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Motivation for studying the bound holes
• Photoionization spectroscopy and 

possibility of Rydberg physics
• Recently demonstrated for SiV center
• Understanding energy levels and their 

lifetimes are key to observing Rydberg 
physics

• Generation, transport and capture of 
holes between NV centers
• Bound hole states play a critical role in a 

cascade capture process
• Lead to a giant capture cross-section
• Possibly play an important role in NV 

photocycle
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Addressing key issues: characterization of 
bound states
• No theoretical methods to simulate these bound states and produce important predictions

• Current approach : density functional theory (DFT), limited by the size of the bound states

• Atomistic details not included in phenomenological models
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Key outcomes of this work
• Semi ab initio model of bound states of the NV- center in diamond

• Theoretical predictions of the bound hole states using effective mass theory
• Applicable to other deep defects in semiconductors

• Model the non-radiative capture of charge carriers
• Deformation potential model of acoustic and optical hole-phonon scattering

• First prediction of photoionization spectrum of NV0 to NV- plus bound hole state (if time 
permits)
• Effective mass theory +DFT
• Estimation of phonon sidebands
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Semi ab initio model of bound hole states
• Adopting an effective mass model

• Wavefunction ansatz 
𝜓!,# 𝑟 = 𝐹!,# 𝑟 𝑢! 𝑟

Where 𝑢! 𝑟 is the periodic Bloch function of the 𝑏$% band at the valence band maximum 
(VBM) and 𝐹!,# 𝑟 is the slowly-varying envelope wavefunction to be determined

• Effective Hamiltonian
𝑇! + Δ𝑉! 𝑟 𝐹!,# 𝑟 = Δ𝐸!,#𝐹!,# 𝑟

where Δ𝐸!,# = 𝐸!,# − 𝐸&'(, 𝐸&'( is the free hole energy at the VBM

𝑇! = 𝑝⃗ / )
*+!

/ 𝑝⃗

Δ𝑉! 𝑟 = )
𝒱"
∫𝒱" 𝜂!(𝑟

-)Δ𝑉(𝑟- + 𝑟)𝑑.𝑟- is the effective potential

for the 𝑏$% band, 𝜂! 𝑟- = 𝑢! 𝑟- *, and Δ𝑉 𝑟 = 𝑉/&# 𝑟 − 𝑉0#1+ 𝑟

• Frozen core approximation
Assume that Δ𝑉! 𝑟 is fixed for all 𝐹!,# 𝑟

Heavy-hole band
𝑚%% = 1.08𝑚2

Light-hole band
𝑚3% = 0.36𝑚2
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Semi ab initio model of bound hole states
• Construction of the effective potential

• Employed DFT calculations to obtain the electron densities and nuclear geometries of NV- GS 
and defect-free diamond

• Evaluated Δ𝑉 𝑟 = 𝑉/&# 𝑟 − 𝑉0#1+ 𝑟
• Approximated 𝜂! 𝑟- ≈ 𝜂 𝑟- = )

.
∑! 𝑢! 𝑟- *

• Approximated 𝜂 𝑟- by a Gaussian function

Difference in 𝑒4 charge 
density in 1?10 plane Nuclear geometries 𝜂 𝑟- in 1?10 plane Constructed Δ𝑉! 𝑟 in 1?10 plane
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Semi ab initio model of bound hole states

• Lowest energy eigenstate (-0.24 
eV) solved in COMSOL

• Ab initio calculations (-0.27 ev)

• Solutions for approximation of 
spherical symmetry

Red : comparison of 
spherically-averaged Δ𝑉! 𝑟
with a monopole potential in 
diamond.
Blue : Radial wavefunctions

Comparison of l=0 and l=1 
eigenenergies between a 
point charge and heavy hole 
(left) and light hole (right)

• COMSOL solutions
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Non radiative capture of bound holes
• Hole cascade capture

• Critical transition from the first excited state to the 
ground state

• Deformation potential model

• Emission rate of first excited state is the hole 
capture rate

• Assumption of thermal equilibrium (TE)

• 𝜎!"# ≈ 2×10$%𝜇𝑚&

• 10 times smaller compared to experiments 

• Exclusion of second order perturbation
• One-phonon process dominates at low temperature
• Two-phonon process scales as 𝑇5 at room 

temperature

Left (solid lines) : emission rate

Right (dotted lines) : absorption rate. All values 
are at T=300 K
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Continuum states (VBM)
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Summary
• Presented a first attempt at a semi ab initio approach to modelling bound hole states 

which are applicable to other semiconductors

• Modelled the non-radiative capture of charge carriers with a capture cross-sections of ≈
2×10$%𝜇𝑚&

Future work
• Improve the current implementation of the approach

• Improve model of the probability density
• Include second order perturbation in the scattering rate calculations
• Improve model of capture cross-sections to include bound states at low temperatures
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