

Ground-state energy estimation of molecular systems on physical quantum devices

Michael A. Jones, Harish J. Vallury, Charles D. Hill, Lloyd C. L. Hollenberg

- Variational Quantum Algorithms
 - Encoding a quantum chemistry problem
- Methods
 - Quantum Computed Moments
 - Error mitigation
- Results
 - H_2O
- Conclusion

- The variational principle:
 - $\langle \Psi(\theta) | \mathcal{H} | \Psi(\theta) \rangle \ge E_{\text{ground}}$

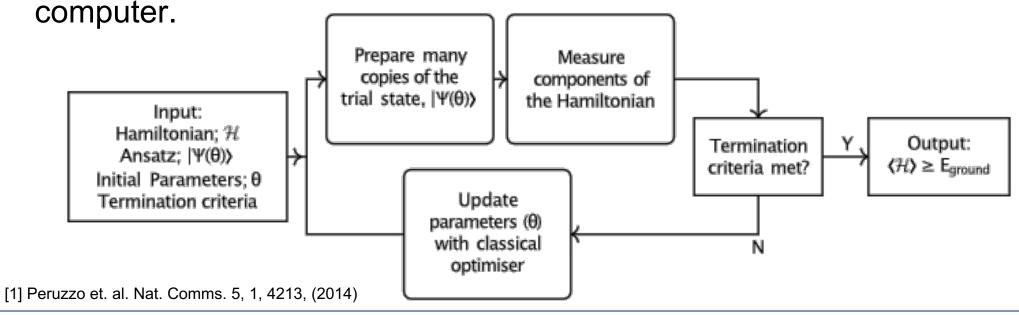
[1] Peruzzo et. al. Nat. Comms. 5, 1, 4213, (2014)

- The variational principle:
 - $\langle \Psi(\theta) | \mathcal{H} | \Psi(\theta) \rangle \ge E_{\text{ground}}$
- Trial states can be hard to represent classically.

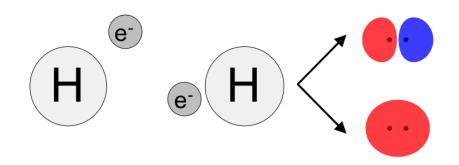
- The variational principle:
 - $\langle \Psi(\theta) | \mathcal{H} | \Psi(\theta) \rangle \ge E_{\text{ground}}$
- Trial states can be hard to represent classically.
- Easier to use a quantum computer.

- The variational principle:
 - $\langle \Psi(\theta) | \mathcal{H} | \Psi(\theta) \rangle \ge E_{\text{ground}}$
- Trial states can be hard to represent classically.
- Easier to use a quantum computer.

- Method
 - Generate a state: $|\Psi(\vec{\theta})\rangle$
 - Measure its energy: $\langle \Psi(\vec{\theta}) | \mathcal{H} | \Psi(\vec{\theta}) \rangle$
 - Optimise parameters: $\vec{\theta}$

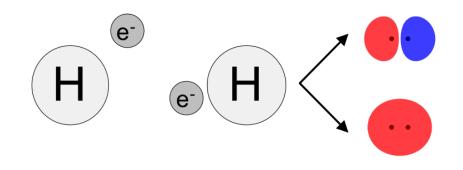


$$\mathcal{H} = \sum_{jk} t_{jk} a_j^{\dagger} a_k + \sum_{jklm} t_{jklm} a_j^{\dagger} a_k^{\dagger} a_l a_m$$



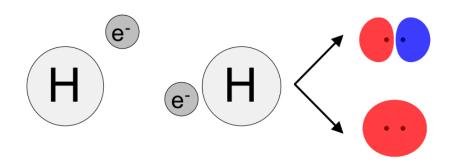
$$\mathcal{H} = \sum_{jk} t_{jk} a_j^{\dagger} a_k + \sum_{jklm} t_{jklm} a_j^{\dagger} a_k^{\dagger} a_l a_m$$

- $a_j^{\dagger}(a_j)$: creation (annihilation) operators
 - add (remove) an electron to basis-state/spin-orbital j



$$\mathcal{H} = \sum_{jk} t_{jk} a_j^{\dagger} a_k + \sum_{jklm} t_{jklm} a_j^{\dagger} a_k^{\dagger} a_l a_m$$

- $a_j^{\dagger}(a_j)$: creation (annihilation) operators
 - add (remove) an electron to basis-state/spin-orbital *j*
- t_{jk} (t_{jklm}) one- (two-)electrons integrals
 - define the problem (compute classically)



Electronic structure Hamiltonian

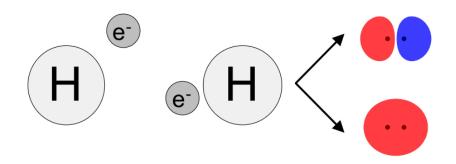
• In second quantisation:

$$\mathcal{H} = \sum_{jk} t_{jk} a_j^{\dagger} a_k + \sum_{jklm} t_{jklm} a_j^{\dagger} a_k^{\dagger} a_l a_m$$

- $a_j^{\dagger}(a_j)$: creation (annihilation) operators
 - add (remove) an electron to basis-state/spin-orbital *j*
- t_{jk} (t_{jklm}) one- (two-)electrons integrals
 - define the problem (compute classically)

What we want to know:

$$\langle \mathcal{H} \rangle = \sum_{jk} t_{jk} \langle a_j^{\dagger} a_k \rangle + \sum_{jklm} t_{jklm} \langle a_j^{\dagger} a_k^{\dagger} a_l a_m \rangle$$



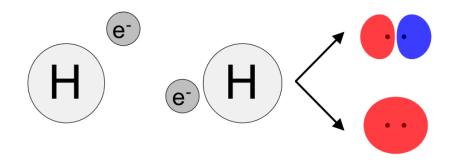
$$\mathcal{H} = \sum_{jk} t_{jk} a_j^{\dagger} a_k + \sum_{jklm} t_{jklm} a_j^{\dagger} a_k^{\dagger} a_l a_m$$

- $a_j^{\dagger}(a_j)$: creation (annihilation) operators
 - add (remove) an electron to basis-state/spin-orbital *j*
- t_{jk} (t_{jklm}) one- (two-)electrons integrals
 - define the problem (compute classically)

What we want to know:

$$\langle \mathcal{H} \rangle = \sum_{jk} t_{jk} \langle a_j^{\dagger} a_k \rangle + \sum_{jklm} t_{jklm} \langle a_j^{\dagger} a_k^{\dagger} a_l a_m \rangle$$

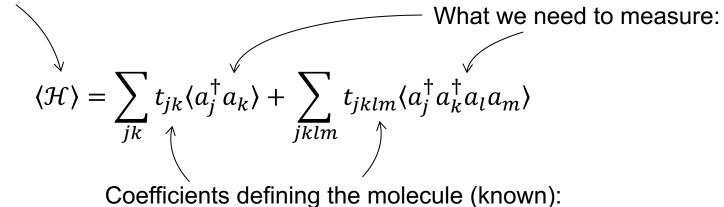
Coefficients defining the molecule (known):

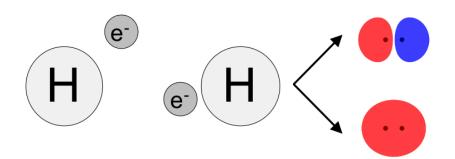


$$\mathcal{H} = \sum_{jk} t_{jk} a_j^{\dagger} a_k + \sum_{jklm} t_{jklm} a_j^{\dagger} a_k^{\dagger} a_l a_m$$

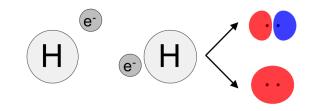
- $a_j^{\dagger}(a_j)$: creation (annihilation) operators
 - add (remove) an electron to basis-state/spin-orbital j
- t_{jk} (t_{jklm}) one- (two-)electrons integrals
 - define the problem (compute classically)

What we want to know:

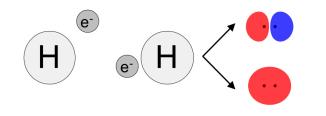




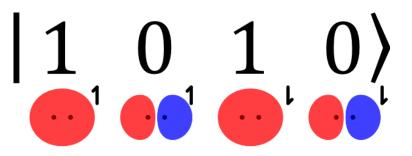
• Use qubits to represent the occupation of the spin-orbitals



• Use qubits to represent the occupation of the spin-orbitals

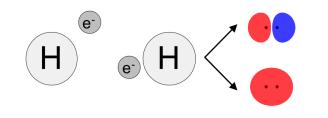


• Hartree-Fock state:

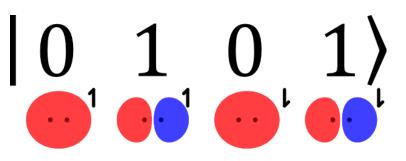


Electronic structure Hamiltonian

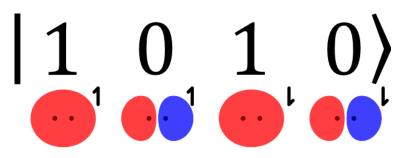
• Use qubits to represent the occupation of the spin-orbitals



• Doubly-excited state:

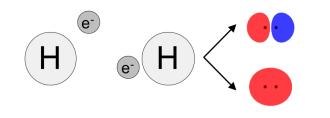


• Hartree-Fock state:

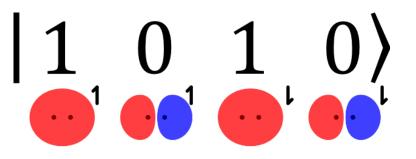


Electronic structure Hamiltonian

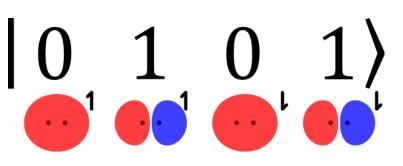
• Use qubits to represent the occupation of the spin-orbitals



• Hartree-Fock state:



• Doubly-excited state:



• Multi-determinant state:

 $\cos(\theta) |1010\rangle + \sin(\theta) |0101\rangle$

(specific type of entangled states that are "hard" to work with classically)

	Problem	size:	Accuracy (mHa)	
	Electrons	Qubits		
Jones et. al.	2	2	~0.01-0.1	Restricted trial state
	6	6	~1*	Restricted trial state
Eddins et. al.	6 (3)	5	~1-10	Requires weak entanglement
Kawashima et. al.	10 (2)	2	~0.1-1	Highly symmetric system
Nam et. al.	2	4	~1*	
Arute et. al.	12	12	~0.1-1*	Restricted trial state
McCaskey et. al.	2	4	~0.1-1	Exponential scaling with electron number

[1] MAJ, HJV, CDH & LCLH Sci. Rep. 12, 1, 8185 (2022)
[2] Eddins et. al. PRX Quant. 3, 1, 010309 (2022)
[3] Kawashima et. al. Nat. Comm. Phys. 4, 1, 245 (2021)
[4] Nam et. al. npj Quant. Inf. 6, 1, 33 (2020)
[5] Arute et. al. Science, 369, 6507, 1084 (2020)
[6] McCaskey et. al. npj Quant. Inf. 5, 1, 99 (2019)

- Quantum computed moments^[1,2] •
 - Use the Hamiltonian moments, $\langle \mathcal{H}^p \rangle$, to correct the ground-state energy estimate^[3,4]

$$E_L = c_1 - \frac{c_2^2}{c_3^2 - c_2 c_4} \left(\sqrt{3c_3^2 - 2c_2 c_4} - c_3 \right)$$

$$c_p = \langle \mathcal{H}^p \rangle - \sum_{j=0}^{p-2} {p-1 \choose j} c_{j+1} \langle \mathcal{H}^{p-1-j} \rangle$$

[1] HJV, MAJ, CDH & LCLH, Quantum, 4, 373 (2020) [2] MAJ, HJV, CDH & LCLH, Sci. Rep. 12, 1, 8185 (2022) [3] Hollenberg & Witte, Phys. Rev. D, 50 3382 (1994) [4] Hollenberg, Phys. Rev. D, 47 1640 (1993)

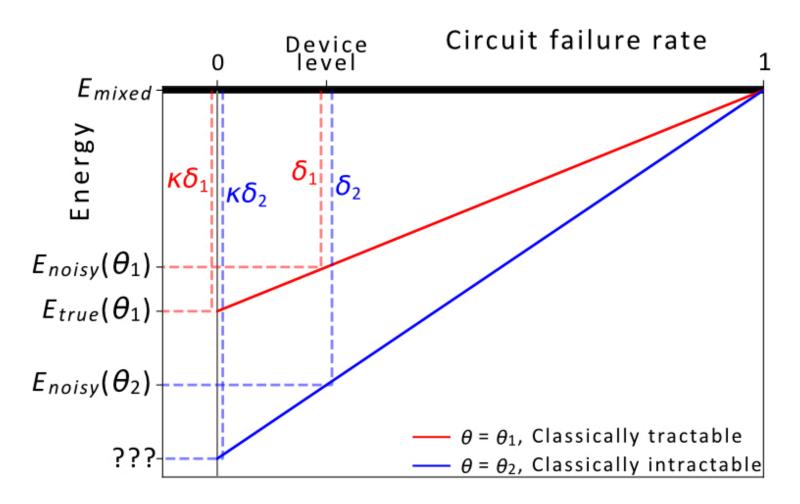
- Quantum computed moments^[1,2] ullet
 - Use the Hamiltonian moments, $\langle \mathcal{H}^p \rangle$, to correct the ground-state energy estimate^[3,4]

$$E_L(\langle \mathcal{H} \rangle, \langle \mathcal{H}^2 \rangle, \langle \mathcal{H}^3 \rangle, \langle \mathcal{H}^4 \rangle)$$

$$E_{L} = c_{1} - \frac{c_{2}^{2}}{c_{3}^{2} - c_{2}c_{4}} \left(\sqrt{3c_{3}^{2} - 2c_{2}c_{4}} - c_{3} \right)$$
$$c_{p} = \langle \mathcal{H}^{p} \rangle - \sum_{j=0}^{p-2} {p-1 \choose j} c_{j+1} \langle \mathcal{H}^{p-1-j} \rangle$$

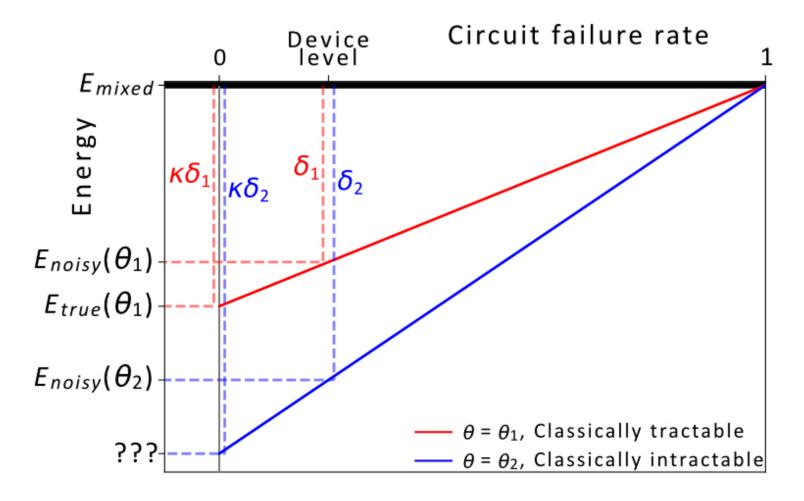
[1] HJV, MAJ, CDH & LCLH, Quantum, 4, 373 (2020) [2] MAJ, HJV, CDH & LCLH, Sci. Rep. 12, 1, 8185 (2022) [3] Hollenberg & Witte, *Phys. Rev. D*, 50 3382 (1994) [4] Hollenberg, Phys. Rev. D, 47 1640 (1993)

Reference-state ulletcalibration^[1,2]



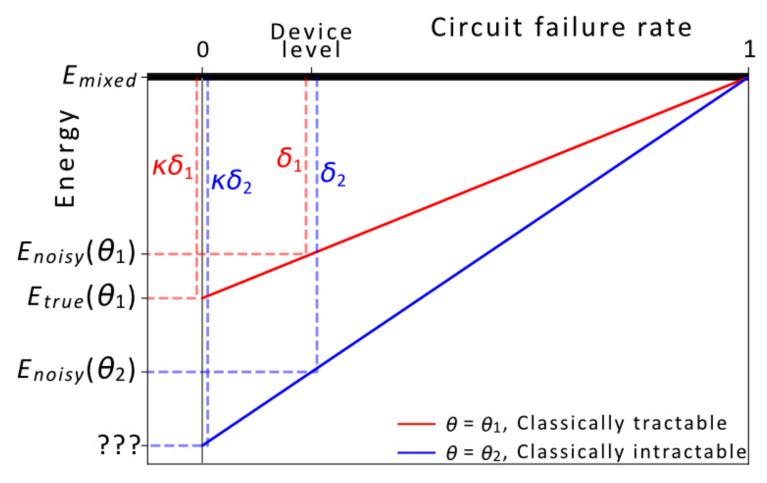
[1] Czarnik et al. Quantum, 5, 592 (2021) [2] Lolur et al. arXiv:2203.14756 (2022)

- **Reference-state** ulletcalibration^[1,2]
 - Assume a noise model

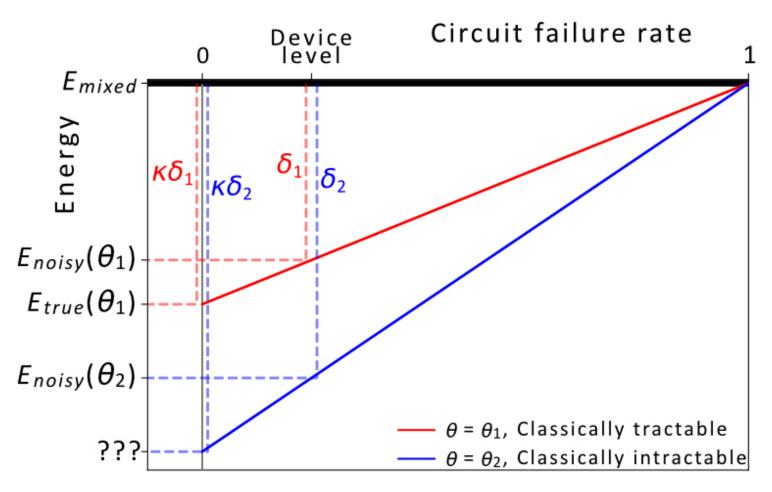


[1] Czarnik et al. Quantum, 5, 592 (2021) [2] Lolur et al. arXiv:2203.14756 (2022)

- **Reference-state** ulletcalibration^[1,2]
 - Assume a noise model
 - Use classically tractable reference states to fit parameters

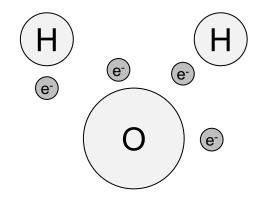


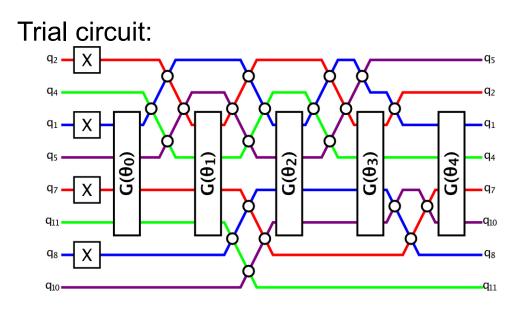
- Reference-state calibration^[1,2]
 - Assume a noise model
 - Use classically tractable reference states to fit parameters
 - Invert model to correct noisy estimates

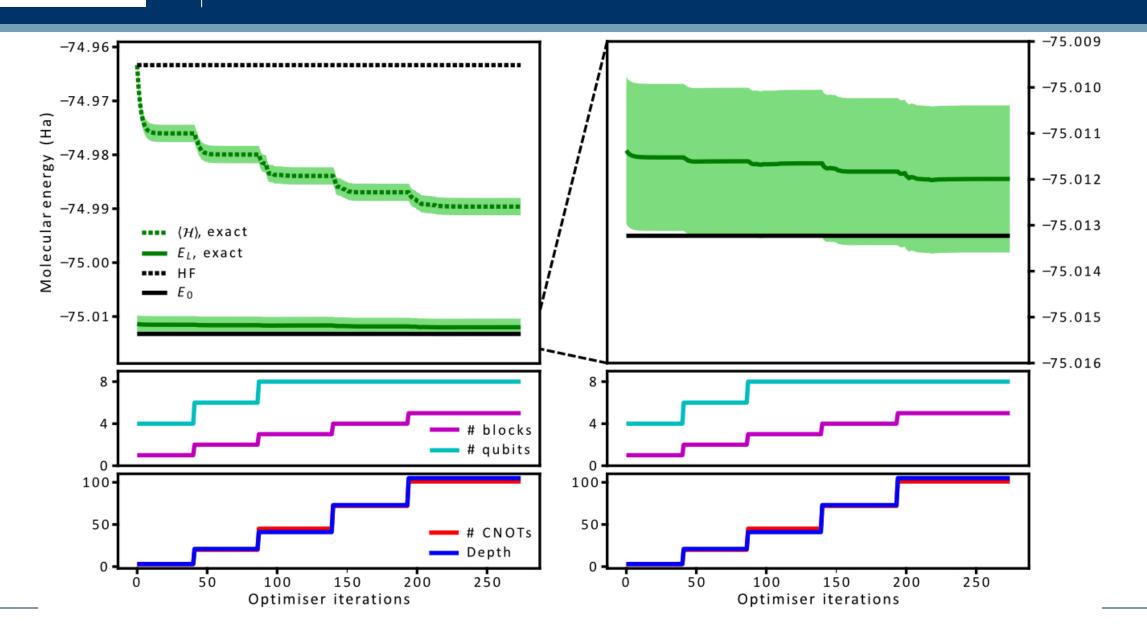


[1] Czarnik et al. *Quantum,* 5, 592 (2021) [2] Lolur et al. *arXiv*:2203.14756 (2022)

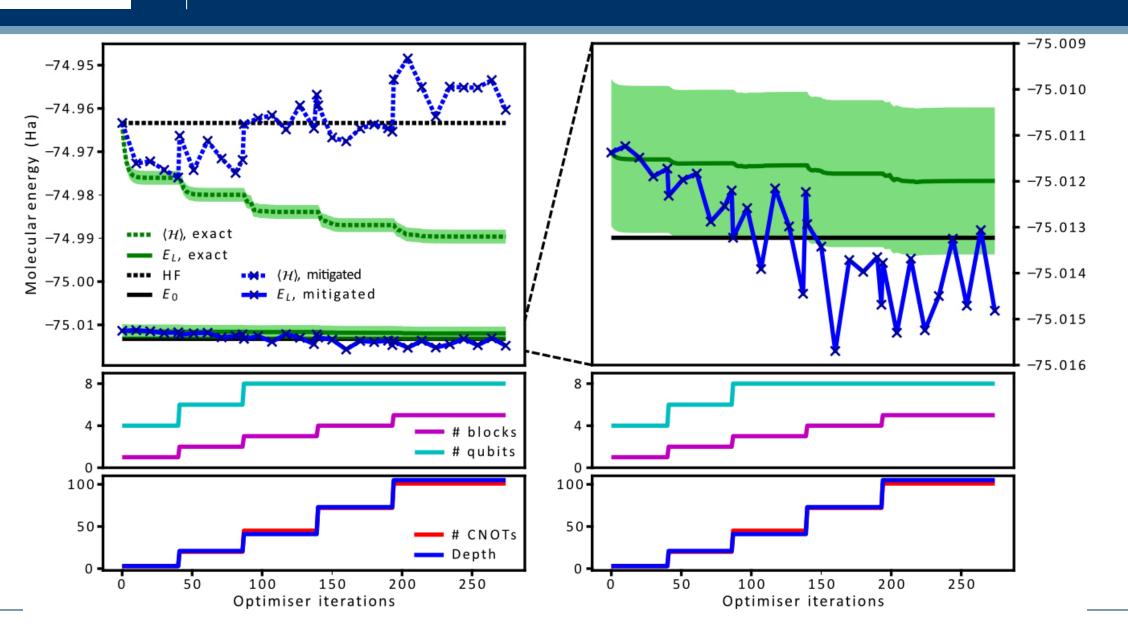
- Application to the water molecule: \bullet
 - Simulated with and without noise
 - up to 8 qubits (4 electrons)
 - 5 variational parameters
 - up to ~100 CNOTs
 - Quantum Computed Moments
 - Reference state calibration
 - Symmetry verification^[1]
 - Reduced density matrix rescaling^[2]



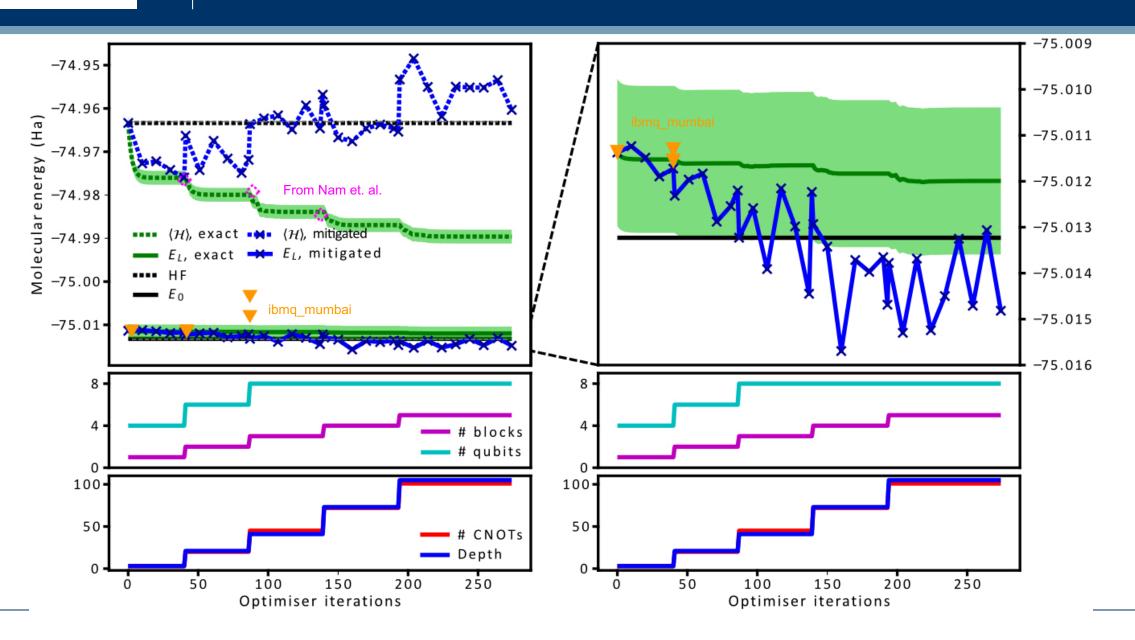


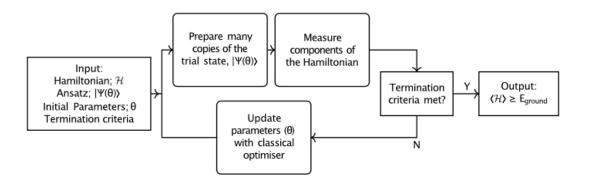


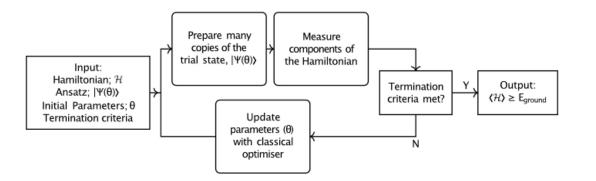
Results

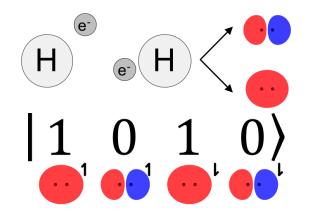


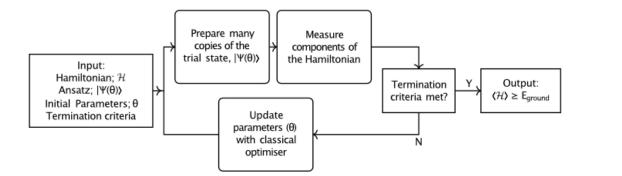
Results



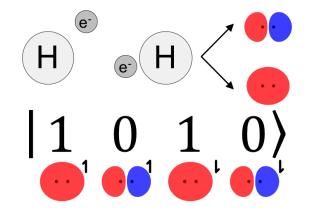


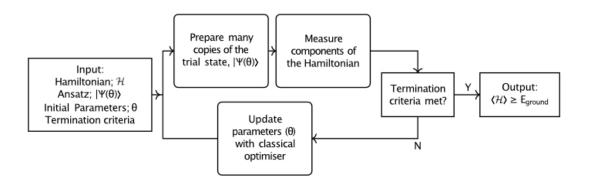


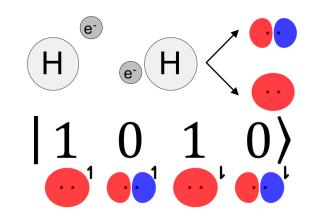




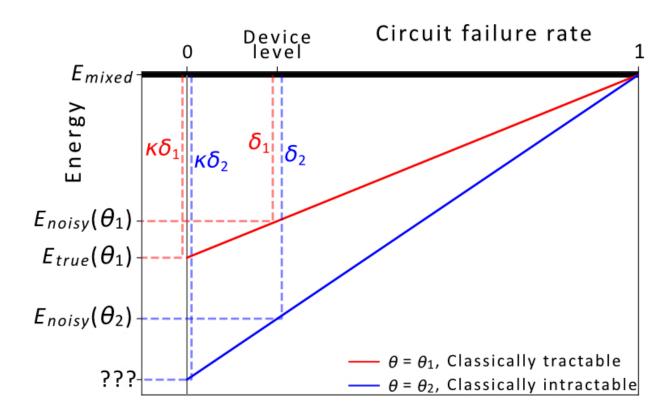
$$E_L = c_1 + \frac{c_2^2}{c_2 c_4 - c_3^2} \left(\sqrt{3c_3^2 - 2c_2 c_4} - c_3 \right)$$

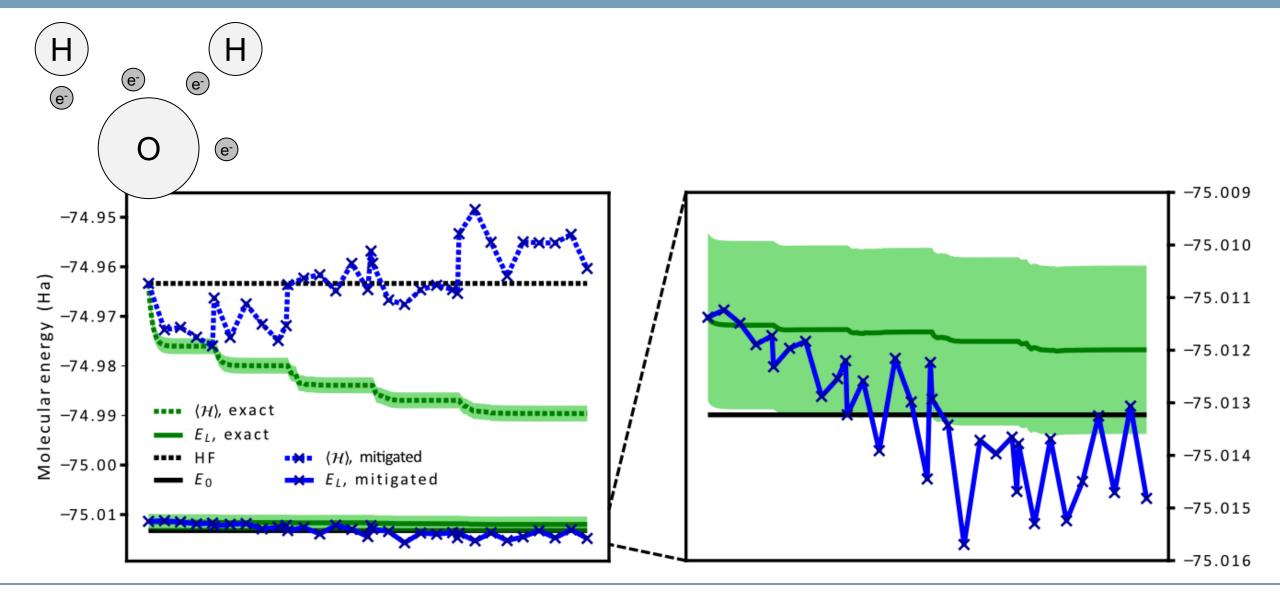






 $E_L = c_1 + \frac{c_2^2}{c_2 c_4 - c_3^2} \left(\sqrt{3c_3^2 - 2c_2 c_4} - c_3 \right)$





Outlook

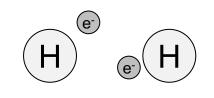
- Further work:
 - Additional error-mitigation techniques:
 - QREM
 - Dynamical decoupling
 - Probabilistic error mitigation

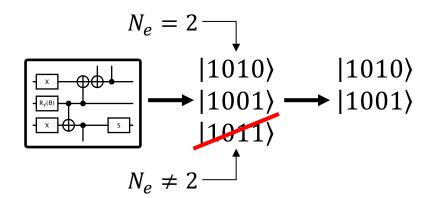
- Further work: •
 - Additional error-mitigation techniques:
 - QREM
 - Dynamical decoupling
 - Probabilistic error mitigation
 - Improved sampling efficiency:
 - Bypass measurement of RDMs
 - Hamiltonian decomposition
 - extension to moments?

- Further work: •
 - Additional error-mitigation techniques:
 - QREM
 - Dynamical decoupling
 - Probabilistic error mitigation
 - Improved sampling efficiency:
 - Bypass measurement of RDMs
 - Hamiltonian decomposition
 - extension to moments?
 - Larger / more interesting systems:
 - Strongly correlated molecules

MELBOURNE

Symmetry verification^[1]



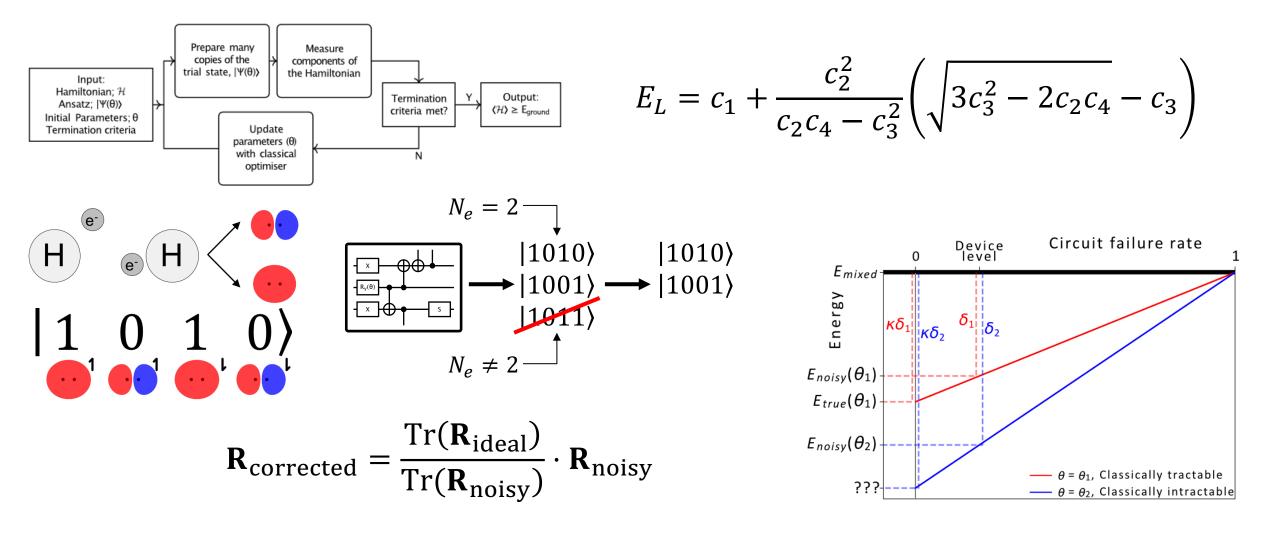


[1] Bonet-Monroig et al. *Phys. Rev. A*, 98, 062339 (2018)[2] Tilly et al. *Phys. Rev. Research*, *3*, 033230 (2021)

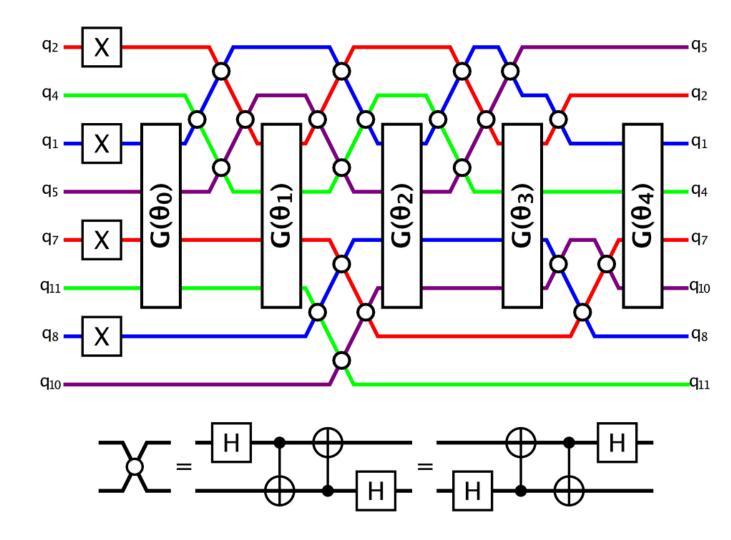
- Reduced density matrix rescaling^[2]
 - The *p*-body reduced density matrix contains information about *p*-body interactions
 - Efficient scaling with $n_{\rm e}$ and $n_{\rm s}$
 - In general need, at most, the 8-RDM for QCM

$$Tr(\mathbf{R}_{ideal}) = \frac{n_e!}{p! (n_e - p)!}$$

$$\mathbf{R}_{\text{corrected}} = \frac{\text{Tr}(\mathbf{R}_{\text{ideal}})}{\text{Tr}(\mathbf{R}_{\text{noisy}})} \cdot \mathbf{R}_{\text{noisy}}$$

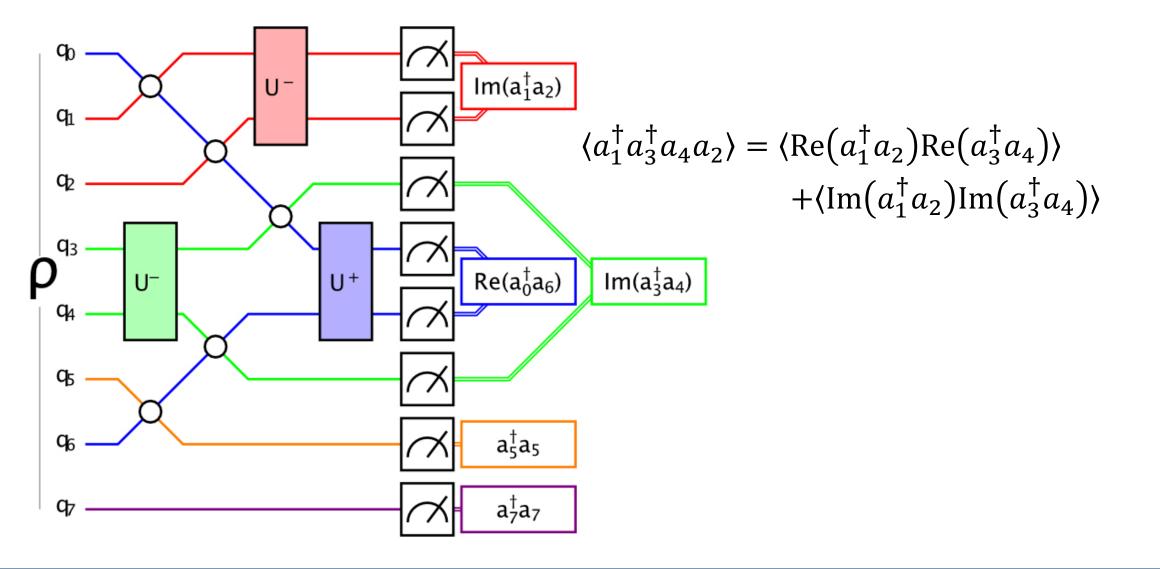


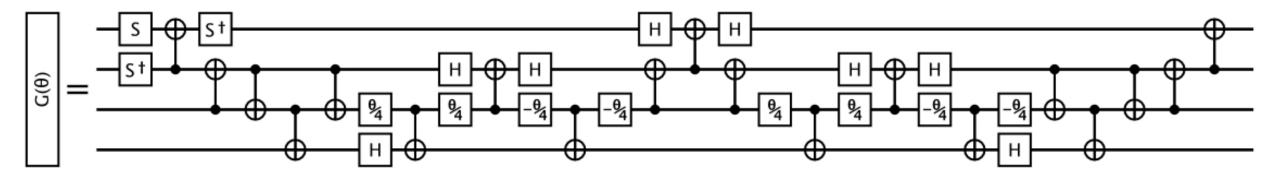
Trial State



- The trial circuit is based on a (trotterised) Unitary Coupled Cluster ansatz
- Each "block" of the ansatz consists of a qubit routing step and a parameterised doubleexcitation
- The circuit is implemented using linear connectivity

Measurement





- The parameterised double-excitation can be decomposed to 19 CNOT gates (assuming linear connectivity)
- The first 3 double-excitations can be simplified based on the initial states of the qubits

- Applying the Hamiltonian excites electrons
- Re-applying the Hamiltonian de- \bullet excites electrons
- Measurement of the overlap with • the initial state (i.e. measurement of the second moment) contains information about the interaction between orbitals

