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Classical Hall physics circa 1880
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Edwin Hall showed the transverse resistivity  of a thin 
metallic plate varies linearly 

with the strength  of the perpendicular magnetic field  

           

 is the charge (  for electrons),  is the 2D carrier density. 

The longitudinal resistivity is independent of . 

ρH

B

ρH =
B

qnel
q −e nel

B

Just the Lorentz force changing the trajectory of a charged particle.
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Figure 1.1: (a) 2D electrons in a perpendicular magnetic field (quantum Hall
system). In a typical transport measurement, a current I is driven through
the system via the contacts C1 and C4. The longitudinal resistance may be
measured between the contacts C5 and C6 (or alternatively between C2 and
C3). The transverse (or Hall) resistance is measured, e.g., between the contacts
C3 and C5. (b) Classical Hall resistance as a function of the magnetic field.

line connecting C1 and C4. In Fig. 1.1(a), we have chosen the contacts C5
and C6 for a possible longitudinal resistance measurement. The transverse re-
sistance is measured between two contacts that are connected by an imaginary
line that necessarily crosses the line connecting C1 and C4 [e.g. C3 and C5 in
Fig. 1.1(b)].

1.1.2 Classical Hall effect

Evidently, if there is a quantum Hall effect, it is most natural to expect that
there exists also a classical Hall effect. This is indeed the case, and its history
goes back to 1879 when Hall showed that the transverse resistance RH of a thin
metallic plate varies linearly with the strength B of the perpendicular magnetic
field [Fig. 1.1(b)],

RH =
B

qnel
, (1.1)

where q is the carrier charge (q = −e for electrons in terms of the elementary
charge e that we define positive in the remainder of these lectures) and nel is
the 2D carrier density. Intuitively, one may understand the effect as due to
the Lorentz force, which bends the trajectory of a charged particle such that
a density gradient is built up between the two opposite sample sides that are
separated by the contacts C1 and C4. Notice that the classical Hall resistance is
still used today to determine, in material science, the carrier charge and density
of a conducting material.

More quantitatively, the classical Hall effect may be understood within the
Drude model for diffusive transport in a metal. Within this model, one considers
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Another feature: In a semiconductor the carrier density and carrier mobility can found 
independent of each other.

In the lab, we measure Resistance not resistivity, and  [ length, cross section] 

For a quasi 2D system,  .  making it robust with geometry change.

R = (L/A) ρ l = A =

RH L = A ρ = R
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Parabolic bands:  ,  


        is an integer,  cyclotron freq, 


       iff charged-carrier scattering,   is weak, i.e.,  

ϵn = ℏωC (n + 1/2)

n ωc =
−qB
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τ−1 ωcτ > 1

Part 1: Integer Quantum Hall

Quantisation of Density of States,     - degeneracyρ (ϵ) = ∑
n

gnδ (ϵ − ϵn) gn
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• With low temperature, and low impurity scattering the DOS become quantised.
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Wikipedia

The III-V 2D Electron Gas (2DEG)
Initial integer quantum Hall (Stuttgart) - MOS structure

  defines a critical magnetic field,    

With current III-V materials     

ωcτ > 1 Bc ≈
m
eτ

= μ−1

μ > 107cm2/Vs Bc ≈ 1mT
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Let’s look at a different way to make a 2-dimensional electron gas: Using Graphene



Part II: Graphene

• Two “natural” forms of carbon—they are 3 dimensional:

   Diamond  and Graphite have been well known for ages.

   One is one of the hardest of materials, the other, one of the softest.

all images: www.wikipedia.com
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• 0D forms of carbon: Fullerenes (1985 C60 )

                                                            H. W. Kroto, Nature. 318,162–163 (1985).

• 1D forms of carbon: Carbon nanotubes (1991)

                                                           S. Iijima, Nature 56, 354 (1991).

all images: www.wikipedia.com

• Expect for diamond (sp3), all allotropes are based on a 2D layer, 
we know as graphene.

6

Allotropes of carbon
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results. We start by setting up an appropriate notation. The electronic structure of an
isolated C atom is (1s)2(2s)2(2p)4; in a solid-state environment the 1s electrons remain
more or less inert, but the 2s and 2p electrons hybridize. One possible result is four sp

3

orbitals, which naturally tend to establish a tetrahedral bonding pattern that soaks up all
the valence electrons: this is precisely what happens in the best known solid form of C,
namely diamond, which is a very good insulator (band gap ⇠ 5 eV). However, an alternative
possibility is to form three sp

2 orbitals, leaving over a more or less pure p-orbital. In that
case the natural tendency is for the sp

2 orbitals to arrange themselves in a plane at 120�

angles, and the lattice thus formed is the honeycomb lattice.

We note that there are two inequivalent sublattices, here labeled A and B, with the envi-
ronments of the corresponding atoms being mirror images of one another. It is convenient
to choose our Bravais lattice to have primitive lattice vectors a1, a2 given as shown by

�
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notation is (x, y)
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p
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where a is the nearest-neighbor C-C spacing (⇡ 1.42 Å). The reciprocal lattice vectors b1, b2

defined by the condition ai · bj = 2⇡�ij are then
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p
3
⌘
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p
3
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We define the first Brillouin zone of the reciprocal lattice in the standard way, as bounded

2

by the planes bisecting the vectors to the nearest reciprocal lattice points. This gives a
FBZ of the same form as the original hexagons of the honeycomb lattice, but rotated with
respect to them by ⇡/2.

FBZ

It is clear that the six points at the corners of the FBZ fall into two
groups of three which are equivalent, so we need consider only two
equivalent corners that we label K and K

0 as in the figure. Explicitly,
their positions in momentum space are given by

K =
2⇡

3a

✓
1,

1
p
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◆
, K 0 =
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✓
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1
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◆
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However, it is equally legitimate (and sometimes more useful) to choose K0 to be the open
circle in the figure. If we do so, it is important to stress that K and K0 are not connected
by a reciprocal lattice vector, they are truly independent values of k.

It is convenient to note at this point that for an A-sublattice atom the three nearest-neighbor
vectors in real space are given by

�1 =
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p
3
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, �2 =
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while those for the B-sublattice are the negatives of these.

For a first approach to the electronic band structure, let’s start by modeling it by a tight-
binding model with nearest-neighbor hopping only: The relevant atomic orbital is the single
(p�) (or more correctly ⇡) C orbital which is left unfilled by the bonding electrons, and which
is oriented normal to the plane of the lattice: as usual, this orbital can accommodate two
electrons with spin projection ±1. If we denote the orbital on atom i with spin � by (i, �),
and the corresponding creation operator by a

†
i�(b†i�) for an atom on the A(B) sublattice,

then the nearest-neighbor tight-binding Hamiltonian has the simple form

ĤTB, n.n. = �t

X

ij=n.n.
�

(a†
i�bj� + H.c.) (5)

The numerical value of the nearest-neighbor hopping matrix element t, which sets the
overall scale of the ⇡-derived energy band, is believed to be about 2.8 eV; the exact value
is unimportant for subsequent results. We shall first explore the band structure, and the
nature of the electronic states, generated by the simple Hamiltonian (5), and later examine
how these are a↵ected by corrections to it.

It is convenient to write the TB eigenfunctions in the form of a spinor, whose components
correspond to the amplitudes on the A and B atoms respectively within the unit cell labeled

3

Two non-equivalent sublattices, 
A and B, are mirror symmetric. 

Reciprocal lattice — First Brillouin zone (FBZ),


Each sublattice point, K and  K`  in FBZ are :

K =
2π
3a

(1,
1

3
), K′ =

2π
3a

(1, −
1

3
)
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points are inequivalent, the others being connected by reciprocal lattice vectors. The electronic 
properties of graphene are controlled by the low energy conical dispersion around these K points. 

Tight binding Hamiltonian and band structure.  
The low energy electronic states, which are determined by electrons occupying the pz orbitals , 
can be derived from the tight binding Hamiltonian[11] in the Huckel model for nearest neighbor 
interactions:  
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is a wave function of the pz orbital on an atom in sublattice A, W&
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is a similar state on a B sublattice atom, and t is the hopping integral from a state on an A atom 
to a state on an adjacent B atom. The hopping matrix element couples states on the A sublattice 
to states on the B sublattice and vice versa. It is chosen as t ~ 2.7 eV so as to match the band 
structure near the K points obtained from first principle computations. Since there are two 
Bravais sublattices two sets of Bloch orbitals are needed, one for each sublattice, to construct 
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These functions block-diagonalize the one-electron Hamiltonian into 2 x 2 sub-blocks, with 
vanishing diagonal elements and with off-diagonal elements given by:
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Figure A-6. Graphene band structure. a) Three dimensional band structure. Adapted from C.W.J. Beenakker, 
Rev.Mod.Phys., 80 (2008) 1337. b) Zoom into low energy dispersion at one of the K points shows the electron-hole 
symmetric  Dirac cone structure .  
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by the planes bisecting the vectors to the nearest reciprocal lattice points. This gives a
FBZ of the same form as the original hexagons of the honeycomb lattice, but rotated with
respect to them by ⇡/2.
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It is clear that the six points at the corners of the FBZ fall into two
groups of three which are equivalent, so we need consider only two
equivalent corners that we label K and K
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However, it is equally legitimate (and sometimes more useful) to choose K0 to be the open
circle in the figure. If we do so, it is important to stress that K and K0 are not connected
by a reciprocal lattice vector, they are truly independent values of k.

It is convenient to note at this point that for an A-sublattice atom the three nearest-neighbor
vectors in real space are given by
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while those for the B-sublattice are the negatives of these.

For a first approach to the electronic band structure, let’s start by modeling it by a tight-
binding model with nearest-neighbor hopping only: The relevant atomic orbital is the single
(p�) (or more correctly ⇡) C orbital which is left unfilled by the bonding electrons, and which
is oriented normal to the plane of the lattice: as usual, this orbital can accommodate two
electrons with spin projection ±1. If we denote the orbital on atom i with spin � by (i, �),
and the corresponding creation operator by a

†
i�(b†i�) for an atom on the A(B) sublattice,

then the nearest-neighbor tight-binding Hamiltonian has the simple form

ĤTB, n.n. = �t

X

ij=n.n.
�

(a†
i�bj� + H.c.) (5)

The numerical value of the nearest-neighbor hopping matrix element t, which sets the
overall scale of the ⇡-derived energy band, is believed to be about 2.8 eV; the exact value
is unimportant for subsequent results. We shall first explore the band structure, and the
nature of the electronic states, generated by the simple Hamiltonian (5), and later examine
how these are a↵ected by corrections to it.

It is convenient to write the TB eigenfunctions in the form of a spinor, whose components
correspond to the amplitudes on the A and B atoms respectively within the unit cell labeled
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by the planes bisecting the vectors to the nearest reciprocal lattice points. This gives a
FBZ of the same form as the original hexagons of the honeycomb lattice, but rotated with
respect to them by ⇡/2.

FBZ

It is clear that the six points at the corners of the FBZ fall into two
groups of three which are equivalent, so we need consider only two
equivalent corners that we label K and K

0 as in the figure. Explicitly,
their positions in momentum space are given by
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However, it is equally legitimate (and sometimes more useful) to choose K0 to be the open
circle in the figure. If we do so, it is important to stress that K and K0 are not connected
by a reciprocal lattice vector, they are truly independent values of k.

It is convenient to note at this point that for an A-sublattice atom the three nearest-neighbor
vectors in real space are given by
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while those for the B-sublattice are the negatives of these.

For a first approach to the electronic band structure, let’s start by modeling it by a tight-
binding model with nearest-neighbor hopping only: The relevant atomic orbital is the single
(p�) (or more correctly ⇡) C orbital which is left unfilled by the bonding electrons, and which
is oriented normal to the plane of the lattice: as usual, this orbital can accommodate two
electrons with spin projection ±1. If we denote the orbital on atom i with spin � by (i, �),
and the corresponding creation operator by a

†
i�(b†i�) for an atom on the A(B) sublattice,

then the nearest-neighbor tight-binding Hamiltonian has the simple form

ĤTB, n.n. = �t

X

ij=n.n.
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(a†
i�bj� + H.c.) (5)

The numerical value of the nearest-neighbor hopping matrix element t, which sets the
overall scale of the ⇡-derived energy band, is believed to be about 2.8 eV; the exact value
is unimportant for subsequent results. We shall first explore the band structure, and the
nature of the electronic states, generated by the simple Hamiltonian (5), and later examine
how these are a↵ected by corrections to it.

It is convenient to write the TB eigenfunctions in the form of a spinor, whose components
correspond to the amplitudes on the A and B atoms respectively within the unit cell labeled

3

graphite a semimetal. This band overlap, which is 25 times
larger than the overlap for two graphene layers, is caused by
the interaction between the B carbon atoms of next-nearest-
neighbor planes. The Fermi surface consists of electron and

hole pockets. Because !2"0, the electron pocket is situated
around the K point, while the hole pockets are situated
around the H points. The splitting of the energy levels at the
H point equals # !which is related to the crystal field split-
ting between inequivalent A and B carbon atoms". Because
the Fermi energy EF$ ###, the hole pocket protrudes beyond
the H point, leading to a minority hole surface.

Let us now consider a system consisting of three graphene
layers. The band diagram together with a close-up around the
K point is shown in Figs. 8!a" and 8!b", respectively. At the
K point around zero energy several bands cross while other
bands show anticrossings. It is clear that the band structure
around the K point becomes more and more complex with
increasing number of graphene layers: the number of layers
around the Fermi energy at the K point is doubled in com-
parison to systems with one and two graphene layers. In
contrast to the double-layer system, crossings do not become
anticrossings if one considers a line through the K point
which makes an angle % with the &-K line. The band dia-
gram can be understood as a combination of the band dia-
gram of a single graphene layer !Fig. 2" and the band dia-
gram of the system consisting of two graphene layers !Fig.
3". The four bands around the Fermi energy at the K point
are labeled by A ,B ,C, and D in Fig. 8!b". While bands B and
C remind us of the two bands of the two-layer system, but
now with anticrossings, bands A and D show an almost lin-
ear dispersion and mimic the bands of a single graphene
layer with the additional opening of a gap at the K point of
13.8 meV. Bands A and D are almost independent of the
angle % $as defined in Fig. 1!b"%, in contrast to bands B and
C.

In order to see how the energy levels at the K point for a
finite number of layers evolve into the band structure of
graphite along the HKH edge !see Fig. 11, below", we show

FIG. 6. !Color online" The same as Fig. 5 but now for two layers of graphene.

FIG. 7. !a" The band diagram of bulk graphite around the HKH
band edge. !b" Close-up of !a" around the Fermi energy.

B. PARTOENS AND F. M. PEETERS PHYSICAL REVIEW B 74, 075404 !2006"

075404-6

of our tight-binding model we first construct the tight-
binding Hamiltonian for graphite using the definitions of
Eqs. !5" and !8":

#E0 + !! + "5!!#2 − 2" "0!f!kx,ky" "1!# "4!#f*!kx,ky"
"0!f*!kx,ky" E0 + "2!!#2 − 2" "4!#f*!kx,ky" "3#f!kx,ky"

"1!# "4#f!kx,ky" E0 + !! + "5!!#2 − 2" "0f*!kx,ky"
"4!#f!kx,ky" "3!#f*!kx,ky" "0!f!kx,ky" E0 + "2!!#2 − 2"

$ . !A8"

In order to obtain the relation between the SWMcC model !which are known from experiments" and the parameters of the
tight-binding model we consider special points and lines in the Brillouin zone for which it is easy to calculate the eigenenergies
in both models. Furthermore, each of the six parameters "i is proportional to the parameter "i! defined in Sec. II as they are
both related to the same interaction between two atoms in the graphite lattice as shown in Fig. 1.

Along the HKH line we have kx=2$ /%3a ,ky =2$ /3a, and thus f =0. Along the HKH line the tight-binding hamiltonian is
given by

#E0 + !! + "5!!#2 − 2" 0 "1!# 0

0 E0 + "2!!#2 − 2" 0 0

"1!# 0 E0 + !! + "5!!#2 − 2" 0

0 0 0 E0 + "2!!#2 − 2"
$ , !A9"

with the corresponding eigenenergies

E1,2 = E0 + !! − 2"5! ± "1!# + "5!#
2, !A10"

E3 = E0 − 2"2! + "2!#
2. !A11"

They must be compared with the energies at the Brillouin
zone edge obtained by the SWMcC model:

E1,2 = ! ± "1# +
1
2

"5#2, !A12"

E3 =
1
2

"2#2. !A13"

Equating both results yields

E0 = 2"2!, !A14"

"1! = "1, !A15"

"2! = "2/2, !A16"

FIG. 10. The energy difference between the last and first energy
levels at the K point which build up the E3 energy band of graphite
for Nl graphene layers. The solid horizontal curve is the limiting
value for bulk graphite.

FIG. 11. The Brillouin zone of bulk graphite together with the
labels for special symmetry points.

FROM GRAPHENE TO GRAPHITE: ELECTRONIC¼ PHYSICAL REVIEW B 74, 075404 !2006"

075404-9

Reference: Graphite (bulk)

Partoens & Peeters, PRB, 74, 075404 2006
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by the planes bisecting the vectors to the nearest reciprocal lattice points. This gives a
FBZ of the same form as the original hexagons of the honeycomb lattice, but rotated with
respect to them by ⇡/2.
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It is clear that the six points at the corners of the FBZ fall into two
groups of three which are equivalent, so we need consider only two
equivalent corners that we label K and K

0 as in the figure. Explicitly,
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However, it is equally legitimate (and sometimes more useful) to choose K0 to be the open
circle in the figure. If we do so, it is important to stress that K and K0 are not connected
by a reciprocal lattice vector, they are truly independent values of k.

It is convenient to note at this point that for an A-sublattice atom the three nearest-neighbor
vectors in real space are given by
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For a first approach to the electronic band structure, let’s start by modeling it by a tight-
binding model with nearest-neighbor hopping only: The relevant atomic orbital is the single
(p�) (or more correctly ⇡) C orbital which is left unfilled by the bonding electrons, and which
is oriented normal to the plane of the lattice: as usual, this orbital can accommodate two
electrons with spin projection ±1. If we denote the orbital on atom i with spin � by (i, �),
and the corresponding creation operator by a

†
i�(b†i�) for an atom on the A(B) sublattice,

then the nearest-neighbor tight-binding Hamiltonian has the simple form
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The numerical value of the nearest-neighbor hopping matrix element t, which sets the
overall scale of the ⇡-derived energy band, is believed to be about 2.8 eV; the exact value
is unimportant for subsequent results. We shall first explore the band structure, and the
nature of the electronic states, generated by the simple Hamiltonian (5), and later examine
how these are a↵ected by corrections to it.

It is convenient to write the TB eigenfunctions in the form of a spinor, whose components
correspond to the amplitudes on the A and B atoms respectively within the unit cell labeled
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ϵ(q) ≈ ℏνF(qx − iqy) + 0 (1 + q/K)2; νF =
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≈ 106 m/sec

• Then the dispersion (wrt q) near K  is constant 


•No band curvature.
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Figure A-6. Graphene band structure. a) Three dimensional band structure. Adapted from C.W.J. Beenakker, 
Rev.Mod.Phys., 80 (2008) 1337. b) Zoom into low energy dispersion at one of the K points shows the electron-hole 
symmetric  Dirac cone structure .  
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• Normal semiconductors: 


•  ϵn = ℏωc (n + 1/2) ∝ B (n + 1/2)
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Figure 2.3: Landau levels as a function of the magnetic field. (a) Non-relativistic
case with εn = h̄ωC(n + 1/2) ∝ B(n + 1/2). (b) Relativistic case with ελ,n =
λ(h̄v/lB)

√
2n ∝ λ

√
Bn.

One notices the occurence of a characteristic frequency ω′ =
√

2v/lB, which
plays the role of the cyclotron frequency in the relativistic case. Notice, however,
that this frequency may not be written in the form eB/mb because the band
mass is strictly zero in graphene, such that the frequency would diverge.10

In order to obtain the eigenvalues and the eigenstates of the Hamiltonian
(2.20), one needs to solve the eigenvalue equation HB

Dψn = εnψn. Because the
Hamiltonian is a 2 × 2 matrix, the eigenstates are 2-spinors,

ψn =

(

un

vn

)

,

and we thus need to solve the system of equations

h̄ω′a vn = εn un and h̄ω′a† un = εn vn , (2.21)

which yields the equation

a†a vn =
( εn

h̄ω′

)2
vn (2.22)

for the second spinor component. One notices that this component is an eigen-
state of the number operator n = a†a, which we have already encountered in
the preceding subsection. We may therefore identify, up to a numerical factor,
the second spinor component vn with the eigenstate |n〉 of the non-relativistic
Hamiltonian (2.15), vn ∼ |n〉. Furthermore, one observes that the square of the

10Sometimes, a cyclotron mass mC is formally introduced via the equality ω′ ≡ eB/mC .
However, this mass is a somewhat artificial quantity, which turns out to depend on the carrier
density. We will therefore not use this quantity in the present lecture notes.

Parabolic band semiconductor Dirac semiconductor



Part IV: In the non-equilibrium regime using light 

• With graphene in the integer quantum-Hall regime;

    Excite holes below Ef to empty electron states above Ef ;  
    Using selection rules: |nf| - |ni| ± 1.
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•The anharmonic energy level spacing in graphene allows 
unique energy transitions (within a factor of 2).


•Dipole-allowed transitions for |nf| - |ni| ± 1.



11

Bin Cao Tobias Grass Mohammad Hafez

Now an experiment, and a cast of characters

Sample Prep: 1

Jiuning Hu, Dave Newell, 

National Institute of Standards and Technology

Gaithersburg, MD USA


Sample Prep: 2:

Kishan Ashokbhai Patel,Luca Anzi, Roman Sordan

 L-NESS, Department of Physics, 

Politecnico di Milano, Como


BN:

Kenji Watanabe, Takashi Taniguchi

National Institute for Materials Science, 

Tsukuba, Japan 


Optical and electrical measurements:
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The graphene sample
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• A typical structure:

Exfoliated hBN, graphene, BN encapsulated graphene

Back-gated SiO2 /Si, with metallic back contact

Sizes range from 3 x 3 µm to 10 x 10 µm

Ohmic contacts: 

Through an e-beam deposits Al hard mask

Graphene & hBN etched selectively by O2 and SF6 RIE plasma

Leaves pristine graphene exposed edges

Ohmic contacts: Cr/Pd/Au (2/5/80 nm) patterned by e-beam lithography and e-beam 
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Tight binding Hamiltonian and band structure.  
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Figure A-6. Graphene band structure. a) Three dimensional band structure. Adapted from C.W.J. Beenakker, 
Rev.Mod.Phys., 80 (2008) 1337. b) Zoom into low energy dispersion at one of the K points shows the electron-hole 
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FIG. 4. Non-chiral transport of the photo-carriers. (a). With a magnetic field of +4 T, the voltage di↵erence between
the zeros of the photocurrent and the half-fillings of Landau levels are shown, normalized by the width of individual Landau
level. The di↵erence approaches zero exponentially for increasing Landau level number, indicating the distribution of non-
equilibrium carriers is present through several Landau levels.(b). The sum of the photocurrent measured at +4 T and -4 T as
a function of back gate voltage shows oscillation.

PDMS). PDMS was O2 plasma treated before spin coat-
ing to promote adhesion of PPC. The pick up is done
at 40 C using a home made transfer stage. Same pro-
cedure is used to pick up subsequent graphene and bot-
tom hBN. The stacking is then pressed against the tar-
get substrate (SiO2/Si) which is heated to 90 C. The
glass/PDMS/PPC is then detached from the target sub-
strate. The sample is then immersed in acetone overnight
to remove residual PPC. EBL (30 keV) is used to define
sample shape, using PMMA A4 as mask. The etching
is done in in the plasma of O2 (10 sccm) and SF6 (40
sccm) at a chamber pressure of 200 mtorr for about 1
min (etching rate is 20 nm/min). A second EBL is used
to place contacts (Cr (5 nm)/Pd (10 nm)/Au (70 nm)) at
the edges of the device. The device is then wire bonded
using Au wires (25 um thick). The doped Si substrate
is used as a back gate to control the carrier density in
graphene.

An optical microscope image of the fabricated sample
is shown in Fig. 5(a). The sample size is 2.49 µm by
3.87 µm. Measurements on other samples confirm the
presented results. We estimate the contact resistance
by calculating the sample resistance with the measured
mobility. The di↵erence between the measured resistance
and the calculation is the contact resistance.

2. Transport measurement under magnetic field

Two-terminal transport measurements are conducted
under various magnetic fields. Plateaus of conductance
due to Landau level quantization can be readily seen, as
shown in Fig. 6 (a). In the transport measurement, an
AC current of 1 µA at 13 Hz is injected through the drain
and source contacts. A lock-in amplifier is locked at 13
Hz to measure the voltage drop between the drain and
source. The conductance is obtained by taking the divi-
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FIG. 5. (a) Microscope image of the sample. Scale bar is 5
µm. (b) Mobility measurement of the sample. The mobility
for electrons is 26000 cm2V �1s�1 and the mobility for holes
is 16000 cm2V �1s�1. The contact resistance is 121 ⌦.

sion between the 1 µA current and the voltage drop mea-
sured. During the measurement, a perpendicular static
magnetic field is applied while the gate voltage is tuned
to change the carrier density in the sample.
We compare the two-terminal transport measurements

with laser on and o↵. We use an OPO laser with wave-
length about 2 µm to excite the sample and a transport
measurement is conducted. We turn o↵ the laser and con-
duct another transport measurement. The comparison
of the two transport measurements is shown in Fig. 6(b).
The two measurements overlap with each other very well
showing no sign of heating.

Appendix: The photocurrent measurement

We use near-infrared laser to excite electrons from be-
low the Dirac point to above the Dirac point and measure
the resulting photocurrent. We have repeated the pho-
tocurrent measurements on several samples.

5 µm

µe = 26,000 cm2 V-1s-1  
µh = 16,000 cm2 V-1s-1

No B field, 4K Conductance

Size:

2.49μm∗3.87μm 



Photocurrent in the IQH - Non-equilibrium transport
•Excite with 930 nm light, create  and  populations at  ;

• Fast ( sub ps) relaxation and diffusion, creating photocurrents.

e h |n | ≈ 36
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FIG. 2. Oscillations of the photocurrent induced by the Landau quantization in the device. (a). Right: Two-
terminal conductivity (black line) in the quantum Hall regime (4 T) as a function of the back gate voltage. The Dirac point
corresponds to a back gate voltage of �7 V. Left: Photocurrent generated by the laser on the sample edge as a function of the
back gate voltage. Strong oscillations of the photocurrent are measured and zeros of photocurrent correspond to half-fillings
(dashed lines) and integer-fillings of Landau levels for LLn�4. Photocurrent data is in good agreement with our calculation
(red line). (b). Two-terminal conductivity (black lines, right scale) and photocurrent (left scale) as a function of the back gate
voltage at 2 T. The quantum Hall plateaus in the two-terminal conductivity are not visible while the photocurrent oscillations
remain distinct. The inset shows the photocurrent as a function of back gate voltage measured at various magnetic fields.

same correlation between photocurrent and conductance
measurements.

The photocurrent measurements are more sensitive
in the low magnetic field regime than the two-terminal
transport measurements. Fig. 2(b) shows the two-
terminal conductivity and the photocurrent as a func-
tion of the back gate voltage, at a low magnetic field of
2 T. While the quantum Hall plateaus are not visible
in the two-terminal measurement, the oscillations of the
photocurrent are pronounced. One explanation is that
the two-terminal transport measurement evaluates the
sum of edge state conductance, while the photocurrent is
the di↵erence of two components currents (electrons and
holes) making it more sensitive.

The photocurrent oscillations track the back gate volt-
age, indicating that the physics is influenced by the den-
sity of states near the Fermi level. However, the polar-
ity of the current indicates that the contributing carri-
ers are not at the Fermi level, but are non-equilibrium
(hot) carriers. To further clarify this, we set the Fermi
level slightly above half-filling of a Landau level, as il-
lustrated in Fig. 1(b). In this regime, the number of

available hole states in the Landau level is larger than
that of the electron states. If we assume relaxation to
available Fermi-level states is fast [14], then the number
of holes that relaxed to the Fermi level is larger than that
of the electrons. The transport of the carriers near the
Fermi level would be hole dominated, while hot carrier
transport would be electron dominated. In this case, the
measured polarity of the photocurrent indicates that the
transport to the contact is dominated by electrons. Thus,
we conclude that the photocurrent is due to hot carriers,
and not the carriers in the vicinity of the Fermi level.

We develop a model to explain the observed depen-
dence of the photocurrent on the back gate voltage. In
the model, photocurrents are due to hot carriers, as de-
scribed above. We further assume that the photocurrent
is dominated by the edge physics, and carriers reach the
edges with a probability set by the laser spot location
relative to the sample edges. The validity of this is dis-
cussed later.

To determine the direction of the edge current due to
electrons and holes, we now discuss their behavior in the
presence of the confining edge potential. By solving the

•Backgate voltage control Ef, no injected current.

•Photocurrent oscillations track LL’s.

•Zeros in photocurrent are at half filling.

4.2K B= 4T



Why do we get any photocurrent?

•Why should we get any photocurrent?

•We create electrons & holes in equal amounts, 
they decay (~100 fs), and recombine.
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• Two processes:  Relaxation of hot carriers to Ef or Diffusion of hot carriers to edges 
or contacts.

• Relaxation process of excess hot carriers of one type depends on unbalanced 
number of available states at the Fermi level.
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• Two processes:  Relaxation of hot carriers to Ef or Diffusion of hot carriers to edges 
or contacts.

• Relaxation process of excess hot carriers of one type depends on unbalanced 
number of available states at the Fermi level.

• Photocurrent has two components:

Photocurrent
Edge-state (Chiral)

Diffusion (Not chiral)Phys. Rev. B 90, 075415 (2014)

B !"+



Separate photocurrent contributions related to edge & extended states

•  When B flips direction the edge state currents flip directions.  

    I (B+)  -  I(B- ) will add the edge-state currents.


• Diffusive extended-state currents (total electron and hole current) 
diffusing to contacts are unaffected by sign of B.


   I (B+)  -  I(B- ) negates diffusive extended state currents, but

   I (B+)  + I(B- ) will add the currents.


Renormalise to focus on edge states: I (B+)  -  I(B- ).
15
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Chirality of edge-state photo-carriers
•Modify the energy spectrum 

mentioned earlier:
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λ = +1 for conduction band 

λ =  -1 for valence band 


q the carrier charge

V(x) the edge confining potential.
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Edge-state currents from photoexciation

• Little B-field dependent transport in the sample center.


•Edge states currents are more concentrated at edges.
17

 Edge-state current contributions
I (B+ − B−)

saturation powers. In addition, we find that the simulated PC matches the measurement at

high magnetic fields only when Coulomb scattering is included, revealing evidence for CM.

Our work provides an unique study of carrier relaxation processes using continuous excita-

tion, which extends beyond the ultrafast regime studied in most pump-probe measurements.

In addition, our evidences of the the long-coveted electrically-measured CM will contribute to

applications of graphene as efficient light detection devices. Finally, based on our model, PC

may be used to explore novel topological phenomena in the emerging fields of 2D materials

and twistronics.
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Figure 1: Schematics of the setup and the spatial profile of PC. (a) Schematics of the setup,
illustrating that the PC is measured along the center-line of the sample in the x direction
(grey arrow) as a function of position and gate voltage. The PC is measured at +B and -B.
The PCs of two antisymmetric fields are subtracted to isolate the B-dependent part of the
PC and it is plotted in (b) for B = 4.5 T, while the much weaker B-independent PC is shown
in Fig. S5 in the Supporting Information. (b) Measured PC as a function of x position and
gate voltage. Prominent PC oscillations are observed on the edges (located at x = ±4.5 µm)
while the PC is minimal in the bulk (located around x = 0 µm). This indicates the PC is
predominately attributed to the edge states. (c) Cuts of the PC on the edges as a function
of gate voltage. The zeros of the PC at high LLs match with the even-fillings (ignoring spin)
of the LLs (systematically shown in Fig. 2a). PC oscillations on the two edges have opposite
polarities, indicating the PC is related to the chiral transport of carriers on the edges.
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Edge-state photocurrent half-filling with LL
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Edge-state photocurrent half-filling with LL
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•  At  half filling of LL is a PC peak

•  While away from  PC is 0.

•Because of edge states have multi-LL components the 
PC moves from a peak value to 0 over several .
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FIG. 4. Non-chiral transport of the photo-carriers. (a). With a magnetic field of +4 T, the voltage di↵erence between
the zeros of the photocurrent and the half-fillings of Landau levels are shown, normalized by the width of individual Landau
level. The di↵erence approaches zero exponentially for increasing Landau level number, indicating the distribution of non-
equilibrium carriers is present through several Landau levels.(b). The sum of the photocurrent measured at +4 T and -4 T as
a function of back gate voltage shows oscillation.

PDMS). PDMS was O2 plasma treated before spin coat-
ing to promote adhesion of PPC. The pick up is done
at 40 C using a home made transfer stage. Same pro-
cedure is used to pick up subsequent graphene and bot-
tom hBN. The stacking is then pressed against the tar-
get substrate (SiO2/Si) which is heated to 90 C. The
glass/PDMS/PPC is then detached from the target sub-
strate. The sample is then immersed in acetone overnight
to remove residual PPC. EBL (30 keV) is used to define
sample shape, using PMMA A4 as mask. The etching
is done in in the plasma of O2 (10 sccm) and SF6 (40
sccm) at a chamber pressure of 200 mtorr for about 1
min (etching rate is 20 nm/min). A second EBL is used
to place contacts (Cr (5 nm)/Pd (10 nm)/Au (70 nm)) at
the edges of the device. The device is then wire bonded
using Au wires (25 um thick). The doped Si substrate
is used as a back gate to control the carrier density in
graphene.

An optical microscope image of the fabricated sample
is shown in Fig. 5(a). The sample size is 2.49 µm by
3.87 µm. Measurements on other samples confirm the
presented results. We estimate the contact resistance
by calculating the sample resistance with the measured
mobility. The di↵erence between the measured resistance
and the calculation is the contact resistance.

2. Transport measurement under magnetic field

Two-terminal transport measurements are conducted
under various magnetic fields. Plateaus of conductance
due to Landau level quantization can be readily seen, as
shown in Fig. 6 (a). In the transport measurement, an
AC current of 1 µA at 13 Hz is injected through the drain
and source contacts. A lock-in amplifier is locked at 13
Hz to measure the voltage drop between the drain and
source. The conductance is obtained by taking the divi-
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FIG. 5. (a) Microscope image of the sample. Scale bar is 5
µm. (b) Mobility measurement of the sample. The mobility
for electrons is 26000 cm2V �1s�1 and the mobility for holes
is 16000 cm2V �1s�1. The contact resistance is 121 ⌦.

sion between the 1 µA current and the voltage drop mea-
sured. During the measurement, a perpendicular static
magnetic field is applied while the gate voltage is tuned
to change the carrier density in the sample.
We compare the two-terminal transport measurements

with laser on and o↵. We use an OPO laser with wave-
length about 2 µm to excite the sample and a transport
measurement is conducted. We turn o↵ the laser and con-
duct another transport measurement. The comparison
of the two transport measurements is shown in Fig. 6(b).
The two measurements overlap with each other very well
showing no sign of heating.

Appendix: The photocurrent measurement

We use near-infrared laser to excite electrons from be-
low the Dirac point to above the Dirac point and measure
the resulting photocurrent. We have repeated the pho-
tocurrent measurements on several samples.



Shape of the photocurrent envelop as a function of field  
                              The case for carrier multiplication

B−
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Figure 2: Magnetic field dependence of the PC on the edge. (a) PC on the top sample edge
as a function of field strength and gate voltage is plotted, showing the Landau fan for the
PC. The excitation power used is 1 µW . Data for 0.3 µW and 2 µW is shown in Fig. S6
in the Supporting Information. The dashed white lines are even-fillings of LLs (ignoring
spin) extracted from the transport fan (see Fig. S2 in the Supporting Information). As EF

is scanned, each LL (except the 0th) gives rise to a positive and a negative PC peak. (b)
Cuts of PC for various pump powers at a high field of 9 T, scaled by factors given in the
legend. The shape of the oscillations shows that polarity changes at even-fillings (dashed
black arrows) are smoother than that at odd-fillings (solid black arrows). We also see a
prominent dip at the Dirac point which is due to efficient carrier relaxation when EF = 0.
(c) Cuts of the PC (scaled vertically by factors shown in the legend) for various pump
powers at a low field of 3 T. Based on measurements and simulations, the side with a more
substantial envelope (the negative side) is attributed to the majority carriers and the other
(the positive side) to the minority carriers, as marked in (b) and (c). The scaled PC cuts
overlap well for high LLs but not near the Dirac point, indicating inhomogeneous PC power
dependence with respect to LLs. In addition, we sum over the absolute values of the two PC
peaks originating from the same LL and plot as a function of LL index in the inset of (c).
The plot shows two regimes shaded in yellow and blue where the blue regime have larger
slopes than the yellow, indicating different mechanisms, consistent with our model. Error
bars are smaller than markers. Measurements on the other sample, showing same behaviors,
are given in the Supporting Information.

7

9T region: The photocurrent is flat

Lower fields, 3T:

Large photocurrent majority ( ) carrier 
envelope 

But also a smaller PC minority carrier 
envelope.

B−
e−

Carrier multiplication:

The majority carrier envelop could be due to  and  adding around .

But the minority carrier envelope can only be explained by carrier multiplication.

e− h+ LL0



Summary and thoughts
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• Using a graphene back-gated device structure at 4K 

• Investigate integer quantum Hall physics with a non-equilibrium 
carrier distribution created by a laser
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• Using a graphene back-gated device structure at 4K 

• Investigate integer quantum Hall physics with a non-equilibrium 
carrier distribution created by a laser
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saturation powers. In addition, we find that the simulated PC matches the measurement at

high magnetic fields only when Coulomb scattering is included, revealing evidence for CM.

Our work provides an unique study of carrier relaxation processes using continuous excita-

tion, which extends beyond the ultrafast regime studied in most pump-probe measurements.

In addition, our evidences of the the long-coveted electrically-measured CM will contribute to

applications of graphene as efficient light detection devices. Finally, based on our model, PC

may be used to explore novel topological phenomena in the emerging fields of 2D materials

and twistronics.
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Figure 1: Schematics of the setup and the spatial profile of PC. (a) Schematics of the setup,
illustrating that the PC is measured along the center-line of the sample in the x direction
(grey arrow) as a function of position and gate voltage. The PC is measured at +B and -B.
The PCs of two antisymmetric fields are subtracted to isolate the B-dependent part of the
PC and it is plotted in (b) for B = 4.5 T, while the much weaker B-independent PC is shown
in Fig. S5 in the Supporting Information. (b) Measured PC as a function of x position and
gate voltage. Prominent PC oscillations are observed on the edges (located at x = ±4.5 µm)
while the PC is minimal in the bulk (located around x = 0 µm). This indicates the PC is
predominately attributed to the edge states. (c) Cuts of the PC on the edges as a function
of gate voltage. The zeros of the PC at high LLs match with the even-fillings (ignoring spin)
of the LLs (systematically shown in Fig. 2a). PC oscillations on the two edges have opposite
polarities, indicating the PC is related to the chiral transport of carriers on the edges.

4

• Current occurs as carriers diffuse to edge-states before recombination 

• Edge-state currents are linked to the changing availability of states for each carrier type 
with Fermi-level position in an LL.
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4.2K B= 4T
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• Both electron and hole currents are present 
in edge states. 

• At the Dirac point their currents add as they 
come from different bands and both are 
majority carriers. 

• Away from the Dirac point their currents 
subtract as the carriers are now in the same 
band. 

• Strong evidence of carrier multiplication.
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