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What is Computation?

input

| output
abstract. { (information) information) }

physical:

® | aws of computation limited by knowledge of physics!

® Computations are processes within chosen model
(classical / quantum / other)

® Computations are constructed from a small, universal set
of gates (elementary operations)
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- (optics) deterministic entanglement

- (optics) immensely scalable

- (optics) room-temperature operation

« (circuit QED) microwave cavities are less noisy than transmons
B Fundamental

- avoid premature optimisation
(e.q,, in optics, why should we restrict to photonic qubits?)

B Both together

- more options for practical tasks (e.g., quantum cryptography, cluster
states)

- "hybrid" schemes: CV technology helps to manipulate photonic
quantum states
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CVs: Disadvantages

® Practical
- imperfections due to finite energy
- eventually need to discretise for error correction
® Fundamental
- more questions to answer (e.g., what discretisation?)

- must incorporate effects of noise from day one
(complicated, easy to end up writing a crap paper)

® Both together
- must do extra work to employ existing algorithms

- smaller literature, fewer optimised experimental platforms
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VOLUME 86, NUMBER 22

Cluster state

PHYSICAL REVIEW LETTERS

28 MAy 2001
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A One-Way Quantum Computer

Robert Raussendorf and Hans J. Briegel

Theoretische Physik, Ludwig-Maximilians-Universitit Miinchen, Germany

(Received 25 October 2000)
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Theoretische Physik, Ludwig-Maximilians-Universitit Miinchen, Germany

(Received 25 October 2000)

We present a scheme of quantum computation that consists entirely of one-qubit measurements on a
particular class of entangled states, the cluster states. The measurements are used to imprint a quantum
logic circuit on the state, thereby destroying its entanglement at the same time. Cluster states are thus
one-way quantum computers and the measurements form the program.
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CV cluster states

PHYSICAL REVIEW A 73, 032318 (2006)

Continuous-variable Gaussian analog of cluster states

Jing Zhang”< and Samuel L. Braunstein®
IState Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University,
Taiyuan 030006, People’s Republic of China
2Com.put.er Science, University of York, York YO10 5DD, United Kingdom
(Received 21 October 2005; published 16 March 2006)

week endin
PRL 97, 110501 (2006) PHYSICAL REVIEW LETTERS 15 SEP’FEMBERgZ()Oﬁ

Universal Quantum Computation with Continuous-Variable Cluster States

Nicolas C. Menicucci,'>* Peter van Loock,® Mile Gu,! Christian Weedbrook,'
Timothy C. Ralph,' and Michael A. Nielsen'
'Depa:tmem of Physics, The University of Queensland, Brishane, Queensland 4072, Australia
“Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

3National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
(Received 30 May 2006; published 13 September 2006)
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Optical implementation

® Continuous quantum variables
- Computational basis: eigenstates of g = (a + at)/\2
- Conjugate basis: eigenstates of p = —i(a — at)/\2
® Advantages of CV (over qubit) cluster states
Deterministic generation
- Scalable to huge sizes

® Problem: ideal CV cluster states would require
infinite energy!

- Finite energy — errors ("noise") in computation

Fault tolerance still possible through quantum
error correction
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Encoded qubits

PHYSICAL REVIEW A, VOLUME 64, 012310

Encoding a qubit in an oscillator

Daniel Gottesman,>* Alexei Kitaev,"" and John Preskill®*
I;VII'(.'ro.s'Qﬁ Corporation, One Microsoft Way, Redmond, Washington 98052
27 omputer Science Division, EECS, University of California, Berkeley, California 94720
3Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125
(Received 9 August 2000; published 11 June 2001)
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Encoded qubits

PHYSICAL REVIEW A, VOLUME 64, 012310

Encoding a qubit in an oscillator

Daniel Gottcsman

2% Alexei Kitaev,"" and John Preskill**
]Mi(.'rosqﬁ Corporation, One Microsoft Way, Redmond, Washington 98052

27 omputer Science Division, EECS, University of California, Berkeley, California 94720
3Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125
(Received 9 August 2000; published 11 June 2001)
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Noise process
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Projecting to qubit-level errors
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Fault tolerance

® Measurements implement (slightly faulty) qubit gates

® Use qubit-level quantum error correction to reduce
errors (well established)

B Fault tolerance
(initial error < threshold amount) —
(arbitrarily low error in final computation)

PRL 112, 120504 (2014) PHYSICAL REVIEW LETTERS e

Fault-Tolerant Measurement-Based Quantum Computing
with Continuous-Variable Cluster States

Nicolas C. Menicucci’
School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
(Received 29 October 2013; published 26 March 2014)
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PRL 112, 120504 (2014) PHYSICAL REVIEW LETTERS 28 MR 2514

Fault-Tolerant Measurement-Based Quantum Computing
with Continuous-Variable Cluster States

Nicolas C. Menicucci

School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
(Received 29 October 2013; published 26 March 2014)
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Fault tolerance - typical thresholds

PRL 112, 120504 (2014) PHYSICAL REVIEW LETTERS 28 MR 1 ~1 56 — 205 dB
Fault-Tolerant Me: -Based P C i 1 — o
T Chmiimoes ashate Con a8 for qubit error rates 10-2 — 106

Nicolas C. Menicucci

School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia (d e pe n d S On q u b |t COd e em p I Oyed )

(Received 29 October 2013; published 26 March 2014)
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Fault tolerance - typical thresholds

PRL 112, 120504 (2014) PHYSICAL REVIEW LETTERS 28 MR 14 ~15 6 — 20 5 dB

Fault-Tolerant Measurement-Based Quantum Computing

with Continuous-Variable Cluster States for quIt error rates 1 0_2 - 1 0-6

Nicolas C. Menicucci

School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia (d e pe n d S O n q u b it Cod e e m p I Oyed )
(Received 29 October 2013; published 26 March 2014)
PRL 112, 120504 (2014)

PHYSICAL REVIEW X 8, 021054 (2018) PHYSICAL REVIEW A 101, 012316 (2020)

[_Editors’ Suggostion |

High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction Fault-tolerant bosonic quantum error correction with the surface-Gottesman-Kitaev-Preskill code
Kosuke Fukui, Akihisa Tomita, and Atsushi Okamoto Kyungjoo Noh and Christopher Chamberland &%+
Graduate School of Information Scier i Technology, Hokkaido University, :

KitaI4-Nishi9, Kita-ka, Sapporo 060-0814, Japan

Department of Phys

Kirashirakawa-Oiv

e, Kyoto University
o 606-8502, Japan

PRA 101, 012316 (2020)

PRX 8, 021054 (2018) Blueprint for a Scalable Photonic Fault-Tolerant Quantum

Computer

PRX QUANTUM 2, 030325 (2021) J. Eli Bourassa*?", Rafael N. Alexander'®*" Michael Vasmer®®, Ashlesha Patil*?, llan Tzitrin'?,

Takaya Matsuura'®, Daigin Su®, Ben Q. Baragiola'#, Saikat Guha'7, Guillaume Dauphinais!, Krishna
K. Sabapathy!, Nicolas C. Menicucci', and Ish Dhand*

Fault-Tolerant Continuous-Variable Measurement-based Quantum Computation Quantum 5, 392 (2021 )
Architecture

Mikkel V. Larsen®,":" Christopher Chamberland® >* Kyungjoo Noh® %%
Jonas S. Neergaard-Nielsen®,' and Ulrik L. Andersen®' ! PRX QUANTUM 2, 040353 (2021)

PRX Quantum 2, 030325 (2021)

Fault-Tolerant Quantum Computation with Static Linear Optics

Ilan Tzitrin®,""T Takaya Matsuura,'*'T Rafael N. Alexander,*>" Guillaume Dauphinais,
-~ 1 O - 1 8 d B J. Eli Bourassa,'? Krishna K. Sabapathy®,! Nicolas C. Menicucci®,* and Ish Dhand'

' RMIT based on topological codes m— PRX Quantum 2, 040353 (2021)
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GKP vs photonic qubits
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Experimental GKP states

Encoding a qubit in a trapped-ion mechanical
oscillator

C. Fliithmann'*, T. L. Nguyen', M. Marinelli!, V. Negnevitsky!, K. Mehta' & J. P. Home'*
Nature 566, 513-517(2019)
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Encoding a qubit in a trapped-ion mechanical
oscillator

C. Fliithmann'*, T. L. Nguyen', M. Marinelli!, V. Negnevitsky', K. Mehta' & J. P. Home'*
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Experimental GKP states

Article | Published: 19 August 2020

Quantum error correction of a qubit encoded in
grid states of an oscillator

P. Campagne-lbarcq &, A. Eickbusch, S. Touzard &, E. Zalys-Geller, N. E. Frattini, V. V. Sivak, P. Reinhold, S.
Puri, S. Shankar, R. J. Schoelkopf, L. Frunzio, M. Mirrahimi & M. H. Devoret

Nature 584, 368-372(2020) | Cite this article

6503 Accesses \ 6 Citations ] 46 Altmetric \ Metrics
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Making CV cluster states
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Linear optics

B Squeezed light (laser on a nonlinear crystal) +
beamsplitter network

) o) 2 )
00U O UL

' RMIT * P. van Loock, C. Weedbrook, M. Gu, PRA 76, 032321 (2007)
UNIVERSITY
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How can we make
scalable resource states?
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Macronode-based cluster states

Each black dot (node)
represents either

(1) a specific colour or
(2) a pulse of light

Edges represent
entanglement

172 172
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Frequency-mode (colour-based)
cluster states
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Frequency-mode cluster states

week ending

PRL 112, 120505 (2014) PHYSICAL REVIEW LETTERS 28 MARCH 2014

Experimental Realization of Multipartite Entanglement of 60 Modes of a
Quantum Optical Frequency Comb

Moran Chcn,I Nicolas C. Mcnicucci,z'“ and Olivier Pfister!"
lDeparlnwnl of Physics, University of Virginia, Charlottesville, Virginia 22903, USA
*School of Physics, The University of Sydney, Svdney, New South Wales 2006, Australia
(Received 11 November 2013; revised manuscript received 31 January 2014; published 26 March 2014)
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Frequency-mode cluster states

week ending

PRL 112, 120505 (2014) PHYSICAL REVIEW LETTERS 28 MARCH 2014

Experimental Realization of Multipartite Entanglement of 60 Modes of a
Quantum Optical Frequency Comb

Moran Chcn,I Nicolas C. Mcnicucci,z'“ and Olivier Pfister!"
lDeparlnwnl of Physics, University of Virginia, Charlottesville, Virginia 22903, USA
*School of Physics, The University of Sydney, Svdney, New South Wales 2006, Australia
(Received 11 November 2013; revised manuscript received 31 January 2014; published 26 March 2014)

60-mode linear cluster state
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Frequency-mode cluster state (wire)
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pump

OPO

cluster state

frequency-
sensitive
measurements
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Frequency-mode cluster state (wire)
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Measurement
selection \

pump

OPO

cluster state

5
i

frequency-
sensitive
measurements
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Temporal-mode (pulse-based)
cluster states
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Temporal-mode cluster states
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Temporal-mode cluster states

nzi;ure ; LETTERS
p Otonlcs PUBLISHED ONLINE: 177 NOVEMBER 2013 | DOI: 10.1038/NPHOTON.2013.287

Ultra-large-scale continuous-variable cluster
states multiplexed in the time domain

Shota Yokoyama', Ryuji Ukai', Seiji C. Armstrong'?, Chanond Sornphiphatphong', Toshiyuki Kaji',
Shigenari Suzuki', Jun-ichi Yoshikawa', Hidehiro Yonezawa', Nicolas C. Menicucci®
and Akira Furusawa'
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Temporal-mode cluster states

nzi;ure ; LETTERS
p Otonlcs PUBLISHED ONLINE: 177 NOVEMBER 2013 | DOI: 10.1038/NPHOTON.2013.287

Ultra-large-scale continuous-variable cluster
states multiplexed in the time domain

Shota Yokoyama', Ryuji Ukai', Seiji C. Armstrong'?, Chanond Sornphiphatphong', Toshiyuki Kaji',
Shigenari Suzuki', Jun-ichi Yoshikawa', Hidehiro Yonezawa', Nicolas C. Menicucci®
and Akira Furusawa'

10,000-mode linear cluster state
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Temporal-mode cluster states

Fibre delay

Extended
EPR states

Experimental Setups

N

\ P \ <
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Temporal-mode cluster states

APL PHOTONICS 1, 060801 (2016)

Invited Article: Generation of one-million-mode
continuous-variable cluster state by unlimited
time-domain multiplexing

Jun-ichi Yoshikawa,' Shota Yokoyama,'-? Toshiyuki Kaji,"

Chanond Sornphiphatphong,! Yu Shiozawa,' Kenzo Makino,’
and Akira Furusawa'?
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Temporal-mode cluster states

APL PHOTONICS 1, 060801 (2016)

Invited Article: Generation of one-million-mode
continuous-variable cluster state by unlimited
time-domain multiplexing

Jun-ichi Yoshikawa,' Shota Yokoyama,'-? Toshiyuki Kaji,"

Chanond Sornphiphatphong,! Yu Shiozawa,' Kenzo Makino,’
and Akira Furusawa'?

1-million-mode linear cluster state!
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Temporal-mode cluster states

QUANTUM COMPUTING

Generation of time-domain-multiplexed
two-dimensional cluster state

Warit Asavanant', Yu Shiozawa', Shota Yokoyama?, Baramee Charoensombutamon’, Hiroki Emura’,
Rafael N. Alexander®, Shuntaro Takeda™*, Jun-ichi Yoshikawa', Nicolas C. Menicucci®,
Hidehiro Yonezawa?, Akira Furusawa'*

____Asavanant et al., Science 366, 373-376 (2019)

QUANTUM COMPUTING

Deterministic generation of a two-dimensional
cluster state

Mikkel V. Larsen®, Xueshi Guo, Casper R. Breum, Jonas S. Neergaard-Nielsen, Ulrik L. Andersen*
Larsen et al., Science 366, 369-372 (2019)
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Temporal-mode cluster states

A One-input quantum computation
Input 1-dimensional cluster state :
*—O0—0—0—0O- 600
' At
| - '
Information flow v «5)
00
B Universal multi-input quantum computation ODL
Inp.uls . 2-dimepsional qluster sgate
» } oDL
o) ( YV KK )
. I ((0100000),
: NAt
(0)©)
® oro  AAA
. Squeezed lights =% Square-shaped cluster states = 2-dimensional cluster state
L
L Information flow A : N N\ \ h‘,

3

24 800 total modes
5 x 1240 macronodes
(4 modes each)

| k+1

%ll - ’1
Micronodes il

|

1}' e
Macronode T’ "

® RMIT

UNIVERSITY o Asavanant et al., Science 366, 373-376 (2019)
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Temporal-mode cluster states

30,000 total modes
12 x 1250 macronodes
(2 modes each)

OPO;

Resulting graph:
1 Squeezed states EPR states 1D cluster state

-1 = Ae © o o o p o p» p» 5 a—pa—p— o o]
1/9 — — /\/ \/
= ve— ) SSRRKXK

T BS,

BS,

Larsen et al., Science 366, 369-372 (2019)
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Temporal-mode cluster states

ARTICLES nature
https://doi.org/10.1038/541567-021-01296-y thSlCS

M) Check for updates

Deterministic multi-mode gates on a scalable
photonic quantum computing platform

Mikkel V. Larsen ® X, Xueshi Guo®, Casper R. Breum®, Jonas S. Neergaard-Nielsen® and
Ulrik L. Andersen® =

Larsen et al., Nature Phys. 17,
1018 (2021)

PHYSICAL REVIEW APPLIED 16, 034005 (2021)

Time-Domain-Multiplexed Measurement-Based Quantum Operations with
25-MHz Clock Frequency

Warit Asavanant®,!” Baramee Charoensombutamon®,! Shota Yokoyama®,? Takeru Ebihara,!
Tomohiro Nakamura,! Rafael N. Alexander®,>* Mamoru Endo®,! Jun-ichi Yoshikawa,'
Nicolas C. Menicucci®,* Hidehiro Yonezawa®,? and Akira Furusawa®!->1

Asavanant et al., Phys. Rev.
Applied 16, 034005 (2021)

Prototypes of CV measurement-based

P RMIT quantum computing
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Gaussian boson sampling

QUANTUM COMPUTING Article | Open Access | Published: 01 June 2022

Quantum computational advantage using photons Quantum computational advantage witha
programmable photonic processor

Han-Sen Zhong™?*, Hui Wang'?¥, Yu-Hao Deng?*, Ming-Cheng Chen'?¥, Li-Chao Peng'?,
Yi-Han Luo®?, Jian Qin™?, Dian Wu®?, Xing Ding"?, Yi Hu“?, Peng Hu®, Xiao-Yan Yang®, Wei-Jun Zhang®, Lars S. Madsen, Fabian Laudenbach, Mohsen Falamarzi. Askarani, Fabien Rortais, Trevor
Hao Li%, Yuxuan Li%, Xiao Jiang'?, Lin Gan*, Guangwen Yang?, Lixing You®, Zhen Wang?, Li Li*?,

Nai-Le Liu™?, Chao-Yang Lu"?{, Jian-Wei Pan’2{

2OUINS, Adriand t. Litd, 1N0MAS LerTIlS, saé VVo0 INam, varun L. vaidya,

ZhOIlg et al., Science 370, 1460-1463 (2020) Dhand, Zachary Vernon, Nicolas Quesada & & Jonathan Lavoie &

~ Nature 606, 75-81 (2022)

\"d

!

50 squeezed states, 100 modes 216 squeezed states, 216 modes, programmable

Photon-sampled multimode Gaussian state

' RMIT https://thequantuminsider.com/2020/12/03/china-joins-the-quantum-supremacy-club-chinese-
UNIVERSITY research-team-claims-to-demonstrate-quantum-supremacy-with-gaussian-boson-sampling/ 56
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Commercial Architecture by Xanadu

PRX QUANTUM 2, 040353 (2021)

Blueprint for a Scalable Photonic Fault-Tolerant Quantum

Computer
Fault-Tolerant Quantum Computation with Static Linear Optics

J. Eli Bourassa’?*, Rafael N. Alexander'3%*, Michael Vasmer®®, Ashlesha Patil®’, llan Tzitrin'?,
Tlan Tzitrin®,'#*! Takaya Matsuura,"*-' Rafael N. Alexander,'*>! Guillaume Dauphinais,’'

Takaya Matsuura'®, Daiqin Su’, Ben Q. Baragiola™*, Saikat Guha'’, Guillaume Dauphinais’, Krishna t Takay el N T
K. Sabapathy®, Nicolas C. Menicucci#, and Ish Dhand! J. Eli Bourassa,"* Krishna K. Sabapathy®,' Nicolas C. Menicucci®,'* and Ish Dhand'

| ey n

|Bourassa et al., Quantum 5, 392 (2021) | | Tzitrin et al., PRX Quantum 2, 040353 (2021) |
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What's left to do?

® Quality of states produced is too low (measured in
amount of squeezing)

B Table-top experiments; need to be miniaturised
(optical chip)

B GKP states are hard to make—they've been made
In trapped ions and microwave cavities, not in
optics yet, but proposals exist:

- Gaussian boson sampling
- Breeding squeezed cat states
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Conclusion

m CV cluster states

Enable quantum computation using measurements of quantum
continuous variables

Fault tolerance is possible with quantum error correction
GKP code is promising bosonic code for this purpose

Proposal for fault-tolerant quantum computer: hybrid CV-GKP
cluster states

® Experimental methods shown to be scalable
1D and 2D CV cluster states
Millions of modes achieved
Measurement-based quantum-computing prototype demoed
Need to improve squeezing
Need to make GKP states
Gaussian boson sampling demonstrated
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