Quantum Enhanced Robustness in Adversarial Machine Learning¹

M. West¹, S. L. Tsang², J. S. Low², C. Hill^{1, 3}, M. Sevior¹, C. Leckie², L. Hollenberg¹, S. Erfani² and M. Usman^{1,4}

¹School of Physics, The University of Melbourne

²School of Computing and Information Systems, Melbourne School of Engineering, The University of Melbourne

³School of Mathematics and Statistics, The University of Melbourne

⁴Data61, CSIRO

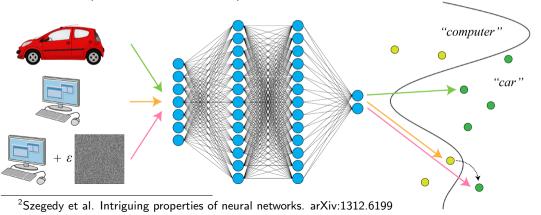
December 8, 2022

¹West, M., et al. Benchmarking Adversarially Robust Quantum Machine Learning at Scale, arxiv:2211.12681 (2022)

Adversarial Machine Learning

• Machine learning (ML) algorithms have now achieved superhuman performance across a number of domains.

• Despite their incredible successes, neural networks are highly vulnerable to small, malicious perturbations of their inputs².



Adversarial Attacks

- If we have access to the parameters of a neural network we can calculate an adversarial perturbation by maximising its loss function.
- These attacks are relevant to real-world applications of machine learning.

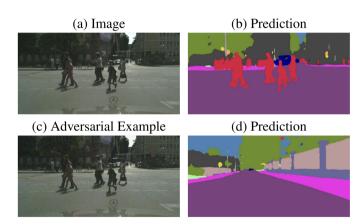


Figure taken from Ref. [3]

³Metzen et al. Universal Adversarial Perturbations Against Semantic Image Segmentation. (2017)

Black Box Attacks

- So, if we can probe the responses of a neural network, we can easily construct adversarial examples.
- More interestingly, what if we do not have intimate access to the model we wish to attack?
- A surprising property of adversarial examples is that they tend to transfer well, i.e. fool networks with respect to which they were not constructed⁴.
- This may be due to different networks independently discovering the same complicated, non-robust features⁵.

⁴Szegedy et al. Intriguing properties of neural networks. arXiv:1312.6199

⁵Ilyas, A. et al. Adversarial examples are not bugs, they are features. *Advances in Neural Information Processing Systems*. 125–136, (2019)

Quantum Machine Learning

- Quantum Machine Learning (QML) has received much attention as a near term application of quantum computing
- Theoretical guarantees of advantage in QML have been obtained in certain scenarios^{6,7}, but whether it will routinely provide speed ups remains unknown.
- Here we consider an alternate route to advantage in QML, orthogonal to the usually considered questions of speed and accuracy: robustness to adversarial attacks

⁶Liu, Y., et al. A rigorous and robust quantum speed-up in supervised machine learning. *Nature Physics* 17.9: 1013-1017 (2021).

⁷Huang, H., et al. Quantum advantage in learning from experiments. *Science* 376.6598: 1182-1186 (2022)

Classical ←→ Quantum Transferability

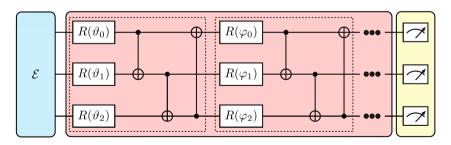
- A natural question is to what extent adversarial examples created for classical classifiers will fool quantum classifiers, and vice versa.
- We study transferability between a CNN, ResNet18⁸ and quantum classifiers on standard image datasets and adversarial attacks (PGD, FGSM and AutoAttack⁹).

⁸He, K., et al. Deep residual learning for image recognition. *In Proceedings of the IEEE conference on computer vision and pattern recognition.* (2016)

⁹Croce, F., and Hein, M. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks. *International conference on machine learning*. (2020)

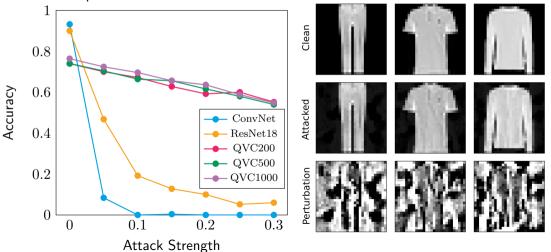
Quantum Variational Classifier Architecture

- Our QVCs employ amplitude encoding, a parameterised variational circuit of variable length n followed by σ_z measurements on each qubit.
- We denote such an n-layer QVC as QVCn, and consider $n \in \{200, 500, 1000\}$.



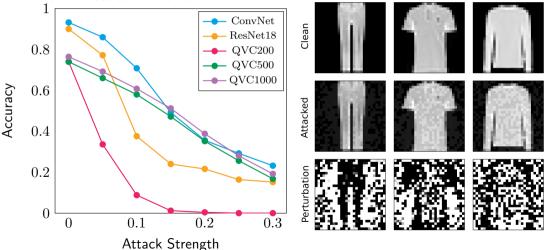
Classical to Quantum Transferability

• Attacks on a classical network transferred well to other classical networks, but not to our quantum variational classifiers.



Quantum to Classical Transferability

 Conversely, attacks on our QVCs displayed meaningful structure and transferred well to classical networks.



Conclusion

- Highly sophisticated and commonly deployed ML models can contain drastic vulnerabilities to carefully manipulated inputs.
- It is generally possible to fool an external neural network by constructing an adversarial example with respect to a network of one's own.
- QML models can resist attacks transferred in such a fashion from classical networks by learning a different set of features within the input data¹⁰.

¹⁰West, M., et al. Benchmarking Adversarially Robust Quantum Machine Learning at Scale, arxiv:2211.12681 (2022)

Attacking ML Frameworks

• Standard ML: given data samples $\{(\boldsymbol{x}_i,y_i)\}_{i=1}^N$, where $\boldsymbol{x}_i \in \mathcal{X}$ and $y_i \in \mathcal{Y}$, train a parameterised model $C_{\boldsymbol{\theta}}: \mathcal{X} \to \mathcal{Y}$

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}\left(C_{\boldsymbol{\theta}}\left(\boldsymbol{x}_i\right), \ y_i\right)$$

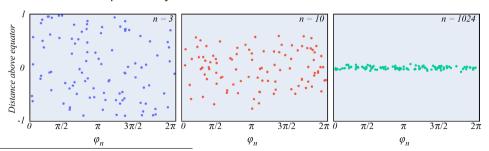
where \mathcal{L} is e.g. the cross-entropy loss.

• Adversarial ML: given a trained classifier and a data sample $(x,\ y)$ look for a small perturbation $\pmb{\delta}_{\mathrm{adv}}$ which *maximises* the loss function

$$\boldsymbol{\delta}_{\mathrm{adv}} = \operatorname*{argmax}_{\boldsymbol{\delta} \in \Delta} \mathcal{L} \left(C_{\boldsymbol{\theta}^*} \left(\boldsymbol{x} + \boldsymbol{\delta} \right), \ y \right)$$

The Concentration of Measure Phenomenon

- In a concentrated measure space, points cluster around the boundary of a set of finite measure. (e.g. points uniformly sampled from the n-sphere \mathbb{S}^n)
- $\mathbb{SU}(d)$ is concentrated \implies states will cluster around the decision boundary of a quantum classifier.
- The typical perturbation (w.r.t the Hilbert-Schmidt metric) required to reach an adversarial example is only 11 $\epsilon^2\sim 2^{-n_{\rm qubits}}$



¹¹Liu, N. and Wittek, P. Vulnerability of quantum classification to adversarial perturbations, *Phys. Rev. A.* **101**, 062331 (2020)