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Optoelectronic oscillators (OEO) [2]

High-quality oscillator with less phase noise

One popular way: Time-delay feedback

Integrated OEO (Photonics integrated circuits) [3]

[1] van der Pol, Balth. "LXXXVIII. On “relaxation-oscillations”." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2.11 (1926): 978-992.  
[2] Hao, Tengfei, et al. "Recent advances in optoelectronic oscillators." Advanced Photonics 2.4 (2020): 044001.  
[3] Tang, Jian, et al. "Integrated optoelectronic oscillator." Optics express 26.9 (2018): 12257-12265. 

Low phase noise!!!

✓Clock


✓Communication link


✓Radar


✓Signal processing


✓Remote sensing
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QUANTUM SELF-OSCILLATORS—With time delay

Quantum van der Pol Oscillator [1,2,3]

·ρ = − i[H, ρ] + γ1𝒟[b̂†]ρ + γ2𝒟[b̂2]ρ

Negative damping (Gain) Nonlinear damping

[1] Dutta, S. and Cooper, N.R., 2019. Critical response of a quantum van der Pol oscillator. Physical Review Letters, 123(25), p.250401. 
[2] Lee, T.E. and Sadeghpour, H.R., 2013. Quantum synchronization of quantum van der Pol oscillators with trapped ions. Physical review letters, 111(23), p.234101. 
[3] Walter, S., Nunnenkamp, A. and Bruder, C., 2014. Quantum synchronization of a driven self-sustained oscillator. Physical review letters, 112(9), p.094102.

PRL 112(9) 2014

1: a ring cavity mode , two partially reflective mirrors with decay 
rates 

2: One output field  is being amplified and delayed

3: amplified and delayed signal is fed back to cavity

̂a
κ1, κ2

ν̃1

Our scheme

Classical phase locking
Quantum phase diffusion

H = − iΔb̂†b̂ + iΩ(b̂ − b̂†)
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Quantum Delay Differential Equation (DDE):

· ̂a(t) = − κ ̂a(t) − eiϕ Gκ1κ2 ̂a(t − τ) − κ1ν1(t) − Gκ2ν1(t − τ) − eiϕ (G − 1)κ2νamp(t − τ)

·x = αx(t) + βx(t − τ)
⟨ · ̂a(t)⟩ = − κ⟨ ̂a(t)⟩ − eiϕ Gκ1κ2⟨ ̂a(t − τ)⟩

Compare with the classical DDE:

Total decay rate:

κ =
κ1 + κ2

2

Amplification gain: G Amplifier noise: νamp

Parameters on the red line


Continuous oscillation
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CASCADED THEORY—with amplifier in between

 

ρ(t)
dt

= ℒmρ(t), t ∈ [mτ, (m + 1)τ]

ℒmρ = (κ1 + κ2)
m

∑
n=0

𝒟[ ̂an]ρ +
m−1

∑
n=0

κ1N̄n−m (𝒟[ ̂an]ρ + 𝒟[ ̂a†
n]ρ) − Gκ1κ2

m

∑
n=1

{[ ̂a†
n−1, ̂anρ] + [ρ ̂a†

n, ̂an−1]}

Vacuum fields 
N̄n−m = G − 1, for n = 1,2,⋯, m

bin(1,t) = ν1

bin(2,t) bin(3,t)bout(1,t)

ν1 ν1

Different from [1], unless G = 1

[1] Whalen, S., 2015. Open quantum systems with time-delayed interactions (Doctoral dissertation, ResearchSpace@ Auckland).
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ρ(t)
dt

= ℒmρ(t), t ∈ [mτ, (m + 1)τ]

ℒmρ = (κ1 + κ2)
m

∑
n=0

𝒟[ ̂an]ρ +
m−1

∑
n=0

κ1N̄n−m (𝒟[ ̂an]ρ + 𝒟[ ̂a†
n]ρ) − Gκ1κ2

m

∑
n=1

{[ ̂a†
n−1, ̂anρ] + [ρ ̂a†

n, ̂an−1]}
Initial state  


Annihilation operator  

ρ = ρs ⊗ ρs ⊗ ⋯ρs

̂an = I ⊗ I ⊗ ⋯ ⊗ ̂a ⊗ I ⊗ ⋯ ⊗ I

 timesm

 timesn  timesm − n − 1

Calculate the ODEs of mean field 

In ,




In ,







In ,


⟨ ̂a0⟩
[0,τ]

⟨ · ̂a0⟩ = − κ⟨ ̂a0⟩
[τ,2τ]

⟨ · ̂a0⟩ = − κ⟨ ̂a0⟩ − η⟨ ̂a1⟩
⟨ · ̂a1⟩ = − κ⟨ ̂a1⟩

⋮
[iτ, (i + 1)τ]

⟨ · ̂a0⟩ = − κ⟨ ̂a0⟩ − η⟨ ̂a1⟩
⟨ · ̂a1⟩ = − κ⟨ ̂a1⟩ − η⟨ ̂a2⟩

⋮
⟨ · ̂am−1⟩ = − κ⟨ ̂am−1⟩ − η⟨ ̂am⟩

⟨ · ̂am⟩ = − κ⟨ ̂am⟩

1.  shows perfect oscillation


2. Energy (photon number) increases infinitely


3. Get self-oscillation without phase diffusion

⟨ ̂a⟩

(a)
(b)
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Nonlinear quantum oscillators
Reason from nonlinear DDE: ·x = αx(t) + βx(t − τ) + γx3(t)

Advantages:

Nonlinear damping rate  can tune the oscillating amplitude

Limit cycle in phase space

Can have relaxation oscillation

γ

Two-photon absorption?

 

ρ(t)
dt

= ℒmρ(t), t ∈ [mτ, (m + 1)τ]

ℒmρ = γ
m

∑
n=0

𝒟[ ̂a2]ρ + (κ1 + κ2)
m

∑
n=0

𝒟[ ̂an]ρ +
m−1

∑
n=0

κ1N̄n−m (𝒟[ ̂an]ρ + 𝒟[ ̂a†
n]ρ) − Gκ1κ2

m

∑
n=1

{[ ̂a†
n−1, ̂anρ] + [ρ ̂a†

n, ̂an−1]}

This two-photon absorption has the ability 
to absorb two photons from the cavity at the 
same time, thereby bringing a nonlinear 
dissipation to the cavity dynamics
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Mean-field simulation for nonlinear quantum oscillators
 


ρ(t)
dt

= ℒmρ(t), t ∈ [mτ, (m + 1)τ]

ℒmρ = γ
m

∑
n=0

𝒟[ ̂a2]ρ + (κ1 + κ2)
m

∑
n=0

𝒟[ ̂an]ρ +
m−1

∑
n=0

κ1N̄n−m (𝒟[ ̂an]ρ + 𝒟[ ̂a†
n]ρ) − Gκ1κ2

m

∑
n=1

{[ ̂a†
n−1, ̂anρ] + [ρ ̂a†

n, ̂an−1]}

[1] Plankensteiner, David, Christoph Hotter, and Helmut Ritsch. Quantum 6 (2022): 617. 

Equations of mean-field

Becomes expensive than

Linear case!


But still cheaper than full 
quantum dimension 
calculation!

Polynomial of time periods and truncated order 
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Nonlinear quantum oscillators

 shows a decay oscillation with time, this is more likely due to the phase diffusion of quantum nonlinear damping 

, which comes from the two-photon absorption.


We guess this is due to the difference between two equations:


, 

⟨ ̂a⟩

⟨ ̂a† ̂a ̂a⟩

⟨ · ̂a⟩ = − κ⟨ ̂a⟩ − Gκ1κ2⟨ ̂a(t − τ)⟩ − γ⟨ ̂a† ̂a ̂a⟩ ⟨ ̂a† ̂a ̂a⟩ ≠ ⟨ ̂a†⟩⟨ ̂a⟩⟨ ̂a⟩

We could achieve non-decay self-oscillation 
without phase diffusion in linear system but 
not in nonlinear system
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Conclusions

A linear quantum self-oscillator with time delay feedback can generate a 

perfect periodic oscillating signal 

Cascaded theory is generalised to the cases with feedback gain 

A mean-field calculation is used to do simulations for longer time 

Is that possible to have a nonlinear quantum self-oscillator without phase 

diffusion?
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