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• Uses the NV-centre, an optical defect.
• Long coherence time at room 

temperature.
• Controlled via MW and RF pulses.
• Quantum Brilliance is in the process of 

designing a fully scalable array of NV 
centres.

• Currently able to easily fabricate diamond 
samples with many NV centres.

• Currently, computation using diamond is 
only done via the gate paradigm- perhaps 
there are alternatives…

DIAMOND QUANTUM 
COMPUTING



ANALOG QUANTUM COMPUTING
• ParityQC and D-Wave- quantum annealing

• Not the same as CVQC encoding.

• Better for diamond: DAQC- fusing gates and 
annealing together.

• Sequence of gates can be thought of a single 
rotation about an arbitrary axis.

• No gates- rotate straight to end result.
• Continuous driving, rather than discrete

pulses.

• Potential error robustness
• AQC compilation is difficult.
• The challenge is an opportunity.

• Expand quantum annealing work.
• Begin to address analog compilation challenges.
• Implement DAQC on diamond.
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Transform into the interaction picture…

Carbon-13 sites aligned to the 0th order 
between 𝑚* = −1 and 𝑚* = 0 will be used, 

2 QUBIT LEVELS



THE ISING MODEL
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Collect like terms to write each transition as 
a linear combination of nuclear spin 

operators multiplied by applied control 
fields…

Two qubit example:

𝜅3 = ↑↑, ↑↓, ↓↑, ↓↓
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Gather Λs together in linear combination to 
produce Ω',5, Ω', Ω5, Ξ' and Ξ5.



TWO-CHANNEL DAQC
As per the Rodriguez formula, single qubit 
gates can be written as,

𝑈!8 = 𝑒"!8 #$ %&

All entanglement can be done with an
Ising coupling gate.
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Where,
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Also, as the Ising model commutes with itself all entangling 
gates and single qubit gates can be performed in a single step-
provided the hardware is capable of rotations about any 
arbitrary axis.
Diamond computers can do this.

1 QUBIT 
GATE

2 QUBIT 
GATE

1 QUBIT 
GATE

…

Qubit 1 𝑅(𝜙', H𝑛) 𝑅$$(Θ'5) 𝑅(𝜙', H𝑛) …

Qubit 2 𝑅(𝜙5, H𝑛) 𝑅$$(Θ'5) 𝑅(𝜙5, H𝑛) …

New way to control diamond quantum processors:
Continuous driving of superposition of electron spin 
states.



EXAMPLE: ANALOG QFT
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2-QUBIT QFT
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Gate-based QFT compiled to native 
diamond gates. Circuit depth increases.

𝑞S

𝑞T 𝐶𝑍 𝑅"
𝜋
2

𝑅"
𝜋
2

𝑅# 𝜋

𝑅# 𝜋

Splitting up the CZ gate gives an Ising 
coupling gate.



REDUCE DEPTH
Invoking the Rodriguez formula, this can be 
compacted back into 3 gates.
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Where each of the components of 4𝑛
becomes our pulse components.
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CONNECTIVITY
𝑒_ `$%O$"O%"P`%FO%"OF"P`$FO$"OF" = 𝑒_ `$%O$"O%"P`%FO%"OF" . SWAPT→b. 𝑒_ `$FO$"OF" . SWAPb→T

Θ'?𝐼'$𝐼?$

SWAP'→5 SWAP5→?

SWAP5←?SWAP'←5



FUTURE WORK
• See how this formulations performs error-wise compared to gate model 

implementations of the Fourier transform.
• See how number of SWAP gates scales with size and limited connectivity- and if 

this outweighs potential benefits.
• Expand past the hybrid model, looking to full universal AQC.
• Investigate what this means for optimal control.
• Find systematic way to compile AQC pulses for diamond.
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