
Quantum algorithms for time-
dependent differential equations

D O M I N I C W . B E R R Y

P E D R O C O S T A

2212.03544

Motivation

 Large systems of ODEs important for classical physics.

 Quantum computer can solve by encoding solution in amplitudes and applying
linear equation solver [1] (Pedro’s talk tomorrow).

 Our prior work showed how to solve time-independent ODEs [2].

 Our prior work also gave time-dependent Hamiltonian simulation with
log(1/𝜖) complexity [3].

 Here we provide an analogous result for time-dependent ODEs.

[1] P. C. S. Costa, D. An, Y. R. Sanders, Y. Su, R. Babbush, D. W. Berry, PRX Quantum 3, 040303 (2022).
[2] D. W. Berry, A. M. Childs, A. Ostrander, and G. Wang, Communications in Mathematical Physics 356, 1057 (2017).
[3] M. Kieferová, A. Scherer, D. W. Berry, Physical Review A 99, 042314 (2019).

Formulating the problem

 General time-dependent ODE is of the form
ሶ𝒙 𝑡 = 𝐴 𝑡 𝒙 𝑡 + 𝒃(𝑡)

 𝒙 𝑡 and 𝒃(𝑡) are vectors of length 𝑁

 𝐴 𝑡 is 𝑁 × 𝑁 matrix

 We encode vector as amplitudes of quantum state

∝

𝑗=1

𝑁

𝑥𝑗(𝑡)|𝑗⟩

 We have preparation of an initial 𝒙 𝑡0 and aim for solution at time 𝑡.

Dyson solution without driving

 Solution of ሶ𝒙 𝑡 = 𝐴 𝑡 𝒙 𝑡 is 𝒙(𝑡) = 𝑊(𝑡, 𝑡0)𝒙(𝑡0) with

𝑊 𝑡, 𝑡0 =

𝑘=0

∞
1

𝑘!
න
𝑡0

𝑡

𝑑𝑡1න
𝑡0

𝑡

𝑑𝑡2⋯න
𝑡0

𝑡

𝑑𝑡𝑘 𝒯𝐴 𝑡1 𝐴 𝑡2 ⋯𝐴(𝑡𝑘)

with time ordering, or

𝑊 𝑡, 𝑡0 =

𝑘=0

∞

න
𝑡0

𝑡

𝑑𝑡1න
𝑡1

𝑡

𝑑𝑡2⋯න
𝑡𝑘−1

𝑡

𝑑𝑡𝑘 𝐴 𝑡1 𝐴 𝑡2 ⋯𝐴(𝑡𝑘)

 Similar to Hamiltonian evolution but not unitary.

Particular solution

 Solution of ሶ𝒙 𝑡 = 𝐴 𝑡 𝒙 𝑡 + 𝒃(𝑡) with 𝒙 𝑡0 = 0

𝒗 𝑡, 𝑡0 =

𝑘=1

∞
1

𝑘!
න
𝑡0

𝑡

𝑑𝑡1න
𝑡0

𝑡

𝑑𝑡2⋯න
𝑡0

𝑡

𝑑𝑡𝑘 𝒯𝐴 𝑡1 𝐴 𝑡2 ⋯𝐴 𝑡𝑘−1 𝒃(𝑡𝑘)

with 𝒃 on right, or

𝒗 𝑡, 𝑡0 =

𝑘=1

∞

න
𝑡0

𝑡

𝑑𝑡1න
𝑡1

𝑡

𝑑𝑡2⋯න
𝑡𝑘−1

𝑡

𝑑𝑡𝑘 𝐴 𝑡1 𝐴 𝑡2 ⋯𝐴(𝑡𝑘)𝒃(𝑡𝑘)

 Complete solution
𝒙 𝑡 = 𝑊 𝑡, 𝑡0 𝒙 𝑡0 + 𝒗 𝑡, 𝑡0

Solution over long time as matrix

 Break into 𝑟 time intervals:
𝒙 0 = 𝒙0

𝒙 Δ𝑡 = 𝑊 Δ𝑡, 0 𝒙 0 + 𝒗 Δ𝑡, 0
𝒙 2Δ𝑡 = 𝑊 2Δ𝑡, Δ𝑡 𝒙 Δ𝑡 + 𝒗 2Δ𝑡, Δ𝑡

𝒙 3Δ𝑡 = 𝑊 3Δ𝑡, 2Δ𝑡 𝒙 2Δ𝑡 + 𝒗 3Δ𝑡, 2Δ𝑡

etc…

 Rewrite as matrix
𝟙 0 0 0

−𝑊 Δ𝑡, 0 𝟙 0 0
0 −𝑊 2Δ𝑡, Δ𝑡 𝟙 0
0 0 −𝑊 3Δ𝑡, 2Δ𝑡 𝟙

𝒙 0
𝒙 Δ𝑡
𝒙 2Δ𝑡
𝒙 3Δ𝑡

=

𝒙0
𝒗 Δ𝑡, 0
𝒗 2Δ𝑡, Δ𝑡
𝒗 3Δ𝑡, 2Δ𝑡

Quantum linear equation solver

 General form of linear equations
𝓐𝒙 = 𝒃

 Solve using quantum walk and filtering.

 Complexity ∝ 𝜅 log(1/𝜖)

 Here solution gives

𝑚=0

𝑟

𝑚 ⊗

𝑗=1

𝑁

𝑥𝑗 𝑚Δ𝑡 |𝑗⟩

P. C. S. Costa, D. An, Y. R. Sanders, Y. Su, R. Babbush, D. W. Berry, PRX Quantum 3, 040303 (2022).

Solution at final time

 Pad out matrix:
𝟙 0 0 0 0 0 0

−𝑊 Δ𝑡, 0 𝟙 0 0 0 0 0
0 −𝑊 2Δ𝑡, Δ𝑡 𝟙 0 0 0 0
0 0 −𝑊 3Δ𝑡, 2Δ𝑡 𝟙 0 0 0
0 0 0 −𝟙 𝟙 0 0
0 0 0 0 −𝟙 𝟙 0
0 0 0 0 0 −𝟙 𝟙

 Solution of form, with final 𝑇 = 𝑟Δ𝑡

𝑚=0

𝑟

𝑚 ⊗

𝑗=1

𝑁

𝑥𝑗 𝑚Δ𝑡 |𝑗⟩ +

𝑚=𝑟+1

2𝑟

𝑚 ⊗

𝑗=1

𝑁

𝑥𝑗 𝑇 |𝑗⟩

Block encoding

 Block encoding of form

0 𝑈 0 =
1

𝜆
𝐴

𝑈

|0⟩ ⟨0|

|𝜓⟩ 𝐴|𝜓⟩

Block encoding

 Block encoding has time input:

0 𝑈 0 |𝑡⟩ =
1

𝜆
𝐴 𝑡 |𝑡⟩

𝑈
|0⟩ ⟨0|

|𝜓⟩ 𝐴|𝜓⟩

|𝑡⟩

Block encoding matrix

 Truncate Dyson series:

𝑊 𝑡, 𝑡0 ≈

𝑘=0

𝐾
1

𝑘!
න
𝑡0

𝑡

𝑑𝑡1න
𝑡0

𝑡

𝑑𝑡2⋯න
𝑡0

𝑡

𝑑𝑡𝑘 𝒯𝐴 𝑡1 𝐴 𝑡2 ⋯𝐴(𝑡𝑘)

 Approximate integrals by sums

𝑊 𝑡, 𝑡0 ≈

𝑘=0

𝐾
1

𝑘!

𝑗1=0

𝑀

𝑗2=0

𝑀

⋯

𝑗𝑘=0

𝑀

𝒯𝐴(𝑡𝑗1)𝐴(𝑡𝑗1)⋯𝐴(𝑡𝑗𝑘)

1. First prepare superposition over |𝑘⟩.

2. Prepare equal superposition of 𝑗1, 𝑗2, … , 𝑗𝑘.

3. Quantum sort time registers.

4. Apply block encodings of 𝐴(𝑡).

Preparing state

 Similarly truncate and discretise 𝒗:

𝒗 𝑡, 𝑡0 ≈

𝑘=1

𝐾
1

𝑘!

𝑗1=0

𝑀

𝑗2=0

𝑀

⋯

𝑗𝑘=0

𝑀

𝒯𝐴(𝑡𝑗1)𝐴(𝑡𝑗1)⋯𝐴 𝑡𝑗𝑘−1 𝒃(𝑡𝑗𝑘)

 We need to prepare complete state of the form

0 𝑥 0 +

𝑚=1

𝑟

𝑚 |𝒗𝑚⟩

 Difficulties arise if norm of 𝒗𝑚 is small due to cancellations in time variation.

Complexity – condition number

 Complexity proportional to condition number 𝜅.

 Norm of matrix is order of a constant.

 Inverse of matrix has simple form
𝟙 0 0 0 0 0 0

𝑊 Δ𝑡, 0 𝟙 0 0 0 0 0
𝑊 2Δ𝑡, 0 𝑊 2Δ𝑡, Δ𝑡 𝟙 0 0 0 0
𝑊 3Δ𝑡, 0 𝑊 3Δ𝑡, Δ𝑡 𝑊 3Δ𝑡, 2Δ𝑡 𝟙 0 0 0
𝑊 3Δ𝑡, 0 𝑊 3Δ𝑡, Δ𝑡 𝑊 3Δ𝑡, 2Δ𝑡 𝟙 𝟙 0 0
𝑊 3Δ𝑡, 0 𝑊 3Δ𝑡, Δ𝑡 𝑊 3Δ𝑡, 2Δ𝑡 𝟙 𝟙 𝟙 0
𝑊 3Δ𝑡, 0 𝑊 3Δ𝑡, Δ𝑡 𝑊 3Δ𝑡, 2Δ𝑡 𝟙 𝟙 𝟙 𝟙

 Norm of inverse is proportional to number of steps 𝑟, so
𝜅 ∝ 𝑟

Complexity – choice of 𝑟

 For Dyson series we want 𝜆Δ𝑡 ≤ 1.

 For total time 𝑇 we need 𝑟 = 𝑇/Δ𝑡 ∝ 𝜆𝑇.

 Complexity of solving linear equations is then
𝜅 log(1/𝜖) ∝ 𝜆𝑇 log(1/𝜖)

 To amplify solution at final time need factor of
max
𝑡

𝒙(𝑡)

𝒙(𝑇)

 Further factor comes from state preparation.

Final complexity

 For each step we need 𝐾 calls to 𝐴, giving complexity proportional to

𝜆𝑇 log
1

𝜖
log

𝜆𝑇

𝜖

 For total gate complexity, main contribution is cost of sorting time registers

𝜆𝑇 log
1

𝜖
log

𝜆𝑇

𝜖
𝑀

→ 𝜆𝑇 log
1

𝜖
log

𝜆𝑇

𝜖
log

𝑇𝐷

𝜆𝜖

 𝐷 depends on derivatives of 𝐴 and 𝒃.

Conclusions

 Complexity near-linear in time, logarithmic in allowable error:

𝜆𝑇 log
1

𝜖
log

𝜆𝑇

𝜖

 Replicates excellent scaling from Hamiltonian simulation.

 Approach also simplifies simulation in time-independent case.

 Difficulty of approach is ensuring state preparation works.

D. W. Berry, P. C. S. Costa, arXiv: 2212.03544.

	Slide 1: Quantum algorithms for time-dependent differential equations
	Slide 2: Motivation
	Slide 3: Formulating the problem
	Slide 4: Dyson solution without driving
	Slide 5: Particular solution
	Slide 6: Solution over long time as matrix
	Slide 7: Quantum linear equation solver
	Slide 8: Solution at final time
	Slide 9: Block encoding
	Slide 10: Block encoding
	Slide 11: Block encoding matrix
	Slide 12: Preparing state
	Slide 13: Complexity – condition number
	Slide 14: Complexity – choice of r
	Slide 15: Final complexity
	Slide 16: Conclusions

