Asaad et all, Nature. 2022 Jan;601(7893):348-353.



$\vec{H_d} = -\gamma_e B_0 \hat{S} - \gamma_n B_0 (\hat{I_{z1}} + \hat{I_{z2}}) + A_1 \vec{S} \cdot \vec{I_1} + A_2 \vec{S} \cdot \vec{I_2}$ $H_{rf}(t) = -\gamma_e \vec{B_1} \vec{S} \sin(wt) - \gamma_n \vec{B_1} (\vec{I_1} + \vec{I_2}) \sin(wt)$

11/12/22

11/12/22

$$\dot{H} = -\gamma_e B_0 S_z - \gamma_n B_0 I_{z1} - \gamma_n B_0 I_{z2} + A_1 S_z I_{z1} + A_2 S_z I_{z2}$$

$$\dot{H} = -\gamma_e B_0 S_z - \gamma_n B_0 I_{z1} - \gamma_n B_0 I_{z2} + A_1 S_z I_{z1} + A_2 S_z I_{z2}$$

 $U = e^{iHt}$

Clock Dynamics of Hamiltonian + GRAPE algorithm

$$\dot{H} = -\gamma_e B_0 S_z - \gamma_n B_0 I_{z1} - \gamma_n B_0 I_{z2} + A_1 S_z I_{z1} + A_2 S_z I_{z2}$$

 $U = e^{iHt}$

 $U = e^{-i\gamma_e B_0 S_Z t} e^{-i\gamma_n B_0 I_{z_1} t} e^{-i\gamma_n B_0 I_{z_2} t} e^{iA_1 S_z I_{z_1} t} e^{iA_2 S_z I_{z_2} t}$

$$\vec{H} = -\gamma_e B_0 S_z - \gamma_n B_0 I_{z1} - \gamma_n B_0 I_{z2} + A_1 S_z I_{z1} + A_2 S_z I_{z2}$$
$$U = e^{iHt}$$
$$U = e^{iHt}$$
$$\vec{U} = \begin{bmatrix} e^{-i\gamma_e B_0 S_z t} e^{-i\gamma_n B_0 I_{z1} t} e^{-i\gamma_n B_0 I_{z2} t} e^{iA_1 S_z I_{z1} t} e^{iA_2 S_z I_{z2} t} \\ \vec{O} \end{bmatrix}$$
$$\vec{Gate_1} \quad \vec{Gate_2} \quad \vec{Gate_3} \quad \vec{Gate_4} \quad \vec{Gate_5}$$

Clock Dynamics of Hamiltonian + GRAPE algorithm

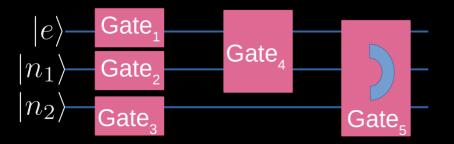
$$\vec{H} = -\gamma_e B_0 S_z - \gamma_n B_0 I_{z1} - \gamma_n B_0 I_{z2} + A_1 S_z I_{z1} + A_2 S_z I_{z2}$$
$$U = e^{iHt}$$
$$U = e^{i(Y_e B_0)S_z t} e^{-i(\gamma_n B_0)I_{z1}t} e^{-i(\gamma_n B_0)I_{z2}t} e^{i(A_1)S_z I_{z1}t} e^{i(A_2)S_z I_{z2}t}$$

 $Gate_1$ $Gate_2$ $Gate_3$ $Gate_4$ $Gate_5$

Clock Dynamics of Hamiltonian + GRAPE algorithm

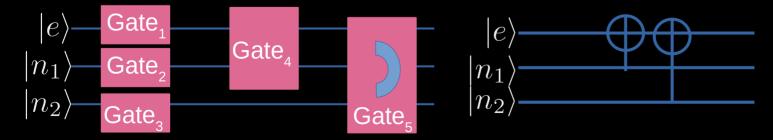
$$\vec{H} = -\gamma_{e}B_{0}S_{z} - \gamma_{n}B_{0}I_{z1} - \gamma_{n}B_{0}I_{z2} + A_{1}S_{z}I_{z1} + A_{2}S_{z}I_{z2}$$
$$U = e^{iHt}$$
$$U = e^{iHt}$$
$$\vec{U} = e^{-i\gamma_{e}B_{0}S_{z}t}e^{-i\gamma_{n}B_{0}I_{z1}t}e^{-i\gamma_{n}B_{0}I_{z2}t}e^{iA_{1}S_{z}I_{z1}t}e^{iA_{2}S_{z}I_{z2}t}$$
$$\vec{U} = \vec{U} = \vec{U}$$

 $Gate_1$ $Gate_2$ $Gate_3$ $Gate_4$ $Gate_5$



Clock Dynamics of Hamiltonian + GRAPE algorithm

$$\vec{H} = -\gamma_e B_0 S_z - \gamma_n B_0 I_{z1} - \gamma_n B_0 I_{z2} + A_1 S_z I_{z1} + A_2 S_z I_{z2}$$
$$U = e^{iHt}$$

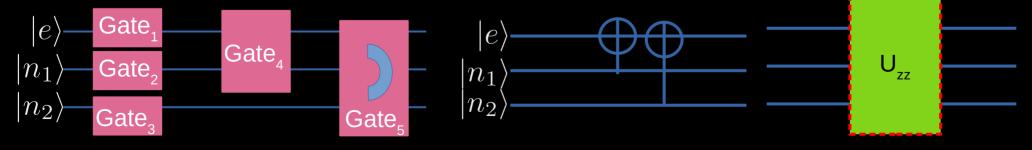


11/12/22

AIP 2022

Clock Dynamics of Hamiltonian + GRAPE algorithm

$$\vec{H} = -\gamma_e B_0 S_z - \gamma_n B_0 I_{z1} - \gamma_n B_0 I_{z2} + A_1 S_z I_{z1} + A_2 S_z I_{z2}$$
$$U = e^{iHt}$$



11/12/22

AIP 2022

11/12/22

GRAPE:

Modulated control Hamiltonian

- Modulated control Hamiltonian
- Drift Hamiltonian

- Modulated control Hamiltonian
- Drift Hamiltonian
- Target unitary

- Modulated control Hamiltonian
- Drift Hamiltonian
- Target unitary
- Time resolution

- Modulated control Hamiltonian
- Drift Hamiltonian
- Target unitary
- Time resolution
- Initial state

- Modulated control Hamiltonian
- Drift Hamiltonian
- Target unitary
- Time resolution
- Initial state
- Gate evolution time

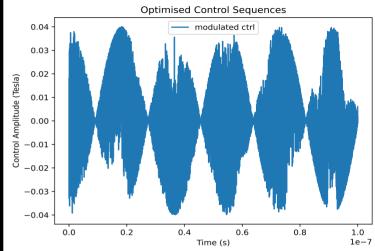
- Modulated control Hamiltonian
- Drift Hamiltonian
- Target unitary
- Time resolution
- Initial state
- Gate evolution time
- Min max control amplitude

- Modulated control Hamiltonian
- Drift Hamiltonian
- Target unitary
- Time resolution
- Initial state
- Gate evolution time
- Min max control amplitude
- Etc...

- Modulated control Hamiltonian
- Drift Hamiltonian
- Target unitary
- Time resolution
- Initial state
- Gate evolution time
- Min max control amplitude
- Etc...
- GRAPE found single step parity check gate

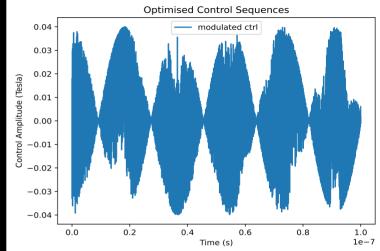
- Modulated control Hamiltonian
- Drift Hamiltonian
- Target unitary
- Time resolution
- Initial state
- Gate evolution time
- Min max control amplitude
- Etc...
- GRAPE found single step parity check gate with a 10 times shorter gate evolution time than the traditional parity check circuit

- Modulated control Hamiltonian
- Drift Hamiltonian
- Target unitary
- Time resolution
- Initial state
- Gate evolution time
- Min max control amplitude
- Etc...
- GRAPE found single step parity check gate with a 10 times shorter gate evolution time than the traditional parity check circuit



GRAPE:

- Modulated control Hamiltonian
- Drift Hamiltonian
- Target unitary
- Time resolution
- Initial state
- Gate evolution time
- Min max control amplitude
- Etc...
- GRAPE found single step parity check gate with a 10 times shorter gate evolution time than the traditional parity check circuit

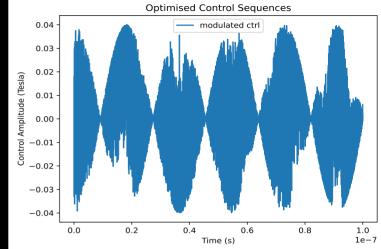


Simulated fidelity error is $< 10^{-5}$

 Clock dynamics analysis showed that we can implement U_{zz} gate ~9.5 times faster than traditional ZZ parity check circuit

GRAPE:

- Modulated control Hamiltonian
- Drift Hamiltonian
- Target unitary
- Time resolution
- Initial state
- Gate evolution time
- Min max control amplitude
- Etc...
- GRAPE found single step parity check gate with a 10 times shorter gate evolution time than the traditional parity check circuit
- Analytic solution and GRAPE matches



Simulated fidelity error is $< 10^{-5}$

 Clock dynamics analysis showed that we can implement U_{zz} gate ~9.5 times faster than traditional ZZ parity check circuit

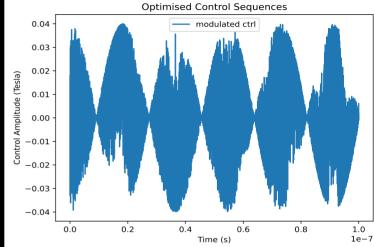
GRAPE:

- Modulated control Hamiltonian
- Drift Hamiltonian
- Target unitary
- Time resolution
- Initial state
- Gate evolution time
- Min max control amplitude
- Etc...

11/12/22

- GRAPE found single step parity check gate with a 10 times shorter gate evolution time than the traditional parity check circuit
- Analytic solution and GRAPE
 matches

Hence: M_{pp2} is one of single step parity check gate + a measurement AIP 2022



Simulated fidelity error is $< 10^{-5}$

11/12/22

1. Experiment :)

- 1. Experiment :)
- 2. Possibly more pulse generation in case of noise

- 1. Experiment :)
- 2. Possibly more pulse generation in case of noise
- 3. Implementing the new gate set for different systems like antimony or 2P2e systems

11/12/22

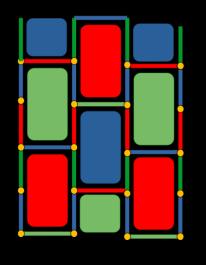
1. We modified the universal gate set for Quantum Error Correction 2. We found M_{pp2} :)

- 1. We modified the universal gate set for Quantum Error Correction
- 2. We found M_{pp2} :)
- 3. We analytically showed our systems are able to implement Single Step Parity Check Gate Set

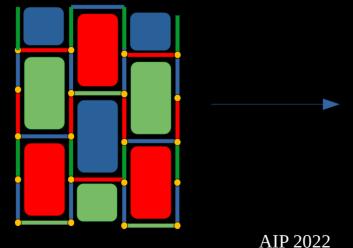
- 1. We modified the universal gate set for Quantum Error Correction
- 2. We found M_{pp2} :)
- 3. We analytically showed our systems are able to implement Single Step Parity Check Gate Set
- 4. We numerically showed that our systems are able to implement Single Step Parity Check Gate Set

- 1. We modified the universal gate set for Quantum Error Correction
- 2. We found M_{pp2} :)
- 3. We analytically showed our systems are able to implement Single Step Parity Check Gate Set
- 4. We numerically showed that our systems are able to implement Single Step Parity Check Gate Set
- 5. The first milestone on the road of implementing Honeycomb code

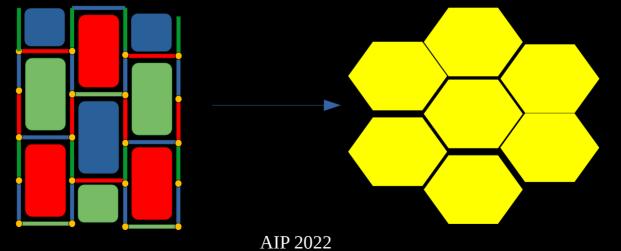
- 1. We modified the universal gate set for Quantum Error Correction
- 2. We found M_{pp2} :)
- 3. We analytically showed our systems are able to implement Single Step Parity Check Gate Set
- 4. We numerically showed that our systems are able to implement Single Step Parity Check Gate Set
- 5. The first milestone on the road of implementing Honeycomb code



- 1. We modified the universal gate set for Quantum Error Correction
- 2. We found M_{nn2} :)
- 3. We analytically showed our systems are able to implement Single Step Parity Check Gate Set
- 4. We numerically showed that our systems are able to implement Single Step Parity Check Gate Set
- 5. The first milestone on the road of implementing Honeycomb code



- 1. We modified the universal gate set for Quantum Error Correction
- 2. We found M_{nn2} :)
- 3. We analytically showed our systems are able to implement Single Step Parity Check Gate Set
- 4. We numerically showed that our systems are able to implement Single Step Parity Check Gate Set
- 5. The first milestone on the road of implementing Honeycomb code



11/12/22

Dr. Simon Devitt

Dr. Simon Devitt

Dr. Simon Devitt

My lovely team :)

Prof. Andrea Morello

Dr. Simon Devitt

My lovely team :)

THANK YOU FOR LISTENING