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Adversarial Machine Learning

® Machine learning (ML) algorithms have now achieved superhuman performance
across a number of domains.

® Despite their incredible successes, neural networks are highly vulnerable to small,
malicious perturbations of their inputs?.
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2Szegedy et al. Intriguing properties of neural networks. arXiv:1312.6199



Adversarial Attacks

(b) Prediction

(a) Image

® |f we have access to the
parameters of a neural
network we can calculate an
adversarial perturbation by
maximising its loss function.

(c) Adversarial Example (d) Prediction

® These attacks are relevant to
real-world applications of
machine learning.
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Figure taken from Ref. [3]

3Metzen et al. Universal Adversarial Perturbations Against Semantic Image Segmentation. (2017)



Black Box Attacks

® So, if we can probe the responses of a neural network, we can easily construct
adversarial examples.

® More interestingly, what if we do not have intimate access to the model we wish
to attack?

® A surprising property of adversarial examples is that they tend to transfer well, i.e.
fool networks with respect to which they were not constructed®.

® This may be due to different networks independently discovering the same

complicated, non-robust featu res®.

*Szegedy et al. Intriguing properties of neural networks. arXiv:1312.6199
®llyas, A. et al. Adversarial examples are not bugs, they are features. Advances in Neural
Information Processing Systems. 125-136, (2019)



Quantum Machine Learning

® Quantum Machine Learning (QML) has received much attention as a near term
application of quantum computing

® Theoretical guarantees of advantage in QML have been obtained in certain
scenarios®?, but whether it will routinely provide speed ups remains unknown.
® Here we consider an alternate route to advantage in QML, orthogonal to the

usually considered questions of speed and accuracy: robustness to adversarial
attacks.

®Liu, Y., et al. A rigorous and robust quantum speed-up in supervised machine learning. Nature
Physics 17.9: 1013-1017 (2021).

"Huang, H., et al. Quantum advantage in learning from experiments. Science 376.6598: 1182-1186
(2022)



Classical «+— Quantum Transferability

P

® A natural question is to what extent
adversarial examples created for
classical classifiers will fool quantum

classifiers, and vice versa.
MNIST (1x28x28)

® We study transferability between a P
CNN, ResNet18% and quantum "
classifiers on standard image datasets LY
and adversarial attacks (PGD, FGSM »’\ :
and AutoAttack?).
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CIFAR-10 (3x32x32) CelebA (3x32x32)
8He, K., et al. Deep residual learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition. (2016)
9Croce, F., and Hein, M. Reliable evaluation of adversarial robustness with an ensemble of diverse
parameter-free attacks. International conference on machine learning. (2020)




Quantum Variational Classifier Architecture

® Our QVCs employ amplitude encoding, a parameterised variational circuit of
variable length n followed by o, measurments on each qubit.

® We denote such an n-layer QVC as QVCn, and consider n € {200, 500, 1000}.
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Accuracy

Classical to Quantum Transferability

e Attacks on a classical network transferred well to other classical networks, but not

to our quantum variational classifiers.
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Accuracy

Quantum to Classical Transferability

e Conversely, attacks on our QVCs displayed meaningful structure and transferred
well to classical networks.
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Conclusion

® Highly sophisticated and commonly deployed ML models can contain drastic
vulnerabilities to carefully manipulated inputs.

® |t is generally possible to fool an external neural network by constructing an
adversarial example with respect to a network of one's own.

® QML models can resist attacks transferred in such a fashion from classical
networks by learning a different set of features within the input data®.

OWest, M., et al. Benchmarking Adversarially Robust Quantum Machine Learning at Scale,
arxiv:2211.12681 (2022)



Attacking ML Frameworks

e Standard ML: given data samples {(z;,y;)}Y,, where z; € X and y; € ), train a
parameterised model Cy : X — Y

N
1
0* = argmin — L (Co(x;), vy
e NZ_EI (Co (i), vi)

where L is e.g. the cross-entropy loss.

e Adversarial ML: given a trained classifier and a data sample (z, y) look for a
small perturbation 4.4, which maximises the loss function

dadv = argmax L (Cg= (x +9), y)
decA



The Concentration of Measure Phenomenon
® In a concentrated measure space, points cluster around the boundary of a set of
finite measure. (e.g. points uniformly sampled from the n-sphere S™)
e SU(d) is concentrated — states will cluster around the decision boundary of a

quantum classifier.

® The typical perturbation (w.r.t the Hilbert-Schmidt metric) required to reach an

adversarial example is only! €2 ~ 27 aubits
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