

THE UNIVERSITY OF MELBOURNE

Ground-state energy estimation of molecular systems on physical quantum devices

Michael A. Jones, Harish J. Vallury, Charles D. Hill, Lloyd C. L. Hollenberg

- Variational Quantum Algorithms
- Encoding a quantum chemistry problem
- Methods
- Quantum Computed Moments
- Error mitigation
- Results
- $\mathrm{H}_{2} \mathrm{O}$
- Conclusion
- The variational principle:
- $\langle\Psi(\theta)| \mathcal{H}|\Psi(\theta)\rangle \geq E_{\text {ground }}$

Variational Quantum Algorithms

- The variational principle:
- $\langle\Psi(\theta)| \mathcal{H}|\Psi(\theta)\rangle \geq E_{\text {ground }}$
- Trial states can be hard to represent classically.

Variational Quantum Algorithms

- The variational principle:
- $\langle\Psi(\theta)| \mathcal{H}|\Psi(\theta)\rangle \geq E_{\text {ground }}$
- Trial states can be hard to represent classically.
- Easier to use a quantum computer.

Variational Quantum Algorithms

- The variational principle:
- $\langle\Psi(\theta)| \mathcal{H}|\Psi(\theta)\rangle \geq E_{\text {ground }}$
- Trial states can be hard to represent classically.
- Method
- Generate a state: $|\Psi(\vec{\theta})\rangle$
- Measure its energy: $\langle\Psi(\vec{\theta})| \mathcal{H}|\Psi(\vec{\theta})\rangle$
- Optimise parameters: $\vec{\theta}$
- Easier to use a quantum

Electronic structure Hamiltonian

- In second quantisation:

$$
\mathcal{H}=\sum_{j k} t_{j k} a_{j}^{\dagger} a_{k}+\sum_{j k l m} t_{j k l m} a_{j}^{\dagger} a_{k}^{\dagger} a_{l} a_{m}
$$

Electronic structure Hamiltonian

- In second quantisation:

$$
\mathcal{H}=\sum_{j k} t_{j k} a_{j}^{\dagger} a_{k}+\sum_{j k l m} t_{j k l m} a_{j}^{\dagger} a_{k}^{\dagger} a_{l} a_{m}
$$

- $a_{j}^{\dagger}\left(a_{j}\right)$: creation (annihilation) operators

- add (remove) an electron to basis-state/spin-orbital j

Electronic structure Hamiltonian

- In second quantisation:

$$
\mathcal{H}=\sum_{j k} t_{j k} a_{j}^{\dagger} a_{k}+\sum_{j k l m} t_{j k l m} a_{j}^{\dagger} a_{k}^{\dagger} a_{l} a_{m}
$$

- add (remove) an electron to basis-state/spin-orbital j
- $t_{j k}\left(t_{j k l m}\right)$ one- (two-)electrons integrals
- define the problem (compute classically)
- In second quantisation:

$$
\mathcal{H}=\sum_{j k} t_{j k} a_{j}^{\dagger} a_{k}+\sum_{j k l m} t_{j k l m} a_{j}^{\dagger} a_{k}^{\dagger} a_{l} a_{m}
$$

- add (remove) an electron to basis-state/spin-orbital j
- $t_{j k}\left(t_{j k l m}\right)$ one- (two-)electrons integrals
- define the problem (compute classically)

What we want to know:

$$
\langle\mathcal{H}\rangle=\sum_{j k} t_{j k}\left\langle a_{j}^{\dagger} a_{k}\right\rangle+\sum_{j k l m} t_{j k l m}\left\langle a_{j}^{\dagger} a_{k}^{\dagger} a_{l} a_{m}\right\rangle
$$

- In second quantisation:

$$
\mathcal{H}=\sum_{j k} t_{j k} a_{j}^{\dagger} a_{k}+\sum_{j k l m} t_{j k l m} a_{j}^{\dagger} a_{k}^{\dagger} a_{l} a_{m}
$$

- add (remove) an electron to basis-state/spin-orbital j
- $t_{j k}\left(t_{j k l m}\right)$ one- (two-)electrons integrals
- define the problem (compute classically)

What we want to know:

$$
\langle\mathcal{H}\rangle=\sum_{j k} t_{j k}\left\langle a_{j}^{\dagger} a_{k}\right\rangle+\sum_{j k l m} t_{j k l m}\left\langle a_{j}^{\dagger} a_{k}^{\dagger} a_{l} a_{m}\right\rangle
$$

Coefficients defining the molecule (known):

- In second quantisation:

$$
\mathcal{H}=\sum_{j k} t_{j k} a_{j}^{\dagger} a_{k}+\sum_{j k l m} t_{j k l m} a_{j}^{\dagger} a_{k}^{\dagger} a_{l} a_{m}
$$

- add (remove) an electron to basis-state/spin-orbital j
- $t_{j k}\left(t_{j k l m}\right)$ one- (two-)electrons integrals
- define the problem (compute classically)

What we want to know:

Coefficients defining the molecule (known):

- Use qubits to represent the occupation of the spin-orbitals

- Use qubits to represent the occupation of the spin-orbitals

H

- Hartree-Fock state:

- Use qubits to represent the occupation of the spin-orbitals

- Hartree-Fock state:

$$
\left.\begin{array}{|lll}
1 & 0 & 1 \\
- & 0
\end{array}\right\rangle
$$

- Use qubits to represent the occupation of the spin-orbitals

- Hartree-Fock state:

- Doubly-excited state:

- Multi-determinant state:

$$
\cos (\theta)|1010\rangle+\sin (\theta)|0101\rangle
$$

(specific type of entangled states that are
"hard" to work with classically)

	Problem size:		Accuracy $(\mathbf{m H a})$	
	Electrons	Qubits		
	2	2	$\sim 0.01-0.1$	Restricted trial state
Jones et. al.	6	6	$\sim 1^{*}$	Restricted trial state
Eddins et. al.	$6(3)$	5	$\sim 1-10$	Requires weak entanglement
Kawashima et. al.	$10(2)$	2	$\sim 0.1-1$	Highly symmetric system
Nam et. al.	2	4	$\sim 1^{*}$	
Arute et. al.	12	12	$\sim 0.1-1^{*}$	Restricted trial state
McCaskey et. al.	2	4	$\sim 0.1-1$	Exponential scaling with electron number

Methods

- Quantum computed moments ${ }^{[1,2]}$
- Use the Hamiltonian moments, $\left\langle\mathcal{H}^{p}\right\rangle$, to correct the ground-state energy estimate ${ }^{[3,4]}$

$$
\begin{aligned}
E_{L} & =c_{1}-\frac{c_{2}^{2}}{c_{3}^{2}-c_{2} c_{4}}\left(\sqrt{3 c_{3}^{2}-2 c_{2} c_{4}}-c_{3}\right) \\
c_{p} & =\left\langle\mathcal{H}^{p}\right\rangle-\sum_{j=0}^{p-2}\binom{p-1}{j} c_{j+1}\left\langle\mathcal{H}^{p-1-j}\right\rangle
\end{aligned}
$$

- Quantum computed moments ${ }^{[1,2]}$
- Use the Hamiltonian moments, $\left\langle\mathcal{H}^{p}\right\rangle$, to correct the ground-state energy estimate ${ }^{[3,4]}$

$$
E_{L}\left(\langle\mathcal{H}\rangle,\left\langle\mathcal{H}^{2}\right\rangle,\left\langle\mathcal{H}^{3}\right\rangle,\left\langle\mathcal{H}^{4}\right\rangle\right)\left\{\begin{array}{l}
E_{L}=c_{1}-\frac{c_{2}^{2}}{c_{3}^{2}-c_{2} c_{4}}\left(\sqrt{3 c_{3}^{2}-2 c_{2} c_{4}}-c_{3}\right) \\
c_{p}=\left\langle\mathcal{H}^{p}\right\rangle-\sum_{j=0}^{p-2}\binom{p-1}{j} c_{j+1}\left\langle\mathcal{H}^{p-1-j}\right\rangle
\end{array}\right.
$$

- Reference-state calibration ${ }^{[1,2]}$

- Reference-state calibration ${ }^{[1,2]}$
- Assume a noise model

Methods

- Reference-state calibration ${ }^{[1,2]}$
- Assume a noise model
- Use classically tractable reference states to fit parameters

- Reference-state calibration ${ }^{[1,2]}$
- Assume a noise model
- Use classically tractable reference states to fit parameters
- Invert model to correct noisy estimates

- Application to the water molecule:
- Simulated with and without noise
- up to 8 qubits (4 electrons)
- 5 variational parameters
- up to ~100 CNOTs

Trial circuit:

- Quantum Computed Moments
- Reference state calibration
- Symmetry verification ${ }^{[1]}$
- Reduced density matrix rescaling ${ }^{[2]}$
[1] Bonet-Monroig et al. Phys. Rev. A, 98, 062339 (2018)

Results

$\begin{array}{llll}\left.1 \begin{array}{lll}1 & 0 & 1 \\ \hline & 00 \\ \hline\end{array}\right) & 0\end{array}$

$$
E_{L}=c_{1}+\frac{c_{2}^{2}}{c_{2} c_{4}-c_{3}^{2}}\left(\sqrt{3 c_{3}^{2}-2 c_{2} c_{4}}-c_{3}\right)
$$

$\left.\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right\rangle$

- Further work:

Outlook

- Further work:
- Additional error-mitigation techniques:
- QREM
- Dynamical decoupling
- Probabilistic error mitigation

Outlook

- Further work:
- Additional error-mitigation techniques:
- QREM
- Dynamical decoupling
- Probabilistic error mitigation
- Improved sampling efficiency:
- Bypass measurement of RDMs
- Hamiltonian decomposition
- extension to moments?

Outlook

- Further work:
- Additional error-mitigation techniques:
- QREM
- Dynamical decoupling
- Probabilistic error mitigation
- Improved sampling efficiency:
- Bypass measurement of RDMs
- Hamiltonian decomposition
- extension to moments?
- Larger / more interesting systems:
- Strongly correlated molecules
- Reduced density matrix rescaling ${ }^{[2]}$
- The p-body reduced density matrix contains information about p-body interactions
- Efficient scaling with n_{e} and n_{s}
- In general need, at most, the 8-RDM for QCM

$$
\begin{gathered}
\operatorname{Tr}\left(\mathbf{R}_{\text {ideal }}\right)=\frac{n_{e}!}{p!\left(n_{e}-p\right)!} \\
\mathbf{R}_{\text {corrected }}=\frac{\operatorname{Tr}\left(\mathbf{R}_{\text {ideal }}\right)}{\operatorname{Tr}\left(\mathbf{R}_{\text {noisy }}\right)} \cdot \mathbf{R}_{\text {noisy }}
\end{gathered}
$$

Summary

- The trial circuit is based on a (trotterised) Unitary Coupled Cluster ansatz
- Each "block" of the ansatz consists of a qubit routing step and a parameterised doubleexcitation
- The circuit is implemented using linear connectivity

- The parameterised double-excitation can be decomposed to 19 CNOT gates (assuming linear connectivity)
- The first 3 double-excitations can be simplified based on the initial states of the qubits
- Applying the Hamiltonian excites electrons
- Re-applying the Hamiltonian deexcites electrons
- Measurement of the overlap with the initial state (i.e. measurement of the second moment) contains information about the interaction between orbitals

