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Large systems of ODEs important for classical physics.

Quantum computer can solve by encoding solution in amplitudes and applying
linear equation solver [1] (Pedro’s talk tomorrow).

Our prior work showed how to solve time-independent ODEs [2].

Our prior work also gave time-dependent Hamiltonian simulation with
log(1/€) complexity [3].

Here we provide an analogous result for time-dependent ODEs.

[1] P. C. S. Costa, D. An, Y. R. Sanders, Y. Su, R. Babbush, D. W. Berry, PRX Quantum 3, 040303 (2022).
[2] D. W. Berry, A. M. Childs, A. Ostrander, and G. Wang, Communications in Mathematical Physics 356, 1057 (2017).
[3] M. Kieferova, A. Scherer, D. W. Berry, Physical Review A 99, 042314 (2019).



General time-dependent ODE is of the form
x(t) = A(t)x(t) + b(t)

x(t) and b(t) are vectors of length N
A(t) is N X N matrix

We encode vector as amplitudes of quantum state
N

« ) x(0)l))

J=1

We have preparation of an initial x(t,) and aim for solution at time t.



Solution of x(t) = A(t)x(t) is x(t) = W(t to)x(ty) with

W(t, ty) = z k'jt dt,

with time ordermg, or

W(t, ty) = th dtljt dt, - jt dt, A(t1)A(ty) -+ A(ty)

k-1

dtz dtk TA(t)A(ty) --- A(ty)
to

to

Similar to Hamiltonian evolution but not unitary.



Solution of X(t) = A(t)x(t) + b(t) with x(t,) =0

v(t, ty) = z k'ft dt,

with b on rlght or

o(t, %)—Z f dt, f dt, - f dt, AtD)A(t) - ACt)b(t)
to ty t

k-1

t
dtz o | dt TA(t)A(tR) - A(Ek—1)b(ty)
to

to

Complete solution



Break into r time intervals:
x(0) = xg
x(At) = W(At,0)x(0) + v(At, 0)
x(2At) = W(2At, At)x(At) + v(2At, At)
x(3At) = W(3At, 2At)x(2At) + v(3At, 2At)

etc...
Rewrite as matrix
I 1 0 0 Ol x(0) T
—W (At, 0) 1 0 Ol x(At)
0 —W (2At, At) 1 0] x(2At)
0 0 —W(3At, 2At) 1i|x(3At).

X0
v(At, 0)
v(2At, At)

|[v(3At, 2At) ]



General form of linear equations
Ax=D>

Solve using quantum walk and filtering.
Complexity « xlog(1/€)
Here solution gives

r N
z Im) ® zxj(mAt) /)
m=0 j=1
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Pad out matrix:

1 0 0 0 0 0
—W (At, 0) 1 0 0 0 O
0 —W (2At, At) 1 O 0 O
0 0 —W(3At,2At) 1 0 0
0 0 0 -1 1 0
0 0 0 0O -1 1
0 0 0 0 0 -1

Solution of form with final T =rAt

Z|m>®zx,(mm>m+ Z m) ®Zx,m|]>

m=r+1
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Block encoding
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Block encoding
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» Block encoding has time input:
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Truncate Dyson series

W(t, ty,) = zk'ft dt,

Approximate integrals by sums

M
W(t, t) ~ 7 - 7 7 z TA(tA(L,) ~ A(t;,)

J1=0j2=0  ji=0
First prepare superposmon over |k).
Prepare equal superposition of ji, j,, ..., jk.
Quantum sort time registers.
Apply block encodings of A(t).

t
alt2 o | dt, TA(t)A(t,) -+ A(ty)
to

to




Similarly truncate and discretise v:

K 1 M M M
v(t, ty) = y Kl S“ S“ S“ TA(tjl)A(tjl) "'A(tjk—1)b(tfk)

k=1 j1=0j2=0 jg=0
We need to prepare complete state of the form

0)x(O) + ) [m)[vy)
m=1

Difficulties arise if norm of v,, is small due to cancellations in time variation.



Complexity proportional to condition number k.

Norm of matrix is order of a constant.

Inverse of matrix has simple form

1
W (At, 0)
W (2At,0)
W (3At, 0)
W (3At,0)
W (3At, 0)
W (3At, 0)

Norm of inverse is proportional to number of steps r, so

0
1

W (2At, At)
W (3At, At)
W (3At, At)
W (3At, At)
W (3At, At)

0
0

0

0
1 0
W (3At,2At) 1
W(3At,2At) 1
W (3At,2At) 1
W (3At,2At) 1
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For Dyson series we want 1At < 1.
For total time T we need r = T /At « AT.

Complexity of solving linear equations is then
klog(1/e) < AT log(1/¢€)

To amplify solution at final time need factor of
max||x ()l

(Dl

Further factor comes from state preparation.




For each step we need K calls to A, giving complexity proportional to
AT 1 = 1 AT
%8\e) %%\ e
For total gate complexity, main contribution is cost of sorting time registers
1 AT
AT 1 — 1 — M
(e o ()
AT 1 1 | AT | TD
_) — — —_
8 € 05 € 8 Ae

D depends on derivatives of A and b.



Complexity near-linear in time, logarithmic in allowable error:
AT 1 = 1 AT
%8¢ ) %8\ ¢
Replicates excellent scaling from Hamiltonian simulation.

Approach also simplifies simulation in time-independent case.

Difficulty of approach is ensuring state preparation works.

D. W. Berry, P. C. S. Costa, arXiv: 2212.03544-.
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