Equivalent gate noise on macronode cluster state architectures

Blayney Walshe
Ben Q. Baragiola, Rafael N. Alexander, Nicolas C. Menicucci

QuRMIT
RMIT
UNIVERSITY

Experimental efforts

```
LETTERS
PUBLISHED ONLINE: }17\mathrm{ NOVEMBER 2013 | DOI: 10.1038/NPHOTON.2013.287
```

nature photonics

Ultra-large-scale continuous-variable cluster states multiplexed in the time domain
Shota Yokoyama', Ryuji Ukai', Seiji C. Armstrong1,2, Chanond Sornphiphatphong¹, Toshiyuki Kaji', Shigenari Suzuki', Jun-ichi Yoshikawa', Hidehiro Yonezawa', Nicolas C. Menicucci${ }^{3}$ and Akira Furusawa ${ }^{1 \star}$

Experimental efforts

```
Invited Article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing
U Jun-ichi Yoshikawa, \({ }^{1}\) Shota Yokoyama, \({ }^{1,2}\) Toshiyuki Kaji, \({ }^{1}\)
s| Chanond Sornphiphatphong, \({ }^{1}\) Yu Shiozawa, \({ }^{1}\) Kenzo Makino, \({ }^{1}\) and Akira Furusawa \({ }^{1, \mathrm{a}}\)
Shı \(\quad{ }^{1}\) Department of Applied Physics, School of Engineering, The University of Tokyo,
Shi 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
anı \({ }^{2}\) Centre for Quantum Computation and Communication Technology, School of Engineering and Information Technology, University of New South Wales, Canberra, Australian Capital Territory 2600, Australia
```

(Received 23 June 2016; accepted 1 September 2016; published online 27 September 2016)

Experimental efforts

QUANTUM COMPUTING
 Generation of time-domain-multiplexed two-dimensional cluster state

Warit Asavanant ${ }^{1}$, Yu Shiozawa ${ }^{1}$, Shota Yokoyama ${ }^{2}$, Baramee Charoensombutamon ${ }^{1}$, Hiroki Emura ${ }^{1}$, Rafael N. Alexander ${ }^{3}$, Shuntaro Takeda ${ }^{1,4}$, Jun-ichi Yoshikawa ${ }^{1}$, Nicolas C. Menicucci ${ }^{5}$, Hidehiro Yonezawa ${ }^{2}$, Akira Furusawa ${ }^{1 *}$

QUANTUM COMPUTING

Deterministic generation of a two-dimensional cluster state

Mikkel V. Larsen*, Xueshi Guo, Casper R. Breum, Jonas S. Neergaard-Nielsen, Ulrik L. Andersen*

Streamline QC

(a)

PHYSICAL REVIEW A 104, 062427 (2021)

Two-mode gate

$$
\mu_{a, b}:=\frac{-m_{a} e^{i \theta_{b}}-m_{b} e^{i \theta_{a}}}{\sin \left(2 \theta_{-}\right)} \quad \mu_{ \pm}=\frac{\mu_{c, d} \pm \mu_{a, b}}{\sqrt{2}}
$$

Two-mode gate

General two-mode gate

$$
\mu_{a, b}:=\frac{-m_{a} e^{i \theta_{b}}-m_{b} e^{i \theta_{a}}}{\sin \left(2 \theta_{-}\right)} \quad \mu_{ \pm}=\frac{\mu_{c, d} \pm \mu_{a, b}}{\sqrt{2}}
$$

Streamlined QC

Gaussian unitaries that implement the Clifford group on GKP encoded states:

$\left\{\hat{I}, \hat{F}, \hat{P}(\pm 1), \hat{\mathrm{C}}_{Z}(\pm 1)\right\} \longmapsto\left\{\hat{I}, \hat{H}, \sqrt{\hat{Z}}, \hat{\mathrm{C}}_{Z}\right\}$		
CV unitaries		GKP Cliffords
$\left\{\theta_{a}, \theta_{b}\right\}$	$\hat{V}(\boldsymbol{\theta})$	Logical Gate
$\left\{\frac{\pi}{2}, 0\right\}$	\hat{I}	\bar{I}
$\left\{\frac{3 \pi}{4}, \frac{\pi}{4}\right\}$	\hat{F}	\bar{H}
$\left\{\frac{\pi}{2}, \frac{\pi}{2} \mp \chi\right\}$	$\hat{P}(\pm 1)$	\bar{P}
$\left\{\theta_{a}, \theta_{b}, \theta_{c}, \theta_{d}\right\}$	$\hat{V}^{(2)}(\boldsymbol{\theta})$	Logical Gate
$\left\{\frac{\pi}{2}, \frac{\pi}{2} \pm \chi, \frac{\pi}{2}, \frac{\pi}{2} \mp \chi\right\}$	$\hat{\mathrm{C}}_{Z}(\pm 1)$	$\overline{\mathrm{C}}_{Z}$
$\left\{0, \frac{\pi}{2}, \frac{\pi}{2}, 0\right\}$	SWAP	$\overline{\text { SWAP }}$
$\left\{\frac{\pi}{2}, 0, \frac{\pi}{2}, 0\right\}$	$\hat{I} \otimes \hat{I}$	$\bar{I} \otimes \bar{I}$
$\left\{\frac{3 \pi}{4}, \frac{\pi}{4}, \frac{3 \pi}{4}, \frac{\pi}{4}\right\}$	$\hat{F} \otimes \hat{F}$	$\bar{H} \otimes \bar{H}$
$\left\{\frac{\pi}{2}, \frac{\pi}{2} \mp \chi, \frac{\pi}{2}, \frac{\pi}{2} \mp \chi\right\}$	$\hat{P}(\pm 1) \otimes \hat{P}(\pm 1)$	$\bar{P} \otimes \bar{P}$

Streamlined QC

Gaussian unitaries that implement the Clifford group on GKP encoded states:

$\left\{\right.$| $\left\{\hat{I}, \hat{F}, \hat{P}(\pm 1), \hat{\mathrm{C}}_{Z}(\pm 1)\right\}$ | | |
| :---: | :---: | :---: |
| CV unitaries | $\longmapsto \underbrace{\left\{\hat{I}, \hat{H}, \sqrt{\hat{Z}}, \hat{\mathrm{C}}_{Z}\right\}}_{\text {GKP Cliffords }}$ | |
| $\left\{\theta_{a}, \theta_{b}\right\}$ | $\hat{V}(\boldsymbol{\theta})$ | Logical Gate |
| $\left\{\frac{\pi}{2}, 0\right\}$ | \hat{I} | \bar{I} |
| $\left\{\frac{3 \pi}{4}, \frac{\pi}{4}\right\}$ | \hat{F} | \bar{H} |
| $\left\{\frac{\pi}{2}, \frac{\pi}{2} \mp \chi\right\}$ | $\hat{P}(\pm 1)$ | \bar{P} |
| $\left\{\theta_{a}, \theta_{b}, \theta_{c}, \theta_{d}\right\}$ | $\hat{V}^{(2)}(\boldsymbol{\theta})$ | Logical Gate |
| $\left\{\frac{\pi}{2}, \frac{\pi}{2} \pm \chi, \frac{\pi}{2}, \frac{\pi}{2} \mp \chi\right\}$ | $\hat{\mathrm{C}}_{Z}(\pm 1)$ | $\overline{\mathrm{C}}_{Z}$ |
| $\left\{0, \frac{\pi}{2}, \frac{\pi}{2}, 0\right\}$ | SWAP | $\overline{\mathrm{SWAP}}$ |
| $\left\{\frac{\pi}{2}, 0, \frac{\pi}{2}, 0\right\}$ | $\hat{I} \otimes \hat{I}$ | $\bar{I} \otimes \bar{I}$ |
| $\left\{\frac{3 \pi}{4}, \frac{\pi}{4}, \frac{3 \pi}{4}, \frac{\pi}{4}\right\}$ | $\hat{F} \otimes \hat{F}$ | $\bar{H} \otimes \bar{H}$ |
| $\left\{\frac{\pi}{2}, \frac{\pi}{2} \mp \chi, \frac{\pi}{2}, \frac{\pi}{2} \mp \chi\right\}$ | $\hat{P}(\pm 1) \otimes \hat{P}(\pm 1)$ | $\bar{P} \otimes \bar{P}$ |

Squeezing level by gate error rate

Gate	Error rate: 10^{-2}				Error rate: 10^{-3}			
	Ref. [26]	Ref. [29]	Ref. [20]	ours	Ref. [26]	Ref. [29]	Ref. [20]	ours
\hat{I}	14.0	13.2	11.8	10.0	15.9	15.0	13.6	11.9
\hat{F}	14.8	14.9	11.8	10.0	16.8	16.7	13.6	11.9
$\hat{P}(\pm 1)$	14.4	15.2	12.5	11.2	16.4	17.1	14.5	13.7
$\hat{\mathrm{C}}_{Z}(\pm 1)$	15.6	-	-	11.9	17.4	-	-	13.7
$\hat{F} \hat{F} \hat{\mathrm{C}}_{Z}$	-	16.0	13.2	-	-	17.6	15.0	-

Noise Accumulation

Noise Accumulation

$\left(\delta^{2}\right)_{\mathrm{dB}}=-10 \log _{10}\left(2 \delta^{2}\right)$

Noise Accumulation

$\left(\delta^{2}\right)_{\mathrm{dB}}=-10 \log _{10}\left(2 \delta^{2}\right)$

Noise Accumulation

$\left(\delta^{2}\right)_{\mathrm{dB}}=-10 \log _{10}\left(2 \delta^{2}\right)$

Equivalent noise of two-mode macronode-based cluster states

Bilayer Square Lattice. Alexander, 2018

Double Bilayer Square
Lattice. Larsen, 2020

Quad-rail Lattice. Walshe, 2021

Various groups work with different types of macronode cluster state. Reported squeezing requirements for error rates of 10^{-2} range from $16-17.5 \mathrm{~dB}$

Cluster state projection

Double bilayer square lattice

Bilayer square lattice

Modified bilayer square lattice

Quad rail lattice

UNIVERSITY

Arbitrary Streamlined QC

(a)

(b)

Arbitrary Streamlined QC

(a)

macronode $\begin{array}{ll}\text { O local mode } & 1 \longrightarrow \\ & 2 \longrightarrow \ldots \text { beam splitters } \\ & 3 \longrightarrow\end{array}$
(b)

Arbitrary Streamlined QC

Arbitrary Streamlined QC

Arbitrary Streamlined QC

(a)

macronode \bigcirc local mode $\quad \begin{aligned} & 1 \longrightarrow \\ & 2 \cdots \\ & 3 \longrightarrow \ldots\end{aligned}$ beam splitters
(b)

(in)

Arbitrary Streamlined QC

$\left(\delta^{2}\right)_{\mathrm{dB}}=-10 \log _{10}\left(2 \delta^{2}\right)$

Arbitrary Streamlined QC

The only piece that depends on the beam splitter network is $\hat{V}^{(2)}$

Arbitrary Streamlined QC

The only piece that depends on the beam splitter network is $\hat{V}^{(2)}$

If we can do the same gate in a single step in each architecture, we will have the same noise properties in each architecture.

Bilayer square lattice four splitter

Four splitter

$$
\mathbf{B}_{\mathrm{QRL}}^{(4)}=\frac{1}{2}\left[\begin{array}{cccc}
1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

Four splitter

$$
\mathbf{B}_{\mathrm{QRL}}^{(4)}=\frac{1}{2}\left[\begin{array}{cccc}
1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

$$
\mathbf{B}_{\mathrm{BSL}}^{(4)}=\frac{1}{2}\left[\begin{array}{cccc}
\sqrt{2} & -\sqrt{2} & 0 & 0 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1 \\
0 & 0 & \sqrt{2} & \sqrt{2}
\end{array}\right]
$$

Four splitter

$$
\mathbf{B}_{\mathrm{QRL}}^{(4)}=\frac{1}{2}\left[\begin{array}{cccc}
1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

$$
\mathbf{B}_{\mathrm{BSL}}^{(4)}=\frac{1}{2}\left[\begin{array}{cccc}
\sqrt{2} & -\sqrt{2} & 0 & 0 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1 \\
0 & 0 & \sqrt{2} & \sqrt{2}
\end{array}\right]
$$

$$
\mathbf{B}_{\mathrm{cBSL}}^{(4)}=\frac{1}{2}\left[\begin{array}{cccc}
1 & -1 & -1 & -1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1 \\
1 & -1 & 1 & 1
\end{array}\right]
$$

Four splitter equivalence

All four splitters belong to a single equivalence class that permits 3 operations:

Four splitter equivalence

All four splitters belong to a single equivalence class that permits 3 operations:

1. SWAP gates after the four splitter (to the left)

Four splitter equivalence

All four splitters belong to a single equivalence class that permits 3 operations:

1. SWAP gates after the four splitter (to the left)

$$
\frac{1}{2}\left[\begin{array}{cccc}
1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

Four splitter equivalence

All four splitters belong to a single equivalence class that permits 3 operations:

1. SWAP gates after the four splitter (to the left)
2. $\operatorname{sWAP}\left[\begin{array}{cccc}\frac{1}{2}\end{array}\left[\begin{array}{cccc}1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1\end{array}\right]\right.$

Four splitter equivalence

All four splitters belong to a single equivalence class that permits 3 operations:

1. SWAP gates after the four splitter (to the left)
2. \hat{F}^{2} gates on any wires after the four splitter (to the left)
3. SWAP $\frac{1}{2}\left[\begin{array}{cccc}1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1\end{array}\right]$

Four splitter equivalence

All four splitters belong to a single equivalence class that permits 3 operations:

1. SWAP gates after the four splitter (to the left)
2. \hat{F}^{2} gates on any wires after the four splitter (to the left)
3. $\operatorname{sWAP}\left(\frac{1}{2}\left[\begin{array}{cccc}1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & -1\end{array}\right]\right.$

Four splitter equivalence

All four splitters belong to a single equivalence class that permits 3 operations:

1. SWAP gates after the four splitter (to the left)
2. \hat{F}^{2} gates on any wires after the four splitter (to the left)
3. An \hat{F}^{2} on any single wire before the four splitter (to the right)
4. $\operatorname{sWAP}\left[\begin{array}{c}\frac{1}{2} \\ \text { 2. } \\ \hat{F}^{2}\end{array}\left[\begin{array}{cccc}1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & -1\end{array}\right]\right.$

Four splitter equivalence

All four splitters belong to a single equivalence class that permits 3 operations:

1. SWAP gates after the four splitter (to the left)
2. \hat{F}^{2} gates on any wires after the four splitter (to the left)
3. An \hat{F}^{2} on any single wire before the four splitter (to the right)
4. $\operatorname{sWAP}\left(\frac{1}{2}\left[\begin{array}{cccc}1 & -1 & -1 & -1 \\ 1 & 1 & -1 & +1 \\ \text { 2. } \hat{F}^{2}\end{array}\right]\right.$

BSL reduction

BSL reduction

Dictionary of single step two-mode gates

These two-mode gates can each be done in a single step, minimising the noise added by the operation. Noise which is independent of the architecture chosen.

Architecture	QRL	BSL	DBSL	Mikkel-splitter
Mapping	$\left\{\theta_{a}, \theta_{b}, \theta_{c}, \theta_{d}\right\}$	$\left.\left\{\theta_{a}, \theta_{b}, \theta_{d}, \theta_{c}\right\}\right\|_{\theta_{a}=\theta_{c}}$	$\left.\left\{\theta_{a}, \theta_{c}, \theta_{d}, \theta_{b}\right\}\right\|_{\theta_{a}=\theta_{d}}$	$\left\{\theta_{a}, \theta_{b}, \theta_{d}, \theta_{c}\right\}\left\|\left.\right\|_{\theta_{b}=\theta_{d}}\right.$
$\hat{C}_{Z}[1]$	$\left\{\frac{\pi}{2}, \frac{\pi}{2} \pm \chi, \frac{\pi}{2}, \frac{\pi}{2} \mp \chi\right\}$	$\left\{\frac{\pi}{2}, \frac{\pi}{2} \pm \chi, \frac{\pi}{2} \mp \chi, \frac{\pi}{2}\right\}$	$\left\{\frac{\pi}{2}, \frac{\pi}{2} \pm \chi, \frac{\pi}{2} \mp \chi, \frac{\pi}{2}\right\}$	$* *$
SWAP	$\left\{0, \frac{\pi}{2}, \frac{\pi}{2}, 0\right\}$	$* *$		
$\hat{I} \otimes \hat{I}$	$\left\{\frac{\pi}{2}, 0, \frac{\pi}{2}, 0\right\}$	$\left\{\frac{\pi}{2}, 0,0, \frac{\pi}{2}\right\}$	$\left\{\frac{\pi}{2}, 0,0, \frac{\pi}{2}\right\}$	$\left\{\frac{\pi}{2}, 0,0, \frac{\pi}{2}\right\}$
$\hat{F} \otimes \hat{F}$	$\left\{\frac{3 \pi}{4}, \frac{\pi}{\pi}, \frac{3 \pi}{4}, \frac{\pi}{\pi}\right\}$	$\left\{\frac{3 \pi}{4}, \frac{\pi}{4}, \frac{\pi}{4}, \frac{3 \pi}{4}\right\}$	$\left\{\frac{3 \pi}{4}, \frac{\pi}{4}, \frac{\pi}{4}, \frac{3 \pi}{4}\right\}$	$\left\{\frac{3 \pi}{4}, \frac{\pi}{4}, \frac{\pi}{4}, \frac{3 \pi}{4}\right\}$
$\hat{P}(1) \otimes \hat{P}(1)$	$\left\{\frac{\pi}{2}, \frac{\pi}{2} \mp \chi, \frac{\pi}{2}, \frac{\pi}{2} \mp \chi\right\}$	$\left\{\frac{\pi}{2}, \frac{\pi}{2} \mp \chi, \frac{\pi}{2} \mp \chi, \frac{\pi}{2}\right\}$	$\left\{\frac{\pi}{2}, \frac{\pi}{2} \mp \chi, \frac{\pi}{2} \mp \chi, \frac{\pi}{2}\right\}$	$\left\{\frac{\pi}{2}, \frac{\pi}{2} \mp \chi, \frac{\pi}{2} \mp \chi, \frac{\pi}{2}\right\}$

Additional Slides

Typical thresholds

PRL 112, 120504 (2014)

Typical thresholds

PRL 112, 120504 (2014)

PHYSICAL REVIEW LETTERS

Fault-Tolerant Measurement-Based Quantum Computing with Continuous-Variable Cluster States

School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
(Received 29 October 2013; published 26 March 2014)
PRL 112, 120504 (2014)
~15.6-20.5 dB
for qubit error rates $10^{-2}-10^{-6}$
(depends on qubit code employed)

Typical thresholds

```
PRL 112, 120504 (2014) PHYSICAL REVIEW LETTERS
Fault-Tolerant Measurement-Based Quantum Computing with Continuous-Variable Cluster States
School of Physics The Nicolas C. Menicucci
Schoot of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
(Received 29 October 2013; published 26 March 2014)
```

PRL 112, 120504 (2014)

PHYSICAL REVIEW X 8, 021054 (2018)

High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction
Kosuke Fukui, Akihisa Tomita, and Atsushi Okamoto
Graduate School of Information Science and Technology, Hokkaido University,
Kital4-Nishi9, Kita-ku, Sapporo 060-0814, Japan
Kita14-Nishi9, Kita-ku, Sapporo 060-0814, Japan
Keisuke Fujii
Department of Physics, Graduate School of Science, Kyoto University,
epartment of Physics, Graduate School of Science, Kyoto Univers
Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan

$$
\text { PRX 8, } 021054 \text { (2018) }
$$

PRX QUANTUM 2, 030325 (2021)

Fault-Tolerant Continuous-Variable Measurement-based Quantum Computation
Architecture
Mikkel V. Larsen $\odot,{ }^{1, *}$ Christopher Chamberland $\odot,{ }^{2,3, \ddagger}$ Kyungjoo Noh $\odot,{ }^{2,3, \ddagger}$ Jonas S. Neergaard-Nielsen $\odot,^{1}$ and Ulrik L. Andersen $\odot^{1,+}$

PRX Quantum 2, 030325 (2021)

~15.6-20.5 dB
for qubit error rates $10^{-2}-10^{-6}$
(depends on qubit code employed)

Editors' Suggestion
 Fault-tolerant bosonic quantum error correction with the surface-Gottesman-Kitaev-Preskill code
 Kyungjoo Noh $\oplus^{1, *}$ and Christopher Chamberland $\oplus^{2, *}$

PRA 101, 012316 (2020)
Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer
J. Eli Bourassa ${ }^{1,2,,^{*}}$, Rafael N. Alexander ${ }^{1,3,4, *}$, Michael Vasmer ${ }^{5,6}$, Ashlesha Patil ${ }^{1,7}$, Ilan Tzitrin ${ }^{1,2}$ Takaya Matsuura ${ }^{1,8}$, Daiqin Su ${ }^{1}$, Ben Q. Baragiola ${ }^{1,4}$, Saikat Guha ${ }^{1,7}$, Guillaume Dauphinais ${ }^{1}$, Krishna K. Sabapathy ${ }^{1}$, Nicolas C. Menicucci ${ }^{1,4}$, and Ish Dhand ${ }^{1}$

Quantum 5, 392 (2021)
PRX QUANTUM 2, 040353 (2021)

Fault-Tolerant Quantum Computation with Static Linear Optics
Ilan Tzitrin © , ${ }^{1,2,{ }^{*}, \dagger}$ Takaya Matsuura, ${ }^{1,3, \dagger}$ Rafael N. Alexander, ${ }^{1,4,5, \dagger}$ Guillaume Dauphinais, ${ }^{1}$ J. Eli Bourassa, ${ }^{1,2}$ Krishna K. Sabapathy,${ }^{1}$ Nicolas C. Menicuccie,, ,4,4 and Ish Dhand ${ }^{1}$

PRX Quantum 2, 040353 (2021)
KVII
UNIVERSITY

Typical thresholds

```
PRL 112, 120504 (2014) PHYSICAL REVIEW LETTERS
Fault-Tolerant Measurement-Based Quantum Computing with Continuous-Variable Cluster States
School of Physics The Nicolas C. Menicucci
School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
(Received 29 October 2013; published 26 March 2014)
```

PRL 112, 120504 (2014)

PHYSICAL REVIEW X 8, 021054 (2018)

High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction
Kosuke Fukui, Akihisa Tomita, and Atsushi Okamoto
Graduate School of Information Science and Technology, Hokkaido University,
Kita14-Nishi9, Kita-ku, Sapporo 060-0814, Japan
Keisuke Fujii
Department of Physics, Graduate School of Science, Kyoto University,
Department of Physics, Gracuate School of Science, Kyoto Univer
Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan

$$
\text { PRX 8, } 021054 \text { (2018) }
$$

PRX QUANTUM 2, 030325 (2021)

Fault-Tolerant Continuous-Variable Measurement-based Quantum Computation Architecture

Mikkel V. Larsen $\odot,{ }^{1, *}$ Christopher Chamberland $\oplus^{2,3, \ddagger}$ Kyungjoo Noh $\odot,{ }^{2,3, \ddagger}$ Jonas S. Neergaard-Nielsen $\odot,{ }^{1}$ and Ulrik L. Andersen $\odot^{1,}$,

PRX Quantum 2, 030325 (2021)

$$
\sim 10-18 \mathrm{~dB}
$$

based on topological codes

~15.6-20.5 dB
for qubit error rates $10^{-2}-10^{-6}$
(depends on qubit code employed)

Editors' Suggestion
 Fault-tolerant bosonic quantum error correction with the surface-Gottesman-Kitaev-Preskill code
 Kyungjoo Noh $\oplus^{1, *}$ and Christopher Chamberland $\oplus^{2, *}$

PRA 101, 012316 (2020)
Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer
J. Eli Bourassa ${ }^{1,2,{ }^{*}}$, Rafael N. Alexander ${ }^{1,3,4,,^{*}}$, Michael Vasmer ${ }^{5,6}$, Ashlesha Patil ${ }^{1,7}$, Ilan Tzitrin ${ }^{1,2}$, Takaya Matsuura ${ }^{1,8}$, Daiqin Su ${ }^{1}$, Ben Q. Baragiola ${ }^{1,4}$, Saikat Guha ${ }^{1,7}$, Guillaume Dauphinais ${ }^{1}$, Krishna K. Sabapathy ${ }^{1}$, Nicolas C. Menicucci ${ }^{1,4}$, and Ish Dhand ${ }^{1}$

Quantum 5, 392 (2021)
PRX QUANTUM 2, 040353 (2021)

Fault-Tolerant Quantum Computation with Static Linear Optics

Ilan Tzitrin $\odot,{ }^{1,2, *, \dagger}$ Takaya Matsuura, ${ }^{1,3, \dagger}$ Rafael N. Alexander, ${ }^{1,4,5, \dagger}$ Guillaume Dauphinais ${ }^{1}$ J. Eli Bourassa, ${ }^{1,2}$ Krishna K. Sabapathy©, ${ }^{1}$ Nicolas C. Menicucci $\odot,{ }^{1,4}$ and Ish Dhand ${ }^{1}$

PRX Quantum 2, 040353 (2021)
KVII
UNIVERSITY

The teleported gate

$$
\begin{aligned}
& |\mathrm{EPR}\rangle:=\begin{array}{l}
\bullet|0\rangle_{p} \\
-|0\rangle_{q}
\end{array}=-\begin{array}{|c}
\frac{1}{\sqrt{2 \pi}} I
\end{array} \\
& \begin{array}{l}
\downarrow|t\rangle_{p} \\
\downarrow|s\rangle_{q}
\end{array} \\
& = \\
& -\frac{1}{\sqrt{\pi}} D(s+i t)
\end{aligned}
$$

The teleported gate

$|\mathrm{EPR}\rangle:=\begin{aligned} & -|0\rangle_{p} \\ & -|0\rangle_{q}\end{aligned}=\overline{-\frac{1}{\sqrt{2 \pi}} I}$

$$
\downarrow|t\rangle_{p}=-\quad \begin{aligned}
& \downarrow\rangle_{q}
\end{aligned}=
$$

The teleported gate

$$
\begin{aligned}
& |\mathrm{EPR}\rangle:=\begin{array}{l}
-|0\rangle_{p} \\
-|0\rangle_{q}
\end{array}=-\begin{array}{|c}
\frac{1}{\sqrt{2 \pi}} I
\end{array} \\
& \downarrow|s\rangle_{p}=-\begin{array}{l}
\downarrow \frac{1}{\sqrt{\pi}} D(s+i t)
\end{array} \\
& \left.\begin{array}{l}
\downarrow|\psi\rangle \\
\downarrow|\phi\rangle
\end{array}\right\rangle
\end{aligned}
$$

The teleported gate

$$
\begin{aligned}
& |\mathrm{EPR}\rangle:=\begin{array}{l}
-|0\rangle_{p} \\
-|0\rangle_{q}
\end{array}=\begin{array}{|}
\sqrt{\frac{1}{\sqrt{2 \pi}} I}-
\end{array} \\
& \downarrow^{|t\rangle_{p}}|s|_{q}=-\sqrt{\frac{1}{\sqrt{\pi}} D(s+i t)} \\
& \downarrow^{-|\psi\rangle}=\square \\
& { }_{p \theta_{\theta_{b}}}^{p_{a}\left\langle m_{b}\right|} \downarrow={ }^{D(\mu)-\sqrt{\frac{1}{\sqrt{\pi}} V\left(\theta_{a}, \theta_{b}\right)}-}
\end{aligned}
$$

The teleported gate

The teleported gate

$\left.\downarrow_{\downarrow}|t\rangle_{p}\right\rangle_{q}=$

The teleported gate

Beamsplitter decomposition
I

The teleported gate

The teleported gate

The teleported gate

$e^{i \hat{p}_{1} \otimes \hat{q}_{2}} \rightarrow e^{i s t}$

The teleported gate

$e^{i \hat{p}_{1} \otimes \hat{q}_{2}} \rightarrow e^{i s t}$

The teleported gate

$e^{i \hat{p}_{1} \otimes \hat{q}_{2}} \rightarrow e^{i s t}$

The teleported gate

$e^{i \hat{p}_{1} \otimes \hat{q}_{2}} \rightarrow e^{i s t}$

The teleported gate

$e^{i \hat{p}_{1} \otimes \hat{q}_{2}} \rightarrow e^{i s t}$

- RMIT

The teleported gate

$\hat{D}(\alpha)=e^{i \alpha_{\alpha} \alpha \alpha_{X}} \hat{\left(\sqrt{2} \alpha_{R}\right) \hat{Z}\left(\sqrt{2} \alpha_{I}\right)}$

Beamsplitter decomposition

$=\begin{gathered}-Z(\sqrt{2} t) \\ -X(\sqrt{2} s)\end{gathered}$
$=-X(\sqrt{2} s)-Z(\sqrt{2} t)$

The teleported gate

$\hat{B}_{1,2}|\psi\rangle_{1}|\phi\rangle_{2}$

The teleported gate

$\bar{T}|\psi\rangle \quad|\psi\rangle=\int d t \widetilde{\psi}(t)|t\rangle_{p} \quad|\phi\rangle=\int d s \phi(s)|s\rangle_{q}$
$\hat{B}_{1,2}|\psi\rangle_{1}|\phi\rangle_{2}$

The teleported gate

Substitute into the equation:
$\hat{B}_{1,2}|\psi\rangle_{1}|\phi\rangle_{2}$

The teleported gate

$$
|\psi\rangle=\int d t \widetilde{\psi}(t)|t\rangle_{p} \quad|\phi\rangle=\int d s \phi(s)|s\rangle_{q}
$$

$\phi\rangle$
Substitute into the equation:
$\hat{B}_{1,2}|\psi\rangle_{1}|\phi\rangle_{2}=\hat{B}_{1,2} \int d t d s \widetilde{\psi}(t) \phi(s)|t\rangle_{p_{1}}|s\rangle_{q_{2}}$

The teleported gate

$$
|\psi\rangle=\int d t \widetilde{\psi}(t)|t\rangle_{p} \quad|\phi\rangle=\int d s \phi(s)|s\rangle_{q}
$$

$|\phi\rangle$
Substitute into the equation:

$$
\begin{aligned}
\hat{B}_{1,2}|\psi\rangle_{1}|\phi\rangle_{2} & =\hat{B}_{1,2} \int d t d s \widetilde{\psi}(t) \phi(s)|t\rangle_{p_{1}}|s\rangle_{q_{2}} \\
& =\int d t d s \widetilde{\psi}(t) \phi(s) \hat{B}_{1,2}|t\rangle_{p_{1}}|s\rangle_{q_{2}}
\end{aligned}
$$

The teleported gate

$\bar{\square} \quad|\psi\rangle \quad|\psi\rangle=\int d t \widetilde{\psi}(t)|t\rangle_{p} \quad|\phi\rangle=\int d s \phi(s)|s\rangle_{q}$
$|\phi\rangle \quad$ Substitute into the equation:

$$
\begin{aligned}
\hat{B}_{1,2}|\psi\rangle_{1}|\phi\rangle_{2} & =\hat{B}_{1,2} \int d t d s \widetilde{\psi}(t) \phi(s)|t\rangle_{p_{1}}|s\rangle_{q_{2}} \\
& =\int d t d s \widetilde{\psi}(t) \phi(s) \hat{B}_{1,2}|t\rangle_{p_{1}}|s\rangle_{q_{2}} \\
& =\int d t d s \widetilde{\psi}(t) \phi(s) \hat{D}_{2}(s+i t)|E P R\rangle
\end{aligned}
$$

The teleported gate

$\bar{\square} \quad|\psi\rangle \quad|\psi\rangle=\int d t \widetilde{\psi}(t)|t\rangle_{p} \quad|\phi\rangle=\int d s \phi(s)|s\rangle_{q}$
$|\phi\rangle \quad$ Substitute into the equation:

$$
\begin{aligned}
\hat{B}_{1,2}|\psi\rangle_{1}|\phi\rangle_{2} & =\hat{B}_{1,2} \int d t d s \widetilde{\psi}(t) \phi(s)|t\rangle_{p_{1}}|s\rangle_{q_{2}} \\
& =\int d t d s \widetilde{\psi}(t) \phi(s) \hat{B}_{1,2}|t\rangle_{p_{1}}|s\rangle_{q_{2}} \\
& =\int d t d s \widetilde{\psi}(t) \phi(s) \hat{D}_{2}(s+i t)|E P R\rangle \\
& =\int d^{2} \alpha \widetilde{\psi}\left(\alpha_{I}\right) \phi\left(\alpha_{R}\right) \hat{D}_{2}(\alpha)|E P R\rangle
\end{aligned}
$$

The teleported gate

$\bar{\square} \quad|\psi\rangle \quad|\psi\rangle=\int d t \widetilde{\psi}(t)|t\rangle_{p} \quad|\phi\rangle=\int d s \phi(s)|s\rangle_{q}$
$|\phi\rangle \quad$ Substitute into the equation:

$$
\begin{aligned}
\hat{B}_{1,2}|\psi\rangle_{1}|\phi\rangle_{2} & =\hat{B}_{1,2} \int d t d s \widetilde{\psi}(t) \phi(s)|t\rangle_{p_{1}}|s\rangle_{q_{2}} \\
& =\int d t d s \widetilde{\psi}(t) \phi(s) \hat{B}_{1,2}|t\rangle_{p_{1}}|s\rangle_{q_{2}} \\
& =\int d t d s \widetilde{\psi}(t) \phi(s) \hat{D}_{2}(s+i t)|E P R\rangle \\
& =\int d^{2} \alpha \widetilde{\psi}\left(\alpha_{I}\right) \phi\left(\alpha_{R}\right) \hat{D}_{2}(\alpha)|E P R\rangle \\
& =\hat{A}_{2}(\psi, \phi)|E P R\rangle
\end{aligned}
$$

Error correction with the teleported gate

\bigcirc local mode
\rightarrow beamsplitter
() macronode
\varnothing qunaught state
(A)

$$
\nabla^{|0\rangle_{p}}=\overline{2^{\frac{1}{4}} \Psi_{\sqrt{\pi}}(\hat{p})}
$$

(B)

$$
\begin{equation*}
\hat{A}(\psi, \phi):=\iint d^{2} \alpha \tilde{\psi}\left(\alpha_{I}\right) \phi\left(\alpha_{R}\right) \hat{D}(\alpha) \tag{B}
\end{equation*}
$$

Two qunaught states (AB)

$$
\hat{A}(\psi, \phi):=\iint d^{2} \alpha \tilde{\psi}\left(\alpha_{I}\right) \phi\left(\alpha_{R}\right) \hat{D}(\alpha)
$$

Two qunaught states (AB)

$$
\begin{aligned}
& \hat{A}(\psi, \phi):=\iint d^{2} \alpha \tilde{\psi}\left(\alpha_{I}\right) \phi\left(\alpha_{R}\right) \hat{D}(\alpha) \\
& \hat{A}(\varnothing, \varnothing)=\iint d^{2} \alpha \mathrm{III}_{\sqrt{2 \pi}}\left(\alpha_{R}\right) \mathrm{III} \sqrt{\sqrt{2 \pi}}\left(\alpha_{I}\right) \hat{D}(\alpha)
\end{aligned}
$$

Two qunaught states (AB)

$$
\begin{aligned}
& \hat{A}(\psi, \phi):=\iint d^{2} \alpha \tilde{\psi}\left(\alpha_{I}\right) \phi\left(\alpha_{R}\right) \hat{D}(\alpha) \\
& \hat{A}(\varnothing, \varnothing)=\iint d^{2} \alpha \mathrm{II}_{\sqrt{2 \pi}}\left(\alpha_{R}\right) \mathrm{III} \sqrt{\sqrt{2 \pi}}\left(\alpha_{I}\right) \hat{D}(\alpha)
\end{aligned}
$$

$$
\hat{D}(\alpha)=e^{i \alpha_{R} \alpha_{I}} \hat{X}\left(\sqrt{2} \alpha_{R}\right) \hat{Z}\left(\sqrt{2} \alpha_{I}\right) \quad e^{i \alpha_{R} \alpha_{I}} \rightarrow e^{i 2 \pi}=1
$$

Two qunaught states (AB)

$\hat{A}(\psi, \phi):=\iint d^{2} \alpha \tilde{\psi}\left(\alpha_{I}\right) \phi\left(\alpha_{R}\right) \hat{D}(\alpha)$
$\hat{A}(\varnothing, \varnothing)=\iint d^{2} \alpha \mathrm{II}_{\sqrt{2 \pi}}\left(\alpha_{R}\right) \mathrm{III} \sqrt{\sqrt{2 \pi}}\left(\alpha_{l}\right) \hat{D}(\alpha)$

$$
\hat{D}(\alpha)=e^{i \alpha_{R^{\prime}} \alpha_{I}} \hat{X}\left(\sqrt{2} \alpha_{R}\right) \hat{Z}\left(\sqrt{2} \alpha_{I}\right) \quad e^{i \alpha_{R} \alpha_{I}} \rightarrow e^{i 2 \pi}=1
$$

$\hat{A}(\varnothing, \varnothing)=\pi \sqrt{2}$ III $_{\sqrt{\pi}}(\hat{p})$ III ${ }_{\sqrt{\pi}}(\hat{q})$

Two qunaught states (AB)

$\hat{A}(\psi, \phi):=\iint d^{2} \alpha \tilde{\psi}\left(\alpha_{I}\right) \phi\left(\alpha_{R}\right) \hat{D}(\alpha)$
$\hat{A}(\varnothing, \varnothing)=\iint d^{2} \alpha \mathrm{II}_{\sqrt{2 \pi}}\left(\alpha_{R}\right) \mathrm{III} \sqrt{\sqrt{2 \pi}}\left(\alpha_{l}\right) \hat{D}(\alpha)$

$$
\hat{D}(\alpha)=e^{i \alpha_{R} \alpha_{I}} \hat{X}\left(\sqrt{2} \alpha_{R}\right) \hat{Z}\left(\sqrt{2} \alpha_{I}\right) \quad e^{i \alpha_{R} \alpha_{I}} \rightarrow e^{i 2 \pi}=1
$$

$\hat{A}(\varnothing, \varnothing)=\pi \sqrt{2}$ III $_{\sqrt{\pi}}(\hat{p})$ III ${ }_{\sqrt{\pi}}(\hat{q})$

$$
=\sqrt{\frac{\pi}{2}} \hat{\Pi}_{\mathrm{GKP}}
$$

Two-mode gate

Cz gate:

Two-mode gate

Cz gate:

Disentangled gate:

GKP with GBS

Figure 1: GBS devices for state preparation. (left) A single integrated photonic device implementing GBS-based preparation of non-Gaussian states based on the schemes presented in Refs. [27-30]. The emitted light from one output port is in a chosen non-Gaussian state subject to obtaining the correct click pattern $\left\{n_{i}\right\}$ at the PNR detectors connected to the remaining output ports. The double purple lines represent classical logic, which is used to trigger a switch on the emitted port. (right) A simplified representation of a single GBS device.

Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer
J. Eli Bourassa ${ }^{1,2, *}$, Rafael N. Alexander ${ }^{1,3,4,{ }^{*}}$, Michael Vasmer ${ }^{5,6}$, Ashlesha Patil ${ }^{1,7}$, Ilan Tzitrin ${ }^{1,2}$, Takaya Matsuura ${ }^{1,8}$, Daiqin Su ${ }^{1}$, Ben Q. Baragiola ${ }^{1,4}$, Saikat Guha ${ }^{1,7}$, Guillaume Dauphinais ${ }^{1}$, Krishna K. Sabapathy ${ }^{1}$, Nicolas C. Menicucci ${ }^{1,4}$, and Ish Dhand ${ }^{1}$

Virtual beam splitter

$$
\begin{aligned}
& \begin{array}{l}
{ }_{\theta}\left\langle m_{1}\right| \square \downarrow \\
{ }_{\theta}\left\langle m_{2}\right| \downarrow \downarrow \\
{ }^{\left\langle\frac{1}{\sqrt{2}}\left(m_{1}+m_{2}\right)\right|-} \\
{ }_{\theta}\left\langle\frac{1}{\sqrt{2}}\left(m_{2}-m_{1}\right)\right|-
\end{array} \\
& { }_{\theta}\left\langle m_{1}\right|-\quad=\theta^{\left\langle\frac{1}{\sqrt{2}}\left(m_{1}-m_{2}\right)\right|} \\
& { }_{\theta}\left\langle m_{2}\right|-\quad{ }_{\theta}\left\langle\left.\frac{1}{\sqrt{2}}\left(m_{2}+m_{1}\right) \right\rvert\,-\quad\right\rangle
\end{aligned}
$$

Virtual beam splitter

$$
\begin{align*}
& \left.\begin{array}{ll}
{ }_{\theta}\left\langle m_{1}\right| \downarrow
\end{array}=\begin{array}{l}
\theta^{\left\langle\frac{1}{\sqrt{2}}\left(m_{1}+m_{2}\right)\right|} \\
{ }_{\theta}\left\langle m_{2}\right| \downarrow
\end{array}\right) \tag{11}\\
& { }_{\theta}\left\langle m_{1}\right|- \\
& =\theta^{\left\langle\frac{1}{\sqrt{2}}\left(m_{1}-m_{2}\right)\right|} \\
& { }_{\theta}\left(m_{2} \mid-\right.
\end{align*}
$$

$$
\begin{aligned}
\hat{B}_{1,2}|s\rangle_{q_{1}}|t\rangle_{q_{2}} & =e^{-i q_{1} p_{2}} \hat{S}_{1}^{\dagger}(\sqrt{2}) \hat{S}_{2}(\sqrt{2}) e^{i p_{1} q_{2}}|s\rangle_{q_{1}}|t\rangle_{q_{2}} \\
& \left.=e^{-i q_{1} p_{2}} \hat{S}_{1}^{\dagger}(\sqrt{2}) \hat{S}_{2}(\sqrt{2})|s-t\rangle\right\rangle_{q_{1}}|t\rangle_{q_{2}} \\
& =e^{-i q_{1} p_{2}}\left|\frac{1}{\sqrt{2}}(s-t)\right\rangle_{\sigma_{1}}|\sqrt{2} t\rangle_{q_{2}} \\
& =\left|\frac{1}{\sqrt{2}}(s-t)\right\rangle_{q_{1}}\left|\frac{1}{\sqrt{2}}(s+t)\right\rangle_{q_{2}} .
\end{aligned}
$$

Virtual beam splitter

$$
\begin{aligned}
& { }_{\theta}\left\langle m_{1}\right|= \\
& =\theta^{\left\langle\frac{1}{\sqrt{2}}\left(m_{1}-m_{2}\right)\right|} \\
& { }_{\theta}\left\langle m_{2}\right|- \\
& { }_{\theta}\left\langle\frac{1}{\sqrt{2}}\left(m_{2}+m_{1}\right)\right|-\quad \\
& \hat{B}_{1,2}^{\dagger} \boldsymbol{x} \hat{B}_{1,2}=\boldsymbol{S}_{\hat{B}_{1,2}} \boldsymbol{x}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
\hat{q}_{1}-\hat{q}_{2} \\
\hat{q}_{1}+\hat{q}_{2} \\
\hat{p}_{1}-\hat{p}_{2} \\
\hat{p}_{1}+\hat{p}_{2}
\end{array}\right]
\end{aligned}
$$

Virtual beam splitter

$$
\begin{aligned}
& { }_{\theta}\left(m_{2} \mid-\right. \\
& { }_{\theta}\left\langle\frac{1}{\sqrt{2}}\left(m_{2}+m_{1}\right)\right|-\quad \\
& { }_{\theta}\left\langle m_{1}\right|- \\
& =\theta^{\left\langle\frac{1}{\sqrt{2}}\left(m_{1}-m_{2}\right)\right|} \\
& \hat{B}_{1,2}^{\dagger} x \hat{B}_{1,2}=S_{\hat{B}_{1,2}} x=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
\hat{q}_{1}-\hat{q}_{2} \\
\hat{q}_{1}+\hat{q}_{2} \\
\hat{p}_{1}-\hat{p}_{2} \\
\hat{p}_{1}+\hat{p}_{2}
\end{array}\right] \text {. You can know } \hat{q}_{1} \text { and } \hat{q}_{2} \text { perfectly }
\end{aligned}
$$

Virtual beam splitter

$$
\begin{aligned}
& { }_{\theta}\left\langle m_{1}\right|- \\
& =\theta^{\left\langle\frac{1}{\sqrt{2}}\left(m_{1}-m_{2}\right)\right|} \\
& { }_{\theta}\left(m_{2} \mid-\right. \\
& { }_{\theta}\left\langle\frac{1}{\sqrt{2}}\left(m_{2}+m_{1}\right)\right|-\quad \vee
\end{aligned}
$$

Classic vs. Quantum

Continuous variable measurement-based quantum computing

Teleportation

$$
\begin{gathered}
\left.{ }_{p}\langle\mathrm{~m}|-\quad \mid \text { in }\right\rangle \\
\psi) \mid \text { in }\rangle —
\end{gathered}
$$

Teleportation

Two- and one-mode gates

Defining a qubit

Encoding a qubit in an oscillator

Daniel Gottesman, ${ }^{1,2, *}$ Alexei Kitaev, ${ }^{1, \dagger}$ and John Preskill ${ }^{3, \ddagger}$ ${ }^{1}$ Microsoft Corporation, One Microsoft Way, Redmond, Washington 98052 ${ }^{2}$ Computer Science Division, EECS, University of California, Berkeley, California 94720
${ }^{3}$ Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125 (Received 9 August 2000; published 11 June 2001)

Error analysis for encoding a qubit in an oscillator

S. Glancy* and E. Knill ${ }^{\dagger}$

Mathematical and Computing Science Division, Information Technology Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80301, USA
(Received 14 October 2005; published 19 January 2006)

- $\left\langle\Psi(q) \mid \tilde{0}_{L}\right\rangle$
- $\left\langle\Psi(\mathrm{q}) \mid \tilde{1}_{L}\right\rangle$

Defining a qubit

PHYSICAL REVIEW A 73, 012325 (2006)

Encoding a qubit in an oscillator

Daniel Gottesman, ${ }^{1,2, *}$ Alexei Kitaev, ${ }^{1, \dagger}$ and John Preskill ${ }^{3, \ddagger}$ ${ }^{1}$ Microsoft Corporation, One Microsoft Way, Redmond, Washington 98052 ${ }^{2}$ Computer Science Division, EECS, University of California, Berkeley, California 94720
${ }^{3}$ Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125 (Received 9 August 2000; published 11 June 2001)

Error analysis for encoding a qubit in an oscillator

S. Glancy* and E. Knill ${ }^{\dagger}$

Mathematical and Computing Science Division, Information Technology Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80301, USA
(Received 14 October 2005; published 19 January 2006)

- $\left\langle\Psi(q) \mid \tilde{0}_{L}\right\rangle$
- $\left\langle\Psi(\mathrm{q}) \mid \tilde{1}_{L}\right\rangle$

$$
|\varnothing\rangle:=\int d s Ш_{\sqrt{2 \pi}}(s)|s\rangle_{q}
$$

UNIVERSITY

GKP error correction

Noise Accumulation

Noise Accumulation

$\left(\delta^{2}\right)_{\mathrm{dB}}=-10 \log _{10}\left(2 \delta^{2}\right)$

Fault-tolerant continuous variable measurementbased quantum computing

PRL 112, 120504 (2014)
PHYSICAL REVIEW LETTERS

Fault-Tolerant Measurement-Based Quantum Computing with Continuous-Variable Cluster States

Nicolas C. Menicucci*
School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia (Received 29 October 2013; published 26 March 2014)

Robust fault tolerance

Error Rate	Squeezing (dB)
10^{-6}	20.5 dB
10^{-3}	17.4 dB
1%	15.6 dB

Using the experimentally accessible resource

Simplified view

PHYSICAL REVIEW A 90, 062324 (2014)

Noise analysis of single-mode Gaussian operations using continuous-variable cluster states
Rafael N. Alexander, ${ }^{1, *}$ Seiji C. Armstrong, ${ }^{2,3}$ Ryuji Ukai, ${ }^{2}$ and Nicolas C. Menicucci ${ }^{1}$
${ }^{1}$ School of Physics, The University of Sydney, NSW, 2006, Australia
${ }^{2}$ Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
${ }^{3}$ Centre for Quantum Computation and Communication Technology, Department of Quantum Science,
The Australian National University, Canberra, ACT 0200, Australia
(Received 15 November 2013; revised manuscript received 12 October 2014; published 15 December 2014)

Error Correction on the Macronode Wire

\bigcirc local mode
\rightarrow beamsplitter

- macronode
\varnothing qunaught state

$$
|\varnothing\rangle:=\int d s \amalg_{\sqrt{2 \pi}}(s)|s\rangle_{q}
$$

Bounce rules

Bounce rules

$$
\begin{gathered}
\hat{q}^{T}=\hat{q} \\
\hat{p}^{T}=\hat{p}
\end{gathered}
$$

Bounce rules

Circuit identities

$$
\begin{aligned}
& p_{\theta_{a}}\left\langle m_{a}\right| \\
& { }_{p_{\theta_{b}}}\left\langle m_{b}\right| \downarrow=\square D(\mu)-\frac{1}{\sqrt{\pi} V\left(\theta_{a}, \theta_{b}\right)}- \\
&
\end{aligned}
$$

PHYSICAL REVIEW A 102, 062411 (2020)

Kraus operator for a macronode measurement

$$
\begin{equation*}
\text { (out) }-\frac{1}{\sqrt{\pi}} A(\psi, \phi)-D(\mu)-\frac{1}{\sqrt{\pi}} V\left(\theta_{a}, \theta_{b}\right)- \tag{in}
\end{equation*}
$$

Kraus operator for a macronode measurement

$$
\hat{K}\left(m_{a}, m_{b}\right)=\frac{1}{\pi} \underline{\hat{A}(\psi, \phi)} \hat{D}(\mu) \hat{V}\left(\theta_{a}, \theta_{b}\right)
$$

Kraus operator for a macronode measurement

$$
\hat{K}\left(m_{a}, m_{b}\right)=\frac{1}{\pi} \underline{\hat{A}}(\psi, \phi) \hat{D}(\mu) \hat{V}\left(\theta_{a}, \theta_{b}\right)
$$

$$
\hat{V}\left(\theta_{a}, \theta_{b}\right):=\hat{R}\left(\theta_{+}-\frac{\pi}{2}\right) \hat{S}\left(\tan \theta_{-}\right) \hat{R}\left(\theta_{+}\right)
$$

$\theta_{ \pm}=\frac{\theta_{a} \pm \theta_{b}}{2}$

Kraus operator for a macronode measurement

$$
\hat{K}\left(m_{a}, m_{b}\right)=\frac{1}{\pi} \underline{\hat{A}(\psi, \phi) \hat{D}(\mu) \hat{V}\left(\theta_{a}, \theta_{b}\right)}
$$

$$
\hat{V}\left(\theta_{a}, \theta_{b}\right):=\hat{R}\left(\theta_{+}-\frac{\pi}{2}\right) \hat{S}\left(\tan \theta_{-}\right) \hat{R}\left(\theta_{+}\right)
$$

$$
\hat{A}(\psi, \phi):=\iint d^{2} \alpha \tilde{\psi}\left(\alpha_{I}\right) \phi\left(\alpha_{R}\right) \hat{D}(\alpha)
$$

$\theta_{ \pm}=\frac{\theta_{a} \pm \theta_{b}}{2}$

The teleported gate

$$
\hat{A}(\psi, \phi):=\iint d^{2} \alpha \tilde{\psi}\left(\alpha_{I}\right) \phi\left(\alpha_{R}\right) \hat{D}(\alpha)
$$

$$
\downarrow|\varnothing\rangle=\square
$$

${ }^{2}$ Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico 87131, USA

