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Variational Quantum Algorithms

• The variational principle:
• Ψ 𝜃 ℋ Ψ 𝜃 ≥ 𝐸+,-./0

[1] Peruzzo et. al. Nat. Comms. 5, 1, 4213, (2014)
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Variational Quantum Algorithms

• The variational principle:
• Ψ 𝜃 ℋ Ψ 𝜃 ≥ 𝐸+,-./0

• Trial states can be hard to 
represent classically.

• Easier to use a quantum 
computer.

• Method
• Generate a state: Ψ �⃗�

• Measure its energy: Ψ �⃗� ℋ Ψ �⃗�

• Optimise parameters: �⃗�

[1] Peruzzo et. al. Nat. Comms. 5, 1, 4213, (2014)
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• Use qubits to represent the 
occupation of the spin-orbitals

Electronic structure Hamiltonian

• Use qubits to represent the 
occupation of the spin-orbitals

• Hartree-Fock state:

• Doubly-excited state:

• Multi-determinant state:

cos 𝜃 1010 + sin 𝜃 |0101〉

(specific type of entangled states that are 
“hard” to work with classically)
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Past results

Problem size: Accuracy 
(mHa)Electrons Qubits

Jones et. al.
2 2 ~0.01-0.1 Restricted trial state
6 6 ~1* Restricted trial state

Eddins et. al. 6 (3) 5 ~1-10 Requires weak entanglement
Kawashima et. al. 10 (2) 2 ~0.1-1 Highly symmetric system
Nam et. al. 2 4 ~1*
Arute et. al. 12 12 ~0.1-1* Restricted trial state
McCaskey et. al. 2 4 ~0.1-1 Exponential scaling with electron number

[1] MAJ, HJV, CDH & LCLH Sci. Rep. 12, 1, 8185 (2022)
[2] Eddins et. al. PRX Quant. 3, 1, 010309 (2022)
[3] Kawashima et. al. Nat. Comm. Phys. 4, 1, 245 (2021)
[4] Nam et. al. npj Quant. Inf. 6, 1, 33 (2020)
[5] Arute et. al. Science, 369, 6507, 1084 (2020)
[6] McCaskey et. al. npj Quant. Inf. 5, 1, 99 (2019)
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• Quantum computed moments[1,2]

– Use the Hamiltonian 
moments, ℋH , to correct the 
ground-state energy 
estimate[3,4]

Methods

[1] HJV, MAJ, CDH & LCLH, Quantum, 4, 373 (2020)
[2] MAJ, HJV, CDH & LCLH, Sci. Rep. 12, 1, 8185 (2022)
[3] Hollenberg & Witte, Phys. Rev. D, 50 3382 (1994)
[4] Hollenberg, Phys. Rev. D, 47 1640 (1993)

𝐸I = 𝑐K −
𝑐##

𝑐M# − 𝑐#𝑐N
3𝑐M# − 2𝑐#𝑐N
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Methods

[1] Czarnik et al. Quantum, 5, 592 (2021)
[2] Lolur et al. arXiv:2203.14756 (2022)

• Reference-state 
calibration[1,2]



IBM Quantum Network Hub
at the University of Melbourne

20
Methods

[1] Czarnik et al. Quantum, 5, 592 (2021)
[2] Lolur et al. arXiv:2203.14756 (2022)

• Reference-state 
calibration[1,2]

– Assume a noise 
model



IBM Quantum Network Hub
at the University of Melbourne

21
Methods

[1] Czarnik et al. Quantum, 5, 592 (2021)
[2] Lolur et al. arXiv:2203.14756 (2022)

• Reference-state 
calibration[1,2]

– Assume a noise 
model

– Use classically 
tractable reference 
states to fit 
parameters



IBM Quantum Network Hub
at the University of Melbourne

22
Methods

[1] Czarnik et al. Quantum, 5, 592 (2021)
[2] Lolur et al. arXiv:2203.14756 (2022)

• Reference-state 
calibration[1,2]

– Assume a noise 
model

– Use classically 
tractable reference 
states to fit 
parameters

– Invert model to 
correct noisy 
estimates
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Results

• Application to the water molecule:
– Simulated with and without noise
– up to 8 qubits (4 electrons)
– 5 variational parameters
– up to ~100 CNOTs

– Quantum Computed Moments
– Reference state calibration
– Symmetry verification[1]

– Reduced density matrix rescaling[2]

H H
e-

e-O

e- e-

[1] Bonet-Monroig et al. Phys. Rev. A, 98, 062339 (2018)
[2] Tilly et al. Phys. Rev. Research, 3, 033230 (2021)

Trial circuit:
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Results

From Nam et. al.

ibmq_mumbai

ibmq_mumbai
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Summary
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Summary

H H
e-
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Outlook
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Outlook

• Further work:
– Additional error-mitigation techniques:

• QREM
• Dynamical decoupling
• Probabilistic error mitigation

– Improved sampling efficiency:
• Bypass measurement of RDMs
• Hamiltonian decomposition

– extension to moments?
– Larger / more interesting systems:

• Strongly correlated molecules
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• Symmetry verification[1]

Methods

[1] Bonet-Monroig et al. Phys. Rev. A, 98, 062339 (2018)
[2] Tilly et al. Phys. Rev. Research, 3, 033230 (2021)

• Reduced density matrix 
rescaling[2]

– The 𝑝-body reduced density matrix 
contains information about 𝑝-body 
interactions

– Efficient scaling with 𝑛Y and 𝑛Z
– In general need, at most, the 8-RDM 

for QCM

Tr 𝐑^0Y_` =
𝑛a!

𝑝! 𝑛a − 𝑝 !

𝐑c-,,YcdY0 =
Tr 𝐑^0Y_`
Tr(𝐑/-^Zf)

⋅ 𝐑/-^Zf

X

Ry(θ)

X S

1010
1001
1011

1010
1001

𝑁a = 2

𝑁a ≠ 2

H H
e-

e-
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Summary
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Trial State

• The trial circuit is based 
on a (trotterised) 
Unitary Coupled Cluster 
ansatz

• Each “block” of the 
ansatz consists of a 
qubit routing step and a 
parameterised double-
excitation

• The circuit is 
implemented using 
linear connectivity
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Measurement

𝑎K
8𝑎M

8𝑎N𝑎# = Re 𝑎K
8𝑎# Re 𝑎M

8𝑎N
+ Im 𝑎K

8𝑎# Im 𝑎M
8𝑎N
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Trial State

• The parameterised double-excitation can be decomposed to 19 CNOT 
gates (assuming linear connectivity)

• The first 3 double-excitations can be simplified based on the initial states 
of the qubits
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• Applying the Hamiltonian excites 
electrons

• Re-applying the Hamiltonian de-
excites electrons

• Measurement of the overlap with 
the initial state (i.e. measurement 
of the second moment) contains 
information about the interaction 
between orbitals

Methods


