Equivalent gate noise on macronode cluster state architectures

Blayney Walshe Ben Q. Baragiola, Rafael N. Alexander, Nicolas C. Menicucci

Experimental efforts

LETTERS PUBLISHED ONLINE: 17 NOVEMBER 2013 | DOI: 10.1038/NPHOTON.2013.287 nature photonics

Ultra-large-scale continuous-variable cluster states multiplexed in the time domain

Shota Yokoyama¹, Ryuji Ukai¹, Seiji C. Armstrong^{1,2}, Chanond Sornphiphatphong¹, Toshiyuki Kaji¹, Shigenari Suzuki¹, Jun-ichi Yoshikawa¹, Hidehiro Yonezawa¹, Nicolas C. Menicucci³ and Akira Furusawa^{1*}

Experimental efforts

Invited Article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing

- Jun-ichi Yoshikawa,¹ Shota Yokoyama,^{1,2} Toshiyuki Kaji,¹
 Sl
 Jun-ichi Yoshikawa,¹ Shota Yokoyama,^{1,2} Toshiyuki Kaji,¹
 Chanond Sornphiphatphong,¹ Yu Shiozawa,¹ Kenzo Makino,¹
 and Akira Furusawa^{1,a}
- Shi ¹Department of Applied Physics, School of Engineering, The University of Tokyo,
- Shi 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- and ²Centre for Quantum Computation and Communication Technology, School of Engineering and Information Technology, University of New South Wales, Canberra, Australian Capital Territory 2600, Australia

(Received 23 June 2016; accepted 1 September 2016; published online 27 September 2016)

Experimental efforts

QUANTUM COMPUTING

Generation of time-domain-multiplexed two-dimensional cluster state

Warit Asavanant¹, Yu Shiozawa¹, Shota Yokoyama², Baramee Charoensombutamon¹, Hiroki Emura¹, Rafael N. Alexander³, Shuntaro Takeda^{1,4}, Jun-ichi Yoshikawa¹, Nicolas C. Menicucci⁵, Hidehiro Yonezawa², Akira Furusawa^{1*}

QUANTUM COMPUTING

Deterministic generation of a two-dimensional cluster state

Mikkel V. Larsen*, Xueshi Guo, Casper R. Breum, Jonas S. Neergaard-Nielsen, Ulrik L. Andersen*

Streamline QC

PHYSICAL REVIEW A 104, 062427 (2021)

Streamlined quantum computing with macronode cluster states

Blayney W. Walshe,^{1,*} Rafael N. Alexander,¹ Nicolas C. Menicucci,¹ and Ben Q. Baragiola,^{1,2}
¹Centre for Quantum Computation and Communication Technology, School of Science, RMIT University, Melbourne, VIC 3000, Australia
²Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan

(Received 10 September 2021; accepted 19 November 2021; published 16 December 2021)

Quad rail lattice (QRL)

Two-mode gate

(out)
$$A(\psi, \phi)$$
 $D(\mu_+)$ $V(\theta_a, \theta_b)$.(in)
(out) $A(\psi', \phi')$ $D(\mu_-)$ $V(\theta_c, \theta_d)$ (in)

$$\mu_{a,b} \coloneqq \frac{-m_a e^{i\theta_b} - m_b e^{i\theta_a}}{\sin(2\theta_-)} \qquad \mu_{\pm} = \frac{\mu_{c,d} \pm \mu_{a,b}}{\sqrt{2}}$$

PHYSICAL REVIEW A 104, 062427 (2021)

Streamlined quantum computing with macronode cluster states

Blayney W. Walshe,^{1,*} Rafael N. Alexander,¹ Nicolas C. Menicucci,¹ and Ben Q. Baragiola,^{1,2} ¹Centre for Quantum Computation and Communication Technology, School of Science, RMIT University, Melbourne, VIC 3000, Australia ²Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan

(Received 10 September 2021; accepted 19 November 2021; published 16 December 2021)

Two-mode gate

(out)
$$A(\psi, \phi)$$
 $D(\mu_+)$ $V(\theta_a, \theta_b)$.(in)
(out) $A(\psi', \phi')$ $D(\mu_-)$ $V(\theta_c, \theta_d)$ (in)

General two-mode gate

$$\mu_{a,b} \coloneqq \frac{-m_a e^{i\theta_b} - m_b e^{i\theta_a}}{\sin(2\theta_-)} \qquad \mu_{\pm} = \frac{\mu_{c,d} \pm \mu_{a,b}}{\sqrt{2}}$$

PHYSICAL REVIEW A 104, 062427 (2021)

Streamlined quantum computing with macronode cluster states

Blayney W. Walshe[®],^{1,*} Rafael N. Alexander[®],¹ Nicolas C. Menicucci[®],¹ and Ben Q. Baragiola[®],¹² ¹Centre for Quantum Computation and Communication Technology, School of Science, RMT University, Melbourne, VIC 3000, Australia ²Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Okwakecho, Sakyo-ku, Kyoto 606-8502, Japan

(Received 10 September 2021; accepted 19 November 2021; published 16 December 2021)

Streamlined QC

Gaussian unitaries that implement the Clifford group on GKP encoded states:

$\left\{\hat{I}, \hat{F}, \hat{P}(\pm 1), \hat{\mathcal{C}}_{Z}(\pm 1)\right\} \longmapsto \left\{\hat{I}, \hat{H}, \sqrt{\hat{Z}}, \hat{\mathcal{C}}_{Z}\right\}$							
	CV unitaries	GKP Cliffords					
	$\{ heta_a, heta_b\}$	$\hat{V}(oldsymbol{ heta})$	Logical Gate				
	$\{rac{\pi}{2},0\}$	Î	\bar{I}				
	$\{rac{3\pi}{4},rac{\pi}{4}\}$	\hat{F}	\bar{H}				
	$\{rac{\pi}{2},rac{\pi}{2}\mp\chi\}$	$\hat{P}(\pm 1)$	\bar{P}				
	$\{ heta_a, heta_b, heta_c, heta_d\}$	$\hat{V}^{(2)}(oldsymbol{ heta})$	Logical Gate				
	$\{\frac{\pi}{2}, \frac{\pi}{2} \pm \chi, \frac{\pi}{2}, \frac{\pi}{2} \mp \chi\}$	$\hat{\mathrm{C}}_Z(\pm 1)$	$\bar{\mathrm{C}}_Z$				
	$\{0, rac{\pi}{2}, rac{\pi}{2}, 0\}$	SWAP	$\overline{\mathrm{SWAP}}$				
	$\{rac{\pi}{2},0,rac{\pi}{2},0\}$	$\hat{I}\otimes\hat{I}$	$ar{I}\otimesar{I}$				
	$\{rac{3\pi}{4},rac{\pi}{4},rac{3\pi}{4},rac{\pi}{4}\}$	$\hat{F}\otimes\hat{F}$	$ar{H}\otimesar{H}$				
	$\{\tfrac{\pi}{2}, \tfrac{\pi}{2} \mp \chi, \tfrac{\pi}{2}, \tfrac{\pi}{2} \mp \chi\}$	$\hat{P}(\pm 1) \otimes \hat{P}(\pm 1)$	$ar{P}\otimesar{P}$				

Quad rail lattice (QRL)

Streamlined QC

Gaussian unitaries that implement the Clifford group on GKP encoded states:

$\{I, F, P(\pm 1), \mathcal{C}_Z(\pm 1)\} \mapsto \{I, H, \sqrt{Z}, \mathcal{C}_Z\}$							
CV unitaries		GKP Cliffords					
$\{ heta_a, heta_b\}$	$\hat{V}(oldsymbol{ heta})$	Logical Gate					
$\{rac{\pi}{2},0\}$	Î	\overline{I}					
$\{rac{3\pi}{4},rac{\pi}{4}\}$	\hat{F}	\bar{H}					
$\{rac{\pi}{2},rac{\pi}{2}\mp\chi\}$	$\hat{P}(\pm 1)$	\bar{P}					
$\{ heta_a, heta_b, heta_c, heta_d\}$	$\hat{V}^{(2)}(oldsymbol{ heta})$	Logical Gate					
$\{\frac{\pi}{2}, \frac{\pi}{2} \pm \chi, \frac{\pi}{2}, \frac{\pi}{2} \mp \chi\}$	$\hat{\mathrm{C}}_Z(\pm 1)$	$ar{\mathrm{C}}_Z$					
$\{0,rac{\pi}{2},rac{\pi}{2},0\}$	SWAP	SWAP					
$\{rac{\pi}{2},0,rac{\pi}{2},0\}$	$\hat{I}\otimes\hat{I}$	$ar{I}\otimesar{I}$					
$\{rac{3\pi}{4},rac{\pi}{4},rac{3\pi}{4},rac{\pi}{4}\}$	$\hat{F}\otimes\hat{F}$	$ar{H}\otimesar{H}$					
$\left\{\frac{\pi}{2}, \frac{\pi}{2} \mp \chi, \frac{\pi}{2}, \frac{\pi}{2} \mp \chi\right\}$	$\hat{P}(\pm 1) \otimes \hat{P}(\pm 1)$	$ar{P}\otimesar{P}$					

 $\{\hat{I}, \hat{F}, \hat{P}(\pm 1), \hat{\mathcal{C}}_Z(\pm 1)\} \longmapsto \{\hat{I}, \hat{H}, \sqrt{\hat{Z}}, \hat{\mathcal{C}}_Z\}$

Quad rail lattice (QRL)

Squeezing level by gate error rate

Gate	Error rate: 10^{-2}			Error rate: 10^{-3}				
	Ref. [26]	Ref. [29]	Ref. [20]	ours	Ref. [26]	Ref. [29]	Ref. [20]	ours
Î	14.0	13.2	11.8	10.0	15.9	15.0	13.6	11.9
\hat{F}	14.8	14.9	11.8	10.0	16.8	16.7	13.6	11.9
$\hat{P}(\pm 1)$	14.4	15.2	12.5	11.2	16.4	17.1	14.5	13.7
$\hat{C}_Z(\pm 1)$	15.6	-	-	11.9	17.4	-	-	13.7
$\hat{F}\hat{F}\hat{C}_Z$	-	16.0	13.2	-	-	17.6	15.0	-

Noise Accumulation

(out)
$$\Pi_{GKP}$$
 $D(\mu_+)$ $V(\theta_a, \theta_b)$.(in)
(out) Π_{GKP} $D(\mu_-)$ $V(\theta_c, \theta_d)$ (in)

Noise Accumulation

 $(\delta^2)_{\rm dB} = -10\log_{10}(2\delta^2)$

Noise Accumulation

(out)
$$\Pi_{GKP}$$
 $D(\mu_+)$ $V(\theta_a, \theta_b)$.(in)
(out) Π_{GKP} $D(\mu_-)$ $V(\theta_c, \theta_d)$ (in)

$$(\delta^2)_{\rm dB} = -10 \log_{10}(2\delta^2)$$

Noise Accumulation

$$(\delta^2)_{\rm dB} = -10 \log_{10}(2\delta^2)$$

Equivalent noise of two-mode macronode-based cluster states

Various groups work with different types of macronode cluster state. Reported squeezing requirements for error rates of 10^{-2} range from 16-17.5 dB

Cluster state projection

Arbitrary Streamlined QC

Quad rail lattice (QRL)

Arbitrary Streamlined QC

Quad rail lattice (QRL)

Arbitrary Streamlined QC

The only piece that depends on the beam splitter network is $\hat{V}^{(2)}$

Arbitrary Streamlined QC

The only piece that depends on the beam splitter network is $\hat{V}^{(2)}$

If we can do the same gate in a single step in each architecture, we will have the same noise properties in each architecture.

Bilayer square lattice (BSL)

beam splitters

Bilayer square lattice four splitter

Bilayer square lattice (BSL)

Four splitter

$$\mathbf{B}_{\text{QRL}}^{(4)} = \frac{1}{2} \begin{bmatrix} 1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Four splitter

$\mathbf{B}_{\mathrm{BSL}}^{(4)} = \tfrac{1}{2}$	$\sqrt{2}$	$-\sqrt{2}$	$0 \\ -1$	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
$\mathbf{B}_{\mathrm{BSL}}^{(4)} = rac{1}{2}$	1	1	1	-1
	0	0	$\sqrt{2}$	$\sqrt{2}$

Bilayer square lattice (BSL)

Four splitter

$$\mathbf{B}_{\text{QRL}}^{(4)} = \frac{1}{2} \begin{bmatrix} 1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

 $\mathbf{B}_{\rm cBSL}^{(4)} = \frac{1}{2} \begin{bmatrix} 1 & -1 & -1 & -1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \\ 1 & -1 & 1 & 1 \end{bmatrix}$

All four splitters belong to a single equivalence class that permits 3 operations:

All four splitters belong to a single equivalence class that permits 3 operations:

1. SWAP gates *after* the four splitter (to the left)

All four splitters belong to a single equivalence class that permits 3 operations:

1. SWAP gates *after* the four splitter (to the left)

$$\begin{array}{c}1 & -1 & -1 & 1\\1 & 1 & -1 & -1\\1 & -1 & 1 & -1\\1 & 1 & 1 & 1\end{array}$$

All four splitters belong to a single equivalence class that permits 3 operations:

1. SWAP gates *after* the four splitter (to the left)

1. SWAP
$$\begin{bmatrix} 1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

All four splitters belong to a single equivalence class that permits 3 operations:

1. SWAP gates *after* the four splitter (to the left)

2. \hat{F}^2 gates on any wires *after* the four splitter (to the left)

All four splitters belong to a single equivalence class that permits 3 operations:

1. SWAP gates *after* the four splitter (to the left)

2. \hat{F}^2 gates on any wires *after* the four splitter (to the left)

All four splitters belong to a single equivalence class that permits 3 operations:

1. SWAP gates after the four splitter (to the left)

2. \hat{F}^2 gates on any wires *after* the four splitter (to the left)

3. An \hat{F}^2 on any single wire *before* the four splitter (to the right)

All four splitters belong to a single equivalence class that permits 3 operations:

1. SWAP gates *after* the four splitter (to the left)

2. \hat{F}^2 gates on any wires *after* the four splitter (to the left)

3. An \hat{F}^2 on any single wire *before* the four splitter (to the right)

1. SWAP

$$\begin{bmatrix} 1 & -1 & -1 & -1 \\ 1 & 1 & -1 & +1 \\ 1 & -1 & 1 & +1 \\ 1 & -1 & 1 & +1 \\ 1 & -1 & -1 & +1 \\ 3. \hat{F}^2 \end{bmatrix}$$

BSL reduction

BSL reduction

These two-mode gates can each be done in a single step, minimising the noise added by the operation. Noise which is independent of the architecture chosen.

Architecture	QRL	BSL	DBSL	Mikkel-splitter
Mapping	$\{ heta_a, heta_b, heta_c, heta_d\}$	$ \{ heta_a, heta_b, heta_d, heta_c\} _{ heta_a= heta_c}$	$ \{ heta_a, heta_c, heta_d, heta_b\} _{ heta_a= heta_d}$	$ \{ heta_a, heta_b, heta_d, heta_c\} _{ heta_b= heta_d}$
$\hat{C}_{Z}[1]$	$\left\{\frac{\pi}{2}, \frac{\pi}{2} \pm \chi, \frac{\pi}{2}, \frac{\pi}{2} \mp \chi\right\}$	$\left\{\frac{\pi}{2}, \frac{\pi}{2} \pm \chi, \frac{\pi}{2} \mp \chi, \frac{\pi}{2}\right\}$	$\left\{\frac{\pi}{2}, \frac{\pi}{2} \pm \chi, \frac{\pi}{2} \mp \chi, \frac{\pi}{2}\right\}$	**
SWAP	$\left\{ar{0}, rac{\pi}{2}, rac{\pi}{2}, 0 ight\}$	**	**	**
$\hat{I}\otimes\hat{I}$	$\{rac{\pi}{2}, 0, rac{\pi}{2}, 0\}$	$\{\frac{\pi}{2}, 0, 0, \frac{\pi}{2}\}$	$\{\frac{\pi}{2}, 0, 0, \frac{\pi}{2}\}$	$\{\frac{\pi}{2}, 0, 0, \frac{\pi}{2}\}$
$\hat{F}\otimes\hat{F}$	$\left\{ \frac{3\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4}, \frac{\pi}{4} \right\}$	$\left\{\frac{\bar{3}\pi}{4}, \frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4}\right\}$	$\left\{ \frac{\bar{3}\pi}{4}, \frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4} \right\}$	$\left\{\frac{\bar{3}\pi}{4}, \frac{\pi}{4}, \frac{\pi}{4}, \frac{\pi}{4}, \frac{3\pi}{4}\right\}$
$\hat{P}(1)\otimes\hat{P}(1)$	$\left\{\frac{\pi}{2}, \frac{\pi}{2} \mp \chi, \frac{\pi}{2}, \frac{\pi}{2} \mp \chi\right\}$	$\left\{\frac{\pi}{2}, \frac{\pi}{2} \mp \chi, \frac{\pi}{2} \mp \chi, \frac{\pi}{2}\right\}$	$\left\{\frac{\pi}{2}, \frac{\pi}{2} \mp \chi, \frac{\pi}{2} \mp \chi, \frac{\pi}{2}\right\}$	$\left \left\{ \frac{\pi}{2}, \frac{\pi}{2} \mp \chi, \frac{\pi}{2} \mp \chi, \frac{\pi}{2} \mp \chi, \frac{\pi}{2} \right\} \right $

Additional Slides

 PRL 112, 120504 (2014)
 PHYSICAL
 REVIEW
 LETTERS
 week ending 28 MARCH 2014

 Fault-Tolerant Measurement-Based Quantum Computing with Continuous-Variable Cluster States

 Nicolas C. Menicucci*
 School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia (Received 29 October 2013; published 26 March 2014)
 PRL 112, 120504 (2014)

 PRL 112, 120504 (2014)
 PHYSICAL REVIEW LETTERS
 week ending 28 MARCH 2014

 Fault-Tolerant Measurement-Based Quantum Computing with Continuous-Variable Cluster States

 Nicolas C. Menicucci^{*} School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia (Received 29 October 2013; published 26 March 2014)
 PRL 112, 120504 (2014)

 ~15.6 - 20.5 dB

for qubit error rates $10^{-2} - 10^{-6}$ (depends on qubit code employed)

PRL 112, 120504 (2014)

week ending 28 MARCH 2014

Fault-Tolerant Measurement-Based Quantum Computing with Continuous-Variable Cluster States

Nicolas C. Menicucci^{*} School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia (Received 29 October 2013; published 26 March 2014)

PHYSICAL REVIEW LETTERS

PRL 112, 120504 (2014)

~15.6 – 20.5 dB

for qubit error rates $10^{-2} - 10^{-6}$

(depends on qubit code employed)

PHYSICAL REVIEW A 101, 012316 (2020)

PHYSICAL REVIEW X 8, 021054 (2018)

High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction

Kosuke Fukui, Akihisa Tomita, and Atsushi Okamoto Graduate School of Information Science and Technology, Hokkaido University, Kita14-Nishi9, Kita-ku, Sapporo 060-0814, Japan

Keisuke Fujii Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan

PRX 8, 021054 (2018)

PRX QUANTUM 2, 030325 (2021)

Fault-Tolerant Continuous-Variable Measurement-based Quantum Computation Architecture

Mikkel V. Larsen⁰,^{1,*} Christopher Chamberland⁰,^{2,3,†} Kyungjoo Noh⁰,^{2,3,‡} Jonas S. Neergaard-Nielsen⁰,¹ and Ulrik L. Andersen⁰,¹

PRX Quantum **2**, 030325 (2021)

Blueprint for a Scalable Photonic Fault-Tolerant Quantur Computer J. Eli Bourassa ^{1,2,*} , Rafael N. Alexander ^{1,3,4,*} , Michael Vasmer ^{5,6} , Ashlesha Patil ^{1,7} , Ilan Tzitrin ¹ Takaya Matsuura ^{1,8} , Daiqin Su ¹ , Ben Q. Baragiola ^{1,4} , Saikat Guha ^{1,7} , Guillaume Dauphinais ¹ , Krish
J. Eli Bourassa ^{1,2,*} , Rafael N. Alexander ^{1,3,4,*} , Michael Vasmer ^{5,6} , Ashlesha Patil ^{1,7} , Ilan Tzitrin ¹ Takaya Matsuura ^{1,8} , Daiqin Su ¹ , Ben Q. Baragiola ^{1,4} , Saikat Guha ^{1,7} , Guillaume Dauphinais ¹ , Krish
Takaya Matsuura ^{1,8} , Daiqin Su ¹ , Ben Q. Baragiola ^{1,4} , Saikat Guha ^{1,7} , Guillaume Dauphinais ¹ , Krish
K. Sabapathy ¹ , Nicolas C. Menicucci ^{1,4} , and Ish Dhand ¹
Quantum 5 , 392 (2
PRX QUANTUM 2, 040353 (2021)

UNIVERSITY

 PRL 112, 120504 (2014)
 PHYSICAL REVIEW LETTERS
 week ending 28 MARCH 2014

 Fault-Tolerant Measurement-Based Quantum Computing with Continuous-Variable Cluster States
 for qubit error rates 10⁻² – 10⁻⁶

 Nicolas C. Menicucci^{*}
 Nicolas C. Menicucci^{*}
 for qubit error rates 10⁻² – 10⁻⁶

 School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia (Received 29 October 2013; published 26 March 2014)
 PRL 112, 120504 (2014)

PHYSICAL REVIEW X 8, 021054 (2018)

High-Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error Correction

Kosuke Fukui, Akihisa Tomita, and Atsushi Okamoto Graduate School of Information Science and Technology, Hokkaido University, Kita14-Nishi9, Kita-ku, Sapporo 060-0814, Japan

Keisuke Fujii Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan

PRX 8, 021054 (2018)

PRX QUANTUM 2, 030325 (2021)

Fault-Tolerant Continuous-Variable Measurement-based Quantum Computation Architecture

Mikkel V. Larsen⁰,^{1,*} Christopher Chamberland⁰,^{2,3,‡} Kyungjoo Noh⁰,^{2,3,‡} Jonas S. Neergaard-Nielsen⁰,¹ and Ulrik L. Andersen⁰,¹

PRX Quantum **2**, 030325 (2021)

~10 – 18 dB based on topological codes

 Fault-tolerant bosonic quantum error correction with the surface-Gottesman-Kitaev-Preskill code

 Kyungjoo Noh®^{1,*} and Christopher Chamberland®^{2,*}

 PRA 101, 012316 (2020)

 Blueprint for a Scalable Photonic Fault-Tolerant Quantum

 Computer

 J. Eli Bourassa^{1,2,*}, Rafael N. Alexander^{1,3,4,*}, Michael Vasmer^{5,6}, Ashlesha Patil^{1,7}, Ilan Tzitrin^{1,2}, Takaya Matsuura^{1,8}, Daiqin Su¹, Ben Q. Baragiola^{1,4}, Saikat Guha^{1,7}, Guillaume Dauphinais¹, Krishna K. Sabapathy¹, Nicolas C. Menicucci^{1,4}, and Ish Dhand¹

 Quantum 5, 392 (2021)

PHYSICAL REVIEW A 101, 012316 (2020)

Editors' Suggestion

PRX QUANTUM 2, 040353 (2021)

Fault-Tolerant Quantum Computation with Static Linear Optics

Ilan Tzitrin⁰,^{1,2,*,†} Takaya Matsuura,^{1,3,†} Rafael N. Alexander,^{1,4,5,†} Guillaume Dauphinais,¹ J. Eli Bourassa,^{1,2} Krishna K. Sabapathy⁰,¹ Nicolas C. Menicucci⁰,^{1,4} and Ish Dhand¹

PRX Quantum 2, 040353 (2021)

UNIVERSITY

 $e^{i\hat{p}_1\otimes\hat{q}_2} \rightarrow e^{ist}$

$$e^{i\hat{p}_1\otimes\hat{q}_2} \rightarrow e^{ist}$$

$$e^{i\hat{p}_1\otimes\hat{q}_2} \rightarrow e^{ist}$$

 $e^{i\hat{p}_1\otimes\hat{q}_2} \rightarrow e^{ist}$

 $\hat{B}_{1,2} |\psi\rangle_1 |\phi\rangle_2$

$$ert \psi
angle \ ert \psi
angle \ ert \psi
angle$$

$$|\psi\rangle = \int dt \ \widetilde{\psi}(t) |t\rangle_p \qquad |\phi\rangle = \int ds \ \phi(s) |s\rangle_q$$

 $\hat{B}_{1,2} |\psi\rangle_1 |\phi\rangle_2$

$$|\psi\rangle = \int dt \ \widetilde{\psi}(t) |t\rangle_p \qquad |\phi\rangle = \int ds \ \phi(s) |s\rangle_q$$

Substitute into the equation:

 $\hat{B}_{1,2} |\psi\rangle_1 |\phi\rangle_2$

$$|\psi\rangle = \int dt \ \widetilde{\psi}(t) \,|t\rangle_p \qquad |\phi\rangle = \int ds \ \phi(s) \,|s\rangle_q$$

Substitute into the equation:

$$\hat{B}_{1,2} |\psi\rangle_1 |\phi\rangle_2 = \hat{B}_{1,2} \int dt \, ds \, \widetilde{\psi}(t) \phi(s) |t\rangle_{p_1} |s\rangle_{q_2}$$

$$\begin{aligned} |\psi\rangle &= \int dt \ \widetilde{\psi}(t) |t\rangle_p \qquad |\phi\rangle &= \int ds \ \phi(s) |s\rangle_q \\ \text{Substitute into the equation:} \\ \hat{B}_{1,2} |\psi\rangle_1 |\phi\rangle_2 &= \hat{B}_{1,2} \int dt \ ds \ \widetilde{\psi}(t) \phi(s) |t\rangle_{p_1} |s\rangle_{q_2} \\ &= \int dt \ ds \ \widetilde{\psi}(t) \phi(s) \ \hat{B}_{1,2} |t\rangle_{p_1} |s\rangle_{q_2} \end{aligned}$$

$$\begin{split} |\psi\rangle &= \int dt \ \widetilde{\psi}(t) |t\rangle_{p} \qquad |\phi\rangle = \int ds \ \phi(s) |s\rangle_{q} \\ \text{Substitute into the equation:} \\ \hat{B}_{1,2} |\psi\rangle_{1} |\phi\rangle_{2} &= \hat{B}_{1,2} \int dt \ ds \ \widetilde{\psi}(t) \phi(s) |t\rangle_{p_{1}} |s\rangle_{q_{2}} \\ &= \int dt \ ds \ \widetilde{\psi}(t) \phi(s) \ \hat{B}_{1,2} |t\rangle_{p_{1}} |s\rangle_{q_{2}} \\ &= \int dt \ ds \ \widetilde{\psi}(t) \phi(s) \ \hat{D}_{2}(s+it) |EPR\rangle \end{split}$$

$$\begin{split} |\psi\rangle &= \int dt \ \widetilde{\psi}(t) |t\rangle_{p} \qquad |\phi\rangle = \int ds \ \phi(s) |s\rangle_{q} \\ \text{Substitute into the equation:} \\ \hat{B}_{1,2} |\psi\rangle_{1} |\phi\rangle_{2} &= \hat{B}_{1,2} \int dt \ ds \ \widetilde{\psi}(t) \phi(s) |t\rangle_{p_{1}} |s\rangle_{q_{2}} \\ &= \int dt \ ds \ \widetilde{\psi}(t) \phi(s) \ \hat{B}_{1,2} |t\rangle_{p_{1}} |s\rangle_{q_{2}} \\ &= \int dt \ ds \ \widetilde{\psi}(t) \phi(s) \ \hat{D}_{2}(s+it) |EPR\rangle \\ &= \int d^{2}\alpha \ \widetilde{\psi}(\alpha_{I}) \phi(\alpha_{R}) \ \hat{D}_{2}(\alpha) |EPR\rangle \end{split}$$

- $|\psi\rangle$ $|\psi\rangle = \int dt \ \widetilde{\psi}(t) |t\rangle_p$ $|\phi\rangle = \int ds \ \phi(s) |s\rangle_q$ - $|\phi\rangle$ Substitute into the equation: Substitute into the equation: $\hat{B}_{1,2} |\psi\rangle_1 |\phi\rangle_2 = \hat{B}_{1,2} \left| dt ds \widetilde{\psi}(t)\phi(s) |t\rangle_{p_1} |s\rangle_{q_2} \right|$ $= \left| dt \ ds \ \widetilde{\psi}(t)\phi(s) \ \hat{B}_{1,2} \left| t \right\rangle_{p_1} \right| s \rangle_{q_2}$ $= \left| dt \ ds \ \widetilde{\psi}(t)\phi(s) \ \hat{D}_2(s+it) \left| EPR \right\rangle \right.$ $= \left| d^2 \alpha \ \widetilde{\psi}(\alpha_I) \phi(\alpha_R) \ \hat{D}_2(\alpha) \left| EPR \right\rangle \right.$ $=\hat{A}_{2}(\psi,\phi)|EPR\rangle$

Error correction with the teleported gate

(A)

(B)

(AB)

$$\hat{A}(\psi,\phi)\coloneqq \iint d^2lpha\, ilde{\psi}(lpha_I)\phi(lpha_R)\hat{D}(lpha)$$

$$\hat{A}(\psi,\phi) \coloneqq \iint d^2 \alpha \, \tilde{\psi}(\alpha_I) \phi(\alpha_R) \hat{D}(\alpha)$$

$$\hat{A}(\psi,\phi) \coloneqq \iint d^2 \alpha \, \tilde{\psi}(\alpha_I) \phi(\alpha_R) \hat{D}(\alpha)$$
$$\hat{A}(\emptyset,\emptyset) = \iint d^2 \alpha \, \mathrm{III}_{\sqrt{2\pi}}(\alpha_R) \mathrm{III}_{\sqrt{2\pi}}(\alpha_I) \hat{D}(\alpha)$$

$$\hat{A}(\psi,\phi) \coloneqq \iint d^2 \alpha \, \tilde{\psi}(\alpha_I) \phi(\alpha_R) \hat{D}(\alpha)$$
$$\hat{A}(\emptyset,\emptyset) = \iint d^2 \alpha \, \mathrm{III}_{\sqrt{2\pi}}(\alpha_R) \mathrm{III}_{\sqrt{2\pi}}(\alpha_I) \hat{D}(\alpha)$$

$$\hat{D}(\alpha) = e^{i\alpha_R \alpha_I} \hat{X}(\sqrt{2}\alpha_R) \hat{Z}(\sqrt{2}\alpha_I) \qquad e^{i\alpha_R \alpha_I} \to e^{i2\pi} = 1$$

$$\hat{A}(\psi,\phi) \coloneqq \iint d^2 \alpha \, \tilde{\psi}(\alpha_I) \phi(\alpha_R) \hat{D}(\alpha)$$
$$\hat{A}(\emptyset,\emptyset) = \iint d^2 \alpha \, \mathrm{III}_{\sqrt{2\pi}}(\alpha_R) \mathrm{III}_{\sqrt{2\pi}}(\alpha_I) \hat{D}(\alpha)$$

$$\hat{D}(\alpha) = e^{i\alpha_R\alpha_I} \hat{X}(\sqrt{2}\alpha_R) \hat{Z}(\sqrt{2}\alpha_I) \qquad e^{i\alpha_R\alpha_I} \to e^{i2\pi} = 1$$

$$\hat{A}(\emptyset, \emptyset) = \pi \sqrt{2} \operatorname{III}_{\sqrt{\pi}}(\hat{p}) \operatorname{III}_{\sqrt{\pi}}(\hat{q})$$

Two qunaught states (AB)

$$\hat{A}(\psi,\phi) \coloneqq \iint d^2 \alpha \, \tilde{\psi}(\alpha_I) \phi(\alpha_R) \hat{D}(\alpha)$$
$$\hat{A}(\emptyset,\emptyset) = \iint d^2 \alpha \, \mathrm{III}_{\sqrt{2\pi}}(\alpha_R) \mathrm{III}_{\sqrt{2\pi}}(\alpha_I) \hat{D}(\alpha)$$

$$\hat{D}(\alpha) = e^{i\alpha_R\alpha_I} \hat{X}(\sqrt{2}\alpha_R) \hat{Z}(\sqrt{2}\alpha_I) \qquad e^{i\alpha_R\alpha_I} \to e^{i2\pi} = 1$$

$$\hat{A}(\emptyset, \emptyset) = \pi \sqrt{2} \operatorname{III}_{\sqrt{\pi}}(\hat{p}) \operatorname{III}_{\sqrt{\pi}}(\hat{q})$$
$$= \sqrt{\frac{\pi}{2}} \,\hat{\Pi}_{\mathrm{GKP}}$$

GKP with GBS

Figure 1: GBS devices for state preparation. (left) A single integrated photonic device implementing GBS-based preparation of non-Gaussian states based on the schemes presented in Refs. [27–30]. The emitted light from one output port is in a chosen non-Gaussian state subject to obtaining the correct click pattern $\{n_i\}$ at the PNR detectors connected to the remaining output ports. The double purple lines represent classical logic, which is used to trigger a switch on the emitted port. (right) A simplified representation of a single GBS device.

Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer

J. Eli Bourassa^{1,2,*}, Rafael N. Alexander^{1,3,4,*}, Michael Vasmer^{5,6}, Ashlesha Patil^{1,7}, Ilan Tzitrin^{1,2}, Takaya Matsuura^{1,8}, Daiqin Su¹, Ben Q. Baragiola^{1,4}, Saikat Guha^{1,7}, Guillaume Dauphinais¹, Krishna K. Sabapathy¹, Nicolas C. Menicucci^{1,4}, and Ish Dhand¹

$$\begin{array}{c} {}_{\theta}\!\langle m_1 | \underbrace{\qquad} = {}_{\theta}\!\langle \frac{1}{\sqrt{2}}(m_1 + m_2) | \underbrace{\qquad} \\ {}_{\theta}\!\langle m_2 | \underbrace{\qquad} \\ {}_{\theta}\!\langle m_1 | \underbrace{\qquad} \\ {}_{\theta}\!\langle m_1 | \underbrace{\qquad} \\ {}_{\theta}\!\langle m_2 | \underbrace{\qquad} \\ {}_{\theta}\!\langle \frac{1}{\sqrt{2}}(m_1 - m_2) | \underbrace{\qquad} \\ {}_{\theta}\!\langle \frac{1}{\sqrt{2}}(m_2 + m_1) | \underbrace{\qquad} \\ {}_{\theta}\!\langle \frac{1}{\sqrt{2}}(m_2 + m_1) | \underbrace{\qquad} \end{array}$$

 $\begin{array}{c} {}_{\theta}\!\langle m_1 | \underbrace{\qquad} \\ {}_{\theta}\!\langle m_2 | \underbrace{\qquad} \\ \end{array} = \begin{array}{c} {}_{\theta}\!\langle \frac{1}{\sqrt{2}}(m_1 + m_2) | \underbrace{\qquad} \\ {}_{\theta}\!\langle \frac{1}{\sqrt{2}}(m_2 - m_1) | \underbrace{\qquad} \\ {}_{\theta}\!\langle m_1 | \underbrace{\qquad} \\ \end{array} = \begin{array}{c} {}_{\theta}\!\langle \frac{1}{\sqrt{2}}(m_1 - m_2) | \underbrace{\qquad} \\ {}_{\theta}\!\langle m_2 | \underbrace{\qquad} \\ \end{array} = \begin{array}{c} {}_{\theta}\!\langle \frac{1}{\sqrt{2}}(m_2 + m_1) | \underbrace{\qquad} \\ \end{array} \end{array}$

$$\hat{B}_{1,2}|s\rangle_{q_1}|t\rangle_{q_2} = e^{-iq_1p_2}\hat{S}_1^{\dagger}(\sqrt{2})\hat{S}_2(\sqrt{2})e^{ip_1q_2}|s\rangle_{q_1}|t\rangle_{q_2} \quad (10)$$

$$= e^{-iq_1p_2}\hat{S}_1^{\dagger}(\sqrt{2})\hat{S}_2(\sqrt{2})|s-t\rangle_{q_1}|t\rangle_{q_2} \quad (11)$$

$$= e^{-iq_1p_2}|\frac{1}{\sqrt{2}}(s-t)\rangle_{q_1}|\sqrt{2}t\rangle_{q_2} \quad (12)$$

$$= |\frac{1}{\sqrt{2}}(s-t)\rangle_{q_1}|\frac{1}{\sqrt{2}}(s+t)\rangle_{q_2}$$

 $\begin{array}{c} {}_{\theta}\!\langle m_1 | \underbrace{\qquad} \\ {}_{\theta}\!\langle m_2 | \underbrace{\qquad} \\ {}_{\theta}\!\langle m_2 | \underbrace{\qquad} \\ {}_{\theta}\!\langle \frac{1}{\sqrt{2}}(m_1 + m_2) | \underbrace{\qquad} \\ {}_{\theta}\!\langle \frac{1}{\sqrt{2}}(m_2 - m_1) | \underbrace{\qquad} \\ {}_{\theta}\!\langle m_1 | \underbrace{\qquad} \\ {}_{\theta}\!\langle m_1 | \underbrace{\qquad} \\ {}_{\theta}\!\langle \frac{1}{\sqrt{2}}(m_1 - m_2) | \underbrace{\qquad} \\ {}_{\theta}\!\langle \frac{1}{\sqrt{2}}(m_2 + m_1) | \underbrace{\qquad} \\ \end{array} \right)$

$$\hat{B}_{1,2}|s\rangle_{q_1}|t\rangle_{q_2} = e^{-iq_1p_2}\hat{S}_1^{\dagger}(\sqrt{2})\hat{S}_2(\sqrt{2})e^{ip_1q_2}|s\rangle_{q_1}|t\rangle_{q_2} \quad (10)$$

$$= e^{-iq_1p_2}\hat{S}_1^{\dagger}(\sqrt{2})\hat{S}_2(\sqrt{2})|s-t\rangle_{q_1}|t\rangle_{q_2} \quad (11)$$

$$= e^{-iq_1p_2}|\frac{1}{\sqrt{2}}(s-t)\rangle_{q_1}|\sqrt{2}t\rangle_{q_2} \quad (12)$$

$$= |\frac{1}{\sqrt{2}}(s-t)\rangle_{q_1}|\frac{1}{\sqrt{2}}(s+t)\rangle_{q_2}$$

$$\hat{B}_{1,2}^{\dagger} \boldsymbol{x} \hat{B}_{1,2} = \boldsymbol{S}_{\hat{B}_{1,2}} \boldsymbol{x} = \frac{1}{\sqrt{2}} \begin{bmatrix} \hat{q}_1 - \hat{q}_2 \\ \hat{q}_1 + \hat{q}_2 \\ \hat{p}_1 - \hat{p}_2 \\ \hat{p}_1 + \hat{p}_2 \end{bmatrix}$$

 $\begin{array}{ccc} {}_{\theta}\!\langle m_1 | & & = & {}_{\theta}\!\langle \frac{1}{\sqrt{2}}(m_1 + m_2) | & & \\ {}_{\theta}\!\langle m_2 | & & & {}_{\theta}\!\langle \frac{1}{\sqrt{2}}(m_2 - m_1) | & & \\ {}_{\theta}\!\langle m_1 | & & & = & {}_{\theta}\!\langle \frac{1}{\sqrt{2}}(m_1 - m_2) | & & \\ {}_{\theta}\!\langle m_2 | & & & {}_{\theta}\!\langle \frac{1}{\sqrt{2}}(m_2 + m_1) | & & \end{array} \right]$

$$\hat{B}_{1,2}|s\rangle_{q_1}|t\rangle_{q_2} = e^{-iq_1p_2}\hat{S}_1^{\dagger}(\sqrt{2})\hat{S}_2(\sqrt{2})e^{ip_1q_2}|s\rangle_{q_1}|t\rangle_{q_2} \quad (10)$$

$$= e^{-iq_1p_2}\hat{S}_1^{\dagger}(\sqrt{2})\hat{S}_2(\sqrt{2})|s-t\rangle_{q_1}|t\rangle_{q_2} \quad (11)$$

$$= e^{-iq_1p_2}|\frac{1}{\sqrt{2}}(s-t)\rangle_{q_1}|\sqrt{2}t\rangle_{q_2} \quad (12)$$

$$= |\frac{1}{\sqrt{2}}(s-t)\rangle_{q_1}|\frac{1}{\sqrt{2}}(s+t)\rangle_{q_2}$$

$$\hat{B}_{1,2}^{\dagger} \boldsymbol{x} \hat{B}_{1,2} = \boldsymbol{S}_{\hat{B}_{1,2}} \boldsymbol{x} = \frac{1}{\sqrt{2}} \begin{bmatrix} \hat{q}_1 - \hat{q}_2 \\ \hat{q}_1 + \hat{q}_2 \\ \hat{p}_1 - \hat{p}_2 \\ \hat{p}_1 + \hat{p}_2 \end{bmatrix}$$
You can know \hat{q}_1 and \hat{q}_2 perfectly

 $\begin{array}{ccc} {}_{\theta}\!\langle m_1 | & & = & {}_{\theta}\!\langle \frac{1}{\sqrt{2}}(m_1 + m_2) | & & \\ {}_{\theta}\!\langle m_2 | & & & {}_{\theta}\!\langle \frac{1}{\sqrt{2}}(m_2 - m_1) | & & \\ {}_{\theta}\!\langle m_1 | & & & {}_{\theta}\!\langle \frac{1}{\sqrt{2}}(m_1 - m_2) | & & \\ {}_{\theta}\!\langle m_2 | & & & {}_{\theta}\!\langle \frac{1}{\sqrt{2}}(m_2 + m_1) | & & \end{array} \right)$

$$\hat{B}_{1,2}|s\rangle_{q_1}|t\rangle_{q_2} = e^{-iq_1p_2}\hat{S}_1^{\dagger}(\sqrt{2})\hat{S}_2(\sqrt{2})e^{ip_1q_2}|s\rangle_{q_1}|t\rangle_{q_2} \quad (10)$$

$$= e^{-iq_1p_2}\hat{S}_1^{\dagger}(\sqrt{2})\hat{S}_2(\sqrt{2})|s-t\rangle_{q_1}|t\rangle_{q_2} \quad (11)$$

$$= e^{-iq_1p_2}|\frac{1}{\sqrt{2}}(s-t)\rangle_{q_1}|\sqrt{2}t\rangle_{q_2} \quad (12)$$

$$= |\frac{1}{\sqrt{2}}(s-t)\rangle_{q_1}|\frac{1}{\sqrt{2}}(s+t)\rangle_{q_2}$$

$$\hat{B}_{1,2}^{\dagger} \boldsymbol{x} \hat{B}_{1,2} = \boldsymbol{S}_{\hat{B}_{1,2}} \boldsymbol{x} = \frac{1}{\sqrt{2}} \begin{bmatrix} \hat{q}_1 - \hat{q}_2 \\ \hat{q}_1 + \hat{q}_2 \\ \hat{p}_1 - \hat{p}_2 \\ \hat{p}_1 + \hat{p}_2 \end{bmatrix} \xrightarrow{\boldsymbol{Y}_{0u}} \text{ can know } \hat{q}_1 \text{ and } \hat{q}_2 \text{ perfectly}$$

$$\begin{array}{c} \text{You cannot know } \hat{q}_1 \text{ and } \hat{p}_1, \text{ or } \\ \hat{q}_2 \text{ and } \hat{p}_2 \text{ at the same time} \end{array}$$

Classic vs. Quantum

Continuous variable measurement-based quantum computing

Teleportation

Teleportation

Two- and one-mode gates

Defining a qubit

PHYSICAL REVIEW A, VOLUME 64, 012310

Encoding a qubit in an oscillator

Daniel Gottesman,^{1,2,*} Alexei Kitaev,^{1,†} and John Preskill^{3,‡} ¹Microsoft Corporation, One Microsoft Way, Redmond, Washington 98052 ²Computer Science Division, EECS, University of California, Berkeley, California 94720 ³Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125 (Received 9 August 2000; published 11 June 2001) PHYSICAL REVIEW A 73, 012325 (2006)

Error analysis for encoding a qubit in an oscillator

S. Glancy^{*} and E. Knill[†] Mathematical and Computing Science Division, Information Technology Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80301, USA (Received 14 October 2005; published 19 January 2006)

Defining a qubit

PHYSICAL REVIEW A, VOLUME 64, 012310

Encoding a qubit in an oscillator

Daniel Gottesman,^{1,2,*} Alexei Kitaev,^{1,†} and John Preskill^{3,‡} ¹Microsoft Corporation, One Microsoft Way, Redmond, Washington 98052 ²Computer Science Division, EECS, University of California, Berkeley, California 94720 ³Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125 (Received 9 August 2000; published 11 June 2001) PHYSICAL REVIEW A 73, 012325 (2006)

Error analysis for encoding a qubit in an oscillator

S. Glancy^{*} and E. Knill[†] Mathematical and Computing Science Division, Information Technology Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80301, USA (Received 14 October 2005; published 19 January 2006)

 $| arnothing
angle := \int ds \ {
m III}_{\sqrt{2\pi}}(s) |s
angle_q$

GKP error correction

Fault-tolerant continuous variable measurementbased quantum computing

PRL 112, 120504 (2014) PHY

PHYSICAL REVIEW LETTERS

week ending 28 MARCH 2014

Fault-Tolerant Measurement-Based Quantum Computing with Continuous-Variable Cluster States

Nicolas C. Menicucci^{*} School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia (Received 29 October 2013; published 26 March 2014)

Robust fault tolerance

Error Rate	Squeezing (dB)		
10 ⁻⁶	20.5 dB		
10 ⁻³	17.4 dB		
1 %	15.6 dB		

PHYSICAL REVIEW A 100, 010301(R) (2019)

Rapid Communications

Robust fault tolerance for continuous-variable cluster states with excess antisqueezing

Blayney W. Walshe, * Lucas J. Mensen, Ben Q. Baragiola, and Nicolas C. Menicucci Centre for Quantum Computation and Communication Technology, School of Science, RMIT University, Melbourne, VIC 3000, Australia

Using the experimentally accessible resource

PHYSICAL REVIEW A 90, 062324 (2014)

Noise analysis of single-mode Gaussian operations using continuous-variable cluster states

Rafael N. Alexander,^{1,*} Seiji C. Armstrong,^{2,3} Ryuji Ukai,² and Nicolas C. Menicucci¹ ¹School of Physics, The University of Sydney, NSW, 2006, Australia ²Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan ³Centre for Quantum Computation and Communication Technology, Department of Quantum Science, The Australian National University, Canberra, ACT 0200, Australia (Received 15 November 2013; revised manuscript received 12 October 2014; published 15 December 2014)

Error Correction on the Macronode Wire

$$| arnothing
angle := \int ds \ {
m III}_{\sqrt{2\pi}}(s) |s
angle_q$$

Bounce rules

Bounce rules

Bounce rules

Circuit identities

$$\begin{array}{c} p_{\theta_a} \langle m_a | \\ p_{\theta_b} \langle m_b | \\ p_{\theta_b} \langle m_b | \\ \end{array} = \begin{array}{c} D(\mu) \\ \hline 1 \\ \sqrt{\pi} V(\theta_a, \theta_b) \\ \hline 1 \\ \sqrt{\pi} A(\psi, \phi) \\ \sqrt{\pi}$$

PHYSICAL H	REVIEW A	A 102, 062411	(2020)
------------	----------	---------------	--------

Continuous-variable gate teleportation and bosonic-code error correction

Blayney W. Walshe [©],^{1,*} Ben Q. Baragiola [©],¹ Rafael N. Alexander [©],^{1,2} and Nicolas C. Menicucci [©]¹ ¹Centre for Quantum Computation and Communication Technology, School of Science, RMIT University, Melbourne, Victoria 3000, Australia ²Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico 87131, USA

$$(\text{out}) - \frac{1}{\sqrt{\pi}} V(\theta_a, \theta_b) - (\text{in})$$

$$(\text{out}) - \frac{1}{\sqrt{\pi}} A(\psi, \phi)$$

$$(\text{out}) - \frac{1}{\sqrt{\pi}} A(\psi, \phi) - D(\mu) - \frac{1}{\sqrt{\pi}} V(\theta_a, \theta_b) - (\text{in})$$

PHYSICAL REVIEW A 102, 062411 (2020)

Continuous-variable gate teleportation and bosonic-code error correction

Blayney W. Walshe, ^{1,*} Ben Q. Baragiola, ¹ Rafael N. Alexander, ^{1,2} and Nicolas C. Menicucci, ¹ ¹Centre for Quantum Computation and Communication Technology, School of Science, RMIT University, Melbourne, Victoria 3000, Australia ²Center for Quantum Information and Control, University of New Mexico, Ablaquerque, New Mexico, 87131, USA

$$\hat{K}(m_a, m_b) = rac{1}{\pi} \hat{A}(\psi, \phi) \hat{D}(\mu) \hat{V}(heta_a, heta_b)$$

PHYSICAL REVIEW A 102, 062411 (2020)

Continuous-variable gate teleportation and bosonic-code error correction

Blayney W. Walshe,^{1,*} Ben Q. Baragiola,¹ Rafael N. Alexander,^{1,2} and Nicolas C. Menicucci,●¹ ¹Centre for Quantum Computation and Communication Technology, School of Science, RMIT University, Melbourne, Victoria 3000, Australia ²Center for Quantum Information and Control, University of New Mexico, Ablaquerque, New Mexico R8131, USA

$$\hat{K}(m_a, m_b) = \frac{1}{\pi} \hat{A}(\psi, \phi) \hat{D}(\mu) \hat{V}(\theta_a, \theta_b)$$

$$\hat{V}(\theta_a, \theta_b) \coloneqq \hat{R}(\theta_+ - \frac{\pi}{2})\hat{S}(\tan\theta_-)\hat{R}(\theta_+)$$

 $\theta_{\pm} = \frac{\theta_a \pm \theta_b}{2}$

PHYSICAL REVIEW A 102, 062411 (2020)

Continuous-variable gate teleportation and bosonic-code error correction

Blayney W. Walshe,^{1,*} Ben Q. Baragiola,¹ Rafael N. Alexander,^{1,2} and Nicolas C. Menicucci,●¹ ¹Centre for Quantum Computation and Communication Technology, School of Science, RMIT University, Melbourne, Victoria 3000, Australia ²Center for Quantum Information and Control, University of New Mexico, Ablaquerque, New Mexico R8131, USA

$$\hat{K}(m_a, m_b) = \frac{1}{\pi} \hat{A}(\psi, \phi) \hat{D}(\mu) \hat{V}(\theta_a, \theta_b)$$

$$\hat{V}(\theta_a, \theta_b) \coloneqq \hat{R}(\theta_+ - \frac{\pi}{2})\hat{S}(\tan\theta_-)\hat{R}(\theta_+)$$

$$\hat{A}(\psi,\phi)\coloneqq \iint d^2lpha\, ilde{\psi}(lpha_I)\phi(lpha_R)\hat{D}(lpha)$$

 $\theta_{\pm} = \frac{\theta_a \pm \theta_b}{2}$

PHYSICAL REVIEW A 102, 062411 (2020)

Continuous-variable gate teleportation and bosonic-code error correction

Blayney W. Walshe,^{1,*} Ben Q. Baragiola,¹ Rafael N. Alexander,^{1,2} and Nicolas C. Menicucci,¹ ¹Centre for Quantum Computation and Communication Technology, School of Science, RMIT University, Melbourne, Victoria 3000, Australia ²Center for Quantum Information and Control, University of New Mexico, Ablaquerque, New Mexico, 87131, USA

The teleported gate

PHYSICAL REVIEW A 102, 062411 (2020)

Continuous-variable gate teleportation and bosonic-code error correction

Blayney W. Walshe[®],^{1,*} Ben Q. Baragiola[®],¹ Rafael N. Alexander[®],^{1,2} and Nicolas C. Menicucci[®]¹ ¹Centre for Quantum Computation and Communication Technology, School of Science, RMIT University, Melbourne, Victoria 3000, Australia ²Center for Quantum Information and Control, University of New Mexico, Albuquerque, New Mexico 87131, USA

