Coherent magnetic and electrical control of a single spin-7/2 donor atom in Silicon

School of Electrical Engineering & Telecommunications, UNSW Sydney NSW 2052, Australia
School of Physics, University of Melbourne, VIC 3010, Australia

The computational power of a quantum processor depends upon the dimensionality \(d \) of its Hilbert space. For an \(n \)-qubit processor, this is simply \(d = 2^n \). However, it is also possible to use naturally occurring systems where \(d \) is intrinsically large. For example, the nuclear spin of a \(^{123}\text{Sb} \) atom has \(d = 8 \) owing to its large spin \(I = 7/2 \). When implanted in silicon it acts a substitutional group-V donor which binds an extra electron, yielding \(d = 16 \), or the equivalent of four qubits, within just one atom. The quadrupole interaction in heavy group-V donors offers a natural way to control nuclear spins using electric fields, which are easier to confine in a nanoscale device, as opposed to magnetic fields. Past work by Asaad et al. [1] showed that the nucleus of a single \(^{123}\text{Sb} \) atom can be integrated in a nanoelectronic device and be used to encode quantum information through Nuclear Electric Resonance.

Here we demonstrate coherent quantum control over the entire 16-dimensional Hilbert space of an implanted \(^{123}\text{Sb} \) donor atom in a silicon chip, using both magnetic and electric fields. The resonant electric and magnetic excitation, at radiofrequency (for the nucleus) and microwave (for the electron) is delivered by a single on-chip microwave antenna. We characterize the quadrupole interaction and investigate the performance and noise sources for both magnetic and electric coherent control. Using Gate Set Tomography, we extract one-qubit gate fidelities on the ionized nucleus \(> 99.8\% \) for both electric and magnetic drive. We find state-dependent Ramsey coherence times of the 7 NMR transitions ranging from \(T_2^* = 18 \) ms (for the 5/2 \(\rightarrow \) 7/2 transition) to \(T_2^* = 56 \) ms (for the 1/2 \(\rightarrow \) -1/2 transition). We ascribe the difference in dephasing rates to a spin state-dependent sensitivity to electric field noise.

These results pave the way to the exploitation of high-spin donor nuclei such as \(^{123}\text{Sb} \) to encode error-correctable logical qubits [2], provide advantages in quantum sensing [3] and allow all-electrical spin control in nanoscale semiconductor devices.