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Motivation

 Large systems of ODEs important for classical physics.

 Quantum computer can solve by encoding solution in amplitudes and applying 
linear equation solver [1] (Pedro’s talk tomorrow).

 Our prior work showed how to solve time-independent ODEs [2].

 Our prior work also gave time-dependent Hamiltonian simulation with 
log(1/𝜖) complexity [3].

 Here we provide an analogous result for time-dependent ODEs.
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Formulating the problem

 General time-dependent ODE is of the form
ሶ𝒙 𝑡 = 𝐴 𝑡 𝒙 𝑡 + 𝒃(𝑡)

 𝒙 𝑡 and 𝒃(𝑡) are vectors of length 𝑁

 𝐴 𝑡 is 𝑁 × 𝑁 matrix

 We encode vector as amplitudes of quantum state
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 We have preparation of an initial 𝒙 𝑡0 and aim for solution at time 𝑡.



Dyson solution without driving

 Solution of  ሶ𝒙 𝑡 = 𝐴 𝑡 𝒙 𝑡 is  𝒙(𝑡) = 𝑊(𝑡, 𝑡0)𝒙(𝑡0) with

𝑊 𝑡, 𝑡0 = 

𝑘=0

∞
1

𝑘!
න
𝑡0

𝑡

𝑑𝑡1න
𝑡0

𝑡

𝑑𝑡2⋯න
𝑡0

𝑡

𝑑𝑡𝑘 𝒯𝐴 𝑡1 𝐴 𝑡2 ⋯𝐴(𝑡𝑘)

with time ordering, or

𝑊 𝑡, 𝑡0 = 

𝑘=0

∞

න
𝑡0

𝑡

𝑑𝑡1න
𝑡1

𝑡

𝑑𝑡2⋯න
𝑡𝑘−1

𝑡

𝑑𝑡𝑘 𝐴 𝑡1 𝐴 𝑡2 ⋯𝐴(𝑡𝑘)

 Similar to Hamiltonian evolution but not unitary.



Particular solution

 Solution of  ሶ𝒙 𝑡 = 𝐴 𝑡 𝒙 𝑡 + 𝒃(𝑡) with  𝒙 𝑡0 = 0

𝒗 𝑡, 𝑡0 = 
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with 𝒃 on right, or
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 Complete solution
𝒙 𝑡 = 𝑊 𝑡, 𝑡0 𝒙 𝑡0 + 𝒗 𝑡, 𝑡0



Solution over long time as matrix

 Break into 𝑟 time intervals:
𝒙 0 = 𝒙0

𝒙 Δ𝑡 = 𝑊 Δ𝑡, 0 𝒙 0 + 𝒗 Δ𝑡, 0
𝒙 2Δ𝑡 = 𝑊 2Δ𝑡, Δ𝑡 𝒙 Δ𝑡 + 𝒗 2Δ𝑡, Δ𝑡

𝒙 3Δ𝑡 = 𝑊 3Δ𝑡, 2Δ𝑡 𝒙 2Δ𝑡 + 𝒗 3Δ𝑡, 2Δ𝑡

etc…

 Rewrite as matrix
𝟙 0 0 0

−𝑊 Δ𝑡, 0 𝟙 0 0
0 −𝑊 2Δ𝑡, Δ𝑡 𝟙 0
0 0 −𝑊 3Δ𝑡, 2Δ𝑡 𝟙

𝒙 0
𝒙 Δ𝑡
𝒙 2Δ𝑡
𝒙 3Δ𝑡

=

𝒙0
𝒗 Δ𝑡, 0
𝒗 2Δ𝑡, Δ𝑡
𝒗 3Δ𝑡, 2Δ𝑡



Quantum linear equation solver

 General form of linear equations
𝓐𝒙 = 𝒃

 Solve using quantum walk and filtering.

 Complexity  ∝ 𝜅 log(1/𝜖)

 Here solution gives
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Solution at final time

 Pad out matrix:
𝟙 0 0 0 0 0 0

−𝑊 Δ𝑡, 0 𝟙 0 0 0 0 0
0 −𝑊 2Δ𝑡, Δ𝑡 𝟙 0 0 0 0
0 0 −𝑊 3Δ𝑡, 2Δ𝑡 𝟙 0 0 0
0 0 0 −𝟙 𝟙 0 0
0 0 0 0 −𝟙 𝟙 0
0 0 0 0 0 −𝟙 𝟙

 Solution of form, with final 𝑇 = 𝑟Δ𝑡
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Block encoding

 Block encoding of form

0 𝑈 0 =
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Block encoding

 Block encoding has time input:

0 𝑈 0 |𝑡⟩ =
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Block encoding matrix

 Truncate Dyson series:

𝑊 𝑡, 𝑡0 ≈ 
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 Approximate integrals by sums
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1. First prepare superposition over |𝑘⟩.

2. Prepare equal superposition of 𝑗1, 𝑗2, … , 𝑗𝑘.

3. Quantum sort time registers.

4. Apply block encodings of 𝐴(𝑡).



Preparing state

 Similarly truncate and discretise 𝒗:

𝒗 𝑡, 𝑡0 ≈ 
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 We need to prepare complete state of the form

0 𝑥 0 + 
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 Difficulties arise if norm of 𝒗𝑚 is small due to cancellations in time variation.



Complexity – condition number

 Complexity proportional to condition number 𝜅.

 Norm of matrix is order of a constant.

 Inverse of matrix has simple form
𝟙 0 0 0 0 0 0

𝑊 Δ𝑡, 0 𝟙 0 0 0 0 0
𝑊 2Δ𝑡, 0 𝑊 2Δ𝑡, Δ𝑡 𝟙 0 0 0 0
𝑊 3Δ𝑡, 0 𝑊 3Δ𝑡, Δ𝑡 𝑊 3Δ𝑡, 2Δ𝑡 𝟙 0 0 0
𝑊 3Δ𝑡, 0 𝑊 3Δ𝑡, Δ𝑡 𝑊 3Δ𝑡, 2Δ𝑡 𝟙 𝟙 0 0
𝑊 3Δ𝑡, 0 𝑊 3Δ𝑡, Δ𝑡 𝑊 3Δ𝑡, 2Δ𝑡 𝟙 𝟙 𝟙 0
𝑊 3Δ𝑡, 0 𝑊 3Δ𝑡, Δ𝑡 𝑊 3Δ𝑡, 2Δ𝑡 𝟙 𝟙 𝟙 𝟙

 Norm of inverse is proportional to number of steps 𝑟, so
𝜅 ∝ 𝑟



Complexity – choice of 𝑟

 For Dyson series we want 𝜆Δ𝑡 ≤ 1.

 For total time 𝑇 we need 𝑟 = 𝑇/Δ𝑡 ∝ 𝜆𝑇.

 Complexity of solving linear equations is then
𝜅 log(1/𝜖) ∝ 𝜆𝑇 log(1/𝜖)

 To amplify solution at final time need factor of
max
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𝒙(𝑡)
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 Further factor comes from state preparation.



Final complexity

 For each step we need 𝐾 calls to 𝐴, giving complexity proportional to
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 For total gate complexity, main contribution is cost of sorting time registers
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 𝐷 depends on derivatives of 𝐴 and 𝒃.



Conclusions

 Complexity near-linear in time, logarithmic in allowable error:

𝜆𝑇 log
1

𝜖
log

𝜆𝑇

𝜖

 Replicates excellent scaling from Hamiltonian simulation.

 Approach also simplifies simulation in time-independent case.

 Difficulty of approach is ensuring state preparation works.

D. W. Berry, P. C. S. Costa, arXiv: 2212.03544.
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