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DIAMOND QUANTUM
COMPUTING

* Uses the NV-centre, an optical defect.

* Long coherence time at room
temperature.

* Controlled via MW and RF pulses.

* Quantum Brilliance is in the process of
designing a fully scalable array of NV
centres.

* Currently able to easily fabricate diamond
samples with many NV centres.

* Currently, computation using diamond is
only done via the gate paradigm- perhaps
there are alternatives...
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ANALOG QUANTUM COMPUTING

e Sequence of gates can be thought of a single .
rotation about an arbitrary axis.

* No gates- rotate straight to end result.

e Continuous driving, rather than discrete
pulses.

* Potential error robustness
* AQC compilation is difficult.
* The challenge is an opportunity.

ParityQC and D-Wave- quantum annealing
Not the same as CVQC encoding.

Better for diamond: DAQC- fusing gates and
annealing together.

Expand quantum annealing work.
Begin to address analog compilation challenges.
Implement DAQC on diamond.



HAMILTONIAN
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Computational Subspace Transform into the interaction picture...



THE ISING MODEL
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Two qubit example:
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TWO-CHANNEL DAQC

As per the Rodriguez formula, single qubit

gates can be written as,

All entanglement can be done with an

UR — 1R¢n 0

¢

Ising coupling gate.

Where,

IZ — (Ilz' IZZ; "'ilnz)

)

= ez

IZZ

®11

On1

I,01,

O1n

®nn

Also, as the Ising model commutes with itself all entangling
gates and single qubit gates can be performed in a single step-
provided the hardware is capable of rotations about any
arbitrary axis.

Diamond computers can do this.

1QUBIT 2QUBIT 1QUBIT
GATE GATE GATE

New way to control diamond quantum processors:
Continuous driving of superposition of electron spin
states.



EXAMPLE: ANALOG QFT
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2-QUBIT QFT
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Splitting up the CZ gate gives an Ising
coupling gate.
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Gate-based QFT compiled to native

diamond gates. Circuit depth increases.
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REDUCE DEPTH
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CONNECTIVITY
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FUTURE WORK

 See how this formulations performs error-wise compared to gate model
implementations of the Fourier transform.

e See how number of SWAP gates scales with size and limited connectivity- and if
this outweighs potential benefits.

 Expand past the hybrid model, looking to full universal AQC.
* Investigate what this means for optimal control.

* Find systematic way to compile AQC pulses for diamond.
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