

Chancellor's Postdoctoral Research **Fellowships**

Algorithms for non-Markovian noise

Christina Giarmatzi AIP 2022, Adelaide

JQ - Andrew White's lab

Motivation

Quantum noise is bad

Quantum noise is quantum

Sycamore

Open quantum systems

Single time
Two times

Multi-time

Quantum description

$$\rho(t_0), \rho(t_1), \rho(t_2), \rho(t_3)$$

Markovian and non-Markovian processes

Dynamical maps -----

Classical limit

$$p(X_{t_0}), p(X_{t_1}), p(X_{t_2}), p(X_{t_3})$$

$$p(X_{t_1}|X_{t_0}), p(X_{t_2}|X_{t_1}), p(X_{t_3}|X_{t_2})$$

$$p(X_{t_0}, X_{t_1}, X_{t_2}, X_{t_3})$$

Process matrix

Result
$$p(o^A, o^B) = \text{Tr}(W^{A_I A_O B_I B_O} M^{A_I A_O} \otimes M^{B_I B_O})$$
 probabilities environment operations

- O. Oreshkov and C. Giarmatzi, "Causal and causally separable processes", New Journal of Physics 18, 093020 (2016)
- O. Oreshkov, F. Costa, Č. Brukner, "Quantum correlations with no causal order", Nat. Commun. 3 1092 (2012)

Markovian process

G. Lindblad, "Non-Markovian quantum stochastic processes and their entropy", Comm. Math. Phys. 65, 281 (1979)

L. Accardi, A. Frigerio, and J.T. Lewis, "Quantum stochastic processes", Publications of the Research Institute for Mathematical Sciences 18, 97 (1982)

F. A. Pollock et al., "Non-Markovian quantum processes: Complete framework and efficient characterization", Physical Review A 97, 012127 (2018)

C. Giarmatzi and F. Costa, "Witnessing quantum memory in non-Markovian processes", Quantum 5, 440 (2021)

Markovian process matrix

$$p(o^A, o^B) = \text{Tr}(W^{A_I A_O B_I B_O} M^{A_I A_O} \otimes M^{B_I B_O})$$

Non-Markovian process

There is a memory that carries correlations

Is it classical?

Or quantum?

Results

Classical memory

Classical information

The environment obtains classical info and can affect future interactions

It can be written

$$W_{Cl}^{ABC} = \sum_{j} \rho_{j}^{A_{I}} \otimes T_{j}^{A_{O}B_{I}} \otimes N_{j}^{B_{O}C_{I}} \otimes \mathbb{1}^{C_{O}}$$

Results

Quantum memory

Everything else!

Not Markovian

Not with classical memory

Detecting quantum memory

classical memory

$$W_{Cl}^{ABC} = \sum_{j} \rho_{j}^{A_{I}} \otimes T_{j}^{A_{O}B_{I}} \otimes N_{j}^{B_{O}C_{I}} \otimes \mathbb{1}^{C_{O}}$$

Observation: Separable states

Our main result:

Detecting

Process with quantum memory

Detecting

Entangled state

Detecting entanglement

1 way

Characterise the set through separability criteria

 $ho_{
m ent}
ightharpoons W_{q.non-Mark}$

Witness

Witness Z

$$Tr(Z\rho_{\rm ent}) < 0$$

$$\operatorname{Tr}(ZW_{q.non-Mark}) < 0$$

A process: Φ⁺ and Ising model

$$\Phi = 1/\sqrt{2}(|00\rangle + |11\rangle) \qquad U(J, h, t) = e^{-iH(J, h)t} \quad \mathcal{H} = -JXX - h(Z\mathcal{I} + \mathcal{I}Z)$$

$$W^{A_I A_O B_I}(J, h, t) = \text{Tr}_{E_O}[[U(J, h, t)]]$$

Estimate Markovianity

$$t = 1$$

$$t = 1$$

$$W^{A_I A_O B_I}(J, h)$$

Witness quantum memory

$$t = 1$$

$$t = 1$$

$$W^{A_I A_O B_I}(J, h)$$

PPT

Witnessing quantum memory in non-Markovian processes

Christina Giarmatzi^{1,2} and Fabio Costa¹

A photonics experiment

Markovian and non-Markovian processes

Editors' Suggestion

Experimental characterization of a non-Markovian quantum process

K. Goswami, C. Giarmatzi, C. Monterola, S. Shrapnel, J. Romero, and F. Costa Phys. Rev. A 104, 022432 - Published 26 August 2021

New results!

Full multi-time process tomography

With superconducting qubits

	UQ: 5-qubit chip	IBM: ibm_perth 7-qubit chip
Measure of non-Markovian noise	0.633 ± 0.006	0.0843 ± 0.006
Measure of quantum non-Markovian noise	-0.055±0.003	-0.0094 ± 0.003

Outlook

Detecting quantum memory in more quantum devices

Tune parameters to eliminate it

Summary

ρ U_1	U_p	Data U_2	
	Correlations		

	UQ: 5-qubit chip	IBM: ibm_perth 7-qubit chip
Measure of non-Markovian noise	0.633±0.006 (562)	$0.0843 \pm 0.006 (591)$
Measure of quantum non-Markovian noise	-0.055 ± 0.003 (259)	-0.0094 ± 0.003 (257)

Results - Markovianity

$$t = 1$$

$$W^{A_IA_OB_I}(J,h)$$

Definition of classical memory

$$W_{\text{C}l}^{A^1...A^n} = \sum_{\vec{x}} \bigotimes_{j=0}^{n-1} T_{x_j|\vec{x}_{|j}}^{A_O^j A_I^{j+1}}.$$

CPTP map. Here, x_j denotes the classical information available at time t_j , while a_j denotes the information the environment acquires during the interaction.

Finding a witness

PPT-1

$$\rho_{sep}^{AB} \Rightarrow \rho^{T_A} > 0$$

Method 1

$$\rho^{T_A} < 0 \longrightarrow |\psi\rangle^{T_A} = \sum_{i} \epsilon_i E_i \quad \exists j \ \epsilon_j < 0$$

$$\operatorname{Tr}(|E_j\rangle\langle E_j|\rho^{T_A}) = \epsilon_j < 0 \Rightarrow \operatorname{Tr}(|E_j\rangle\langle E_j|^{T_A}\rho) < 0$$
Witness!

Method 2

SemiDefinite Program

variable Z

minimize $\text{Tr}(Z\rho) < 0$ subject to Tr Z = 1 Output:

If optimal value < 0
Witness!

What to do with a witness

