Quantum algorithms for timedependent differential equations

DOMINICW.BERRY
PEDRO COSTA

* MACQUARIE
2212.03544

Motivation

- Large systems of ODEs important for classical physics.
- Quantum computer can solve by encoding solution in amplitudes and applying linear equation solver [1] (Pedro's talk tomorrow).
- Our prior work showed how to solve time-independent ODEs [2].
- Our prior work also gave time-dependent Hamiltonian simulation with $\log (1 / \epsilon)$ complexity [3].
- Here we provide an analogous result for time-dependent ODEs.
[1] P. C. S. Costa, D. An, Y. R. Sanders, Y. Su, R. Babbush, D. W. Berry, PRX Quantum 3, 040303 (2022).
[2] D. W. Berry, A. M. Childs, A. Ostrander, and G. Wang, Communications in Mathematical Physics 356, 1057 (2017).
[3] M. Kieferová, A. Scherer, D. W. Berry, Physical Review A 99, 042314 (2019).

Formulating the problem

- General time-dependent ODE is of the form

$$
\dot{\boldsymbol{x}}(t)=A(t) \boldsymbol{x}(t)+\boldsymbol{b}(t)
$$

- $\boldsymbol{x}(t)$ and $\boldsymbol{b}(t)$ are vectors of length N
- $A(t)$ is $N \times N$ matrix
- We encode vector as amplitudes of quantum state

$$
\propto \sum_{j=1}^{N} x_{j}(t)|j\rangle
$$

- We have preparation of an initial $\boldsymbol{x}\left(t_{0}\right)$ and aim for solution at time t.

Dyson solution without driving

- Solution of $\dot{\boldsymbol{x}}(t)=A(t) \boldsymbol{x}(t)$ is $\boldsymbol{x}(t)=W\left(t, t_{0}\right) \boldsymbol{x}\left(t_{0}\right)$ with

$$
W\left(t, t_{0}\right)=\sum_{k=0}^{\infty} \frac{1}{k!} \int_{t_{0}}^{t} d t_{1} \int_{t_{0}}^{t} d t_{2} \cdots \int_{t_{0}}^{t} d t_{k} \mathcal{T} A\left(t_{1}\right) A\left(t_{2}\right) \cdots A\left(t_{k}\right)
$$

with time ordering, or

$$
W\left(t, t_{0}\right)=\sum_{k=0}^{\infty} \int_{t_{0}}^{t} d t_{1} \int_{t_{1}}^{t} d t_{2} \cdots \int_{t_{k-1}}^{t} d t_{k} A\left(t_{1}\right) A\left(t_{2}\right) \cdots A\left(t_{k}\right)
$$

- Similar to Hamiltonian evolution but not unitary.

Particular solution

- Solution of $\dot{\boldsymbol{x}}(t)=A(t) \boldsymbol{x}(t)+\boldsymbol{b}(t)$ with $\boldsymbol{x}\left(t_{0}\right)=0$

$$
\boldsymbol{v}\left(t, t_{0}\right)=\sum_{k=1}^{\infty} \frac{1}{k!} \int_{t_{0}}^{t} d t_{1} \int_{t_{0}}^{t} d t_{2} \cdots \int_{t_{0}}^{t} d t_{k} \mathcal{T} A\left(t_{1}\right) A\left(t_{2}\right) \cdots A\left(t_{k-1}\right) \boldsymbol{b}\left(t_{k}\right)
$$

with \boldsymbol{b} on right, or

$$
\boldsymbol{v}\left(t, t_{0}\right)=\sum_{k=1}^{\infty} \int_{t_{0}}^{t} d t_{1} \int_{t_{1}}^{t} d t_{2} \cdots \int_{t_{k-1}}^{t} d t_{k} A\left(t_{1}\right) A\left(t_{2}\right) \cdots A\left(t_{k}\right) \boldsymbol{b}\left(t_{k}\right)
$$

- Complete solution

$$
\boldsymbol{x}(t)=W\left(t, t_{0}\right) \boldsymbol{x}\left(t_{0}\right)+\boldsymbol{v}\left(t, t_{0}\right)
$$

Solution over long time as matrix

- Break into r time intervals:

$$
\begin{gathered}
\boldsymbol{x}(0)=\boldsymbol{x}_{0} \\
\boldsymbol{x}(\Delta t)=W(\Delta t, 0) \boldsymbol{x}(0)+\boldsymbol{v}(\Delta t, 0) \\
\boldsymbol{x}(2 \Delta t)=W(2 \Delta t, \Delta t) \boldsymbol{x}(\Delta t)+\boldsymbol{v}(2 \Delta t, \Delta t) \\
\boldsymbol{x}(3 \Delta t)=W(3 \Delta t, 2 \Delta t) \boldsymbol{x}(2 \Delta t)+\boldsymbol{v}(3 \Delta t, 2 \Delta t) \\
\text { etc... }
\end{gathered}
$$

- Rewrite as matrix

$$
\left[\begin{array}{cccc}
\mathbb{1} & 0 & 0 & 0 \\
-W(\Delta t, 0) & \mathbb{1} & 0 & 0 \\
0 & -W(2 \Delta t, \Delta t) & \mathbb{1} & 0 \\
0 & 0 & -W(3 \Delta t, 2 \Delta t) & \mathbb{1}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{x}(0) \\
\boldsymbol{x}(\Delta t) \\
\boldsymbol{x}(2 \Delta t) \\
\boldsymbol{x}(3 \Delta t)
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{x}_{0} \\
\boldsymbol{v}(\Delta t, 0) \\
\boldsymbol{v}(2 \Delta t, \Delta t) \\
\boldsymbol{v}(3 \Delta t, 2 \Delta t)
\end{array}\right]
$$

Quantum linear equation solver

- General form of linear equations

$$
\mathcal{A} x=\boldsymbol{b}
$$

- Solve using quantum walk and filtering.
- Complexity $\propto \kappa \log (1 / \epsilon)$
- Here solution gives

$$
\sum_{m=0}^{r}|m\rangle \otimes \sum_{j=1}^{N} x_{j}(m \Delta t)|j\rangle
$$

Solution at final time

- Pad out matrix:

$$
\left[\begin{array}{ccccccc}
\mathbb{1} & 0 & 0 & 0 & 0 & 0 & 0 \\
-W(\Delta t, 0) & \mathbb{1} & 0 & 0 & 0 & 0 & 0 \\
0 & -W(2 \Delta t, \Delta t) & \mathbb{1} & 0 & 0 & 0 & 0 \\
0 & 0 & -W(3 \Delta t, 2 \Delta t) & \mathbb{1} & 0 & 0 & 0 \\
0 & 0 & 0 & -\mathbb{1} & \mathbb{1} & 0 & 0 \\
0 & 0 & 0 & 0 & -\mathbb{1} & \mathbb{1} & 0 \\
0 & 0 & 0 & 0 & 0 & -\mathbb{1} & \mathbb{1}
\end{array}\right]
$$

- Solution of form, with final $T=r \Delta t$

$$
\sum_{m=0}^{r}|m\rangle \otimes \sum_{j=1}^{N} x_{j}(m \Delta t)|j\rangle+\sum_{m=r+1}^{2 r}|m\rangle \otimes \sum_{j=1}^{N} x_{j}(T)|j\rangle
$$

Block encoding

- Block encoding of form

$$
\langle 0| U|0\rangle=\frac{1}{\lambda} A
$$

Block encoding

- Block encoding has time input:

$$
\langle 0| U|0\rangle|t\rangle=\frac{1}{\lambda} A(t)|t\rangle
$$

Block encoding matrix

- Truncate Dyson series:

$$
W\left(t, t_{0}\right) \approx \sum_{k=0}^{K} \frac{1}{k!} \int_{t_{0}}^{t} d t_{1} \int_{t_{0}}^{t} d t_{2} \cdots \int_{t_{0}}^{t} d t_{k} \mathcal{T} A\left(t_{1}\right) A\left(t_{2}\right) \cdots A\left(t_{k}\right)
$$

- Approximate integrals by sums

$$
W\left(t, t_{0}\right) \approx \sum_{k=0}^{K} \frac{1}{k!} \sum_{j_{1}=0}^{M} \sum_{j_{2}=0}^{M} \cdots \sum_{j_{k}=0}^{M} \mathcal{T} A\left(t_{j_{1}}\right) A\left(t_{j_{1}}\right) \cdots A\left(t_{j_{k}}\right)
$$

1. First prepare superposition over $|k\rangle$.
2. Prepare equal superposition of $j_{1}, j_{2}, \ldots, j_{k}$.
3. Quantum sort time registers.
4. Apply block encodings of $A(t)$.

Preparing state

- Similarly truncate and discretise \boldsymbol{v} :

$$
\boldsymbol{v}\left(t, t_{0}\right) \approx \sum_{k=1}^{K} \frac{1}{k!} \sum_{j_{1}=0}^{M} \sum_{j_{2}=0}^{M} \cdots \sum_{j_{k}=0}^{M} \mathcal{T} A\left(t_{j_{1}}\right) A\left(t_{j_{1}}\right) \cdots A\left(t_{j_{k-1}}\right) \boldsymbol{b}\left(t_{j_{k}}\right)
$$

- We need to prepare complete state of the form

$$
|0\rangle|x(0)\rangle+\sum_{m=1}^{r}|m\rangle\left|\boldsymbol{v}_{m}\right\rangle
$$

- Difficulties arise if norm of \boldsymbol{v}_{m} is small due to cancellations in time variation.

Complexity - condition number

- Complexity proportional to condition number κ.
- Norm of matrix is order of a constant.
- Inverse of matrix has simple form
$\left[\begin{array}{ccccccc}\mathbb{1} & 0 & 0 & 0 & 0 & 0 & 0 \\ W(\Delta t, 0) & \mathbb{1} & 0 & 0 & 0 & 0 & 0 \\ W(2 \Delta t, 0) & W(2 \Delta t, \Delta t) & \mathbb{1} & 0 & 0 & 0 & 0 \\ W(3 \Delta t, 0) & W(3 \Delta t, \Delta t) & W(3 \Delta t, 2 \Delta t) & \mathbb{1} & 0 & 0 & 0 \\ W(3 \Delta t, 0) & W(3 \Delta t, \Delta t) & W(3 \Delta t, 2 \Delta t) & \mathbb{1} & \mathbb{1} & 0 & 0 \\ W(3 \Delta t, 0) & W(3 \Delta t, \Delta t) & W(3 \Delta t, 2 \Delta t) & \mathbb{1} & \mathbb{1} & \mathbb{1} & 0 \\ W(3 \Delta t, 0) & W(3 \Delta t, \Delta t) & W(3 \Delta t, 2 \Delta t) & \mathbb{1} & \mathbb{1} & \mathbb{1} & \mathbb{1}\end{array}\right]$
- Norm of inverse is proportional to number of steps r, so

Complexity - choice of r

- For Dyson series we want $\lambda \Delta t \leq 1$.
- For total time T we need $r=T / \Delta t \propto \lambda T$.
- Complexity of solving linear equations is then

$$
\kappa \log (1 / \epsilon) \propto \lambda T \log (1 / \epsilon)
$$

- To amplify solution at final time need factor of

$$
\frac{\max _{t}\|\boldsymbol{x}(t)\|}{\|\boldsymbol{x}(T)\|}
$$

- Further factor comes from state preparation.

Final complexity

- For each step we need K calls to A, giving complexity proportional to

$$
\lambda T \log \left(\frac{1}{\epsilon}\right) \log \left(\frac{\lambda T}{\epsilon}\right)
$$

- For total gate complexity, main contribution is cost of sorting time registers

$$
\begin{gathered}
\lambda T \log \left(\frac{1}{\epsilon}\right) \log \left(\frac{\lambda T}{\epsilon}\right) M \\
\rightarrow \lambda T \log \left(\frac{1}{\epsilon}\right) \log \left(\frac{\lambda T}{\epsilon}\right) \log \left(\frac{T D}{\lambda \epsilon}\right)
\end{gathered}
$$

- D depends on derivatives of A and \boldsymbol{b}.

Conclusions

- Complexity near-linear in time, logarithmic in allowable error:

$$
\lambda T \log \left(\frac{1}{\epsilon}\right) \log \left(\frac{\lambda T}{\epsilon}\right)
$$

- Replicates excellent scaling from Hamiltonian simulation.
- Approach also simplifies simulation in time-independent case.
- Difficulty of approach is ensuring state preparation works.
D. W. Berry, P. C. S. Costa, arXiv: 2212.03544.

