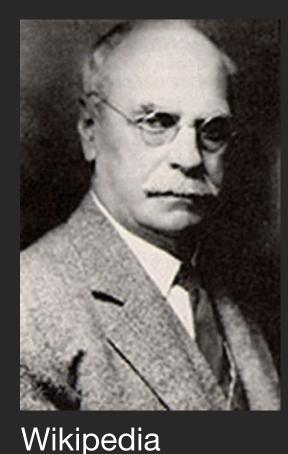
Chiral transport of hot carriers in graphene in the quantum Hall regime

Glenn Solomon Hicks Chair in Quantum Materials Department of Physics & the Institute of Photonics and Sensing University of Adelaide South Australia, Australia glenn.solomon@adelaide.edu.au

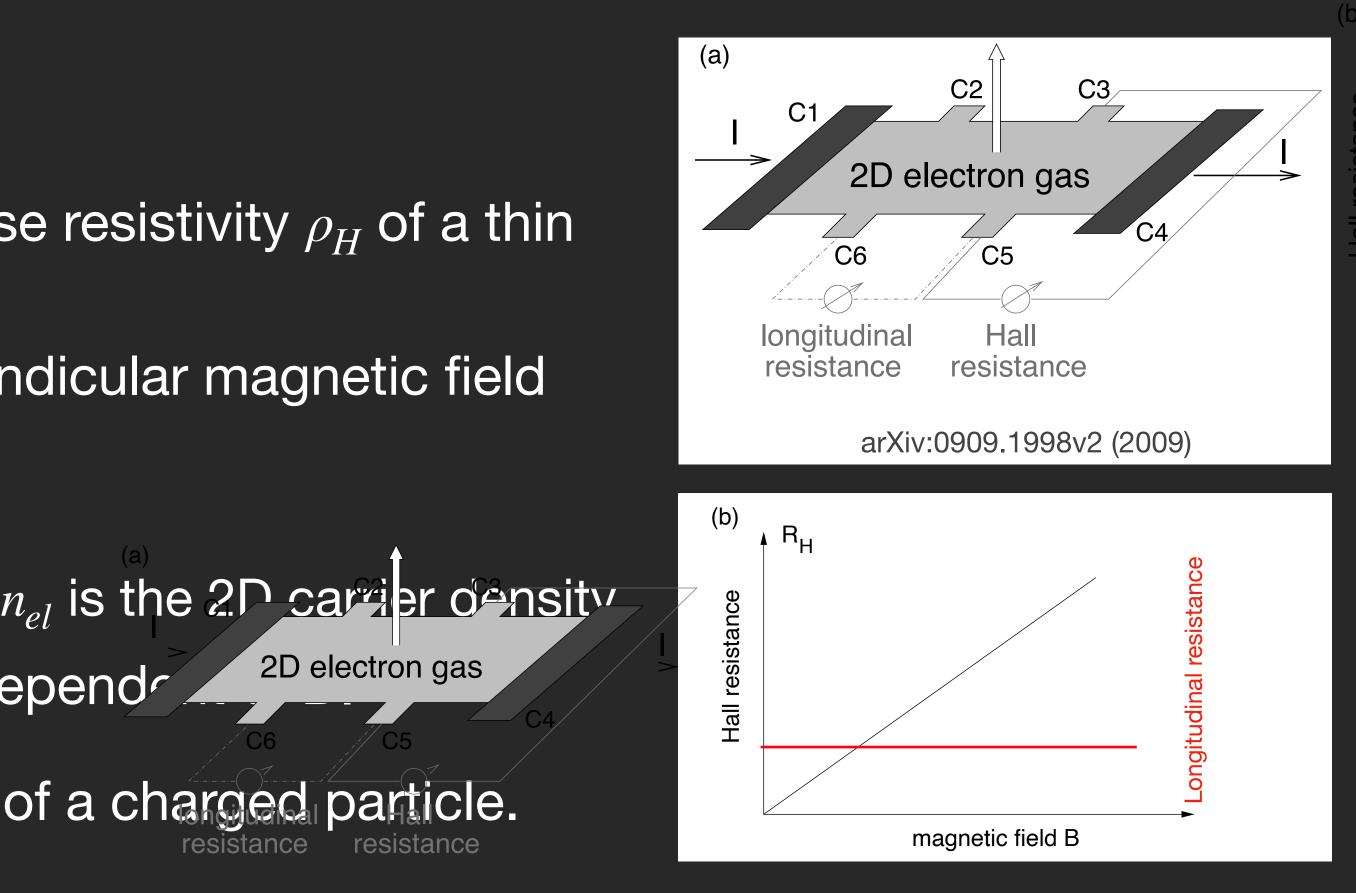
Classical Hall physics circa 1880



Edwin Hall showed the transverse resistivity ρ_H of a thin metallic plate **varies linearly** with the strength *B* of the perpendicular magnetic field $\rho_H = \frac{B}{qn_{el}}$ *q* is the charge (-*e* for electrons), n_{el} is the 2D carrier density

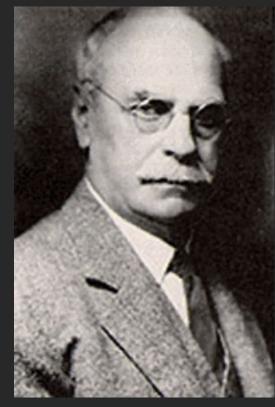
The longitudinal resistivity is independed

Just the Lorentz force changing the trajectory of a charged particle.



2

Classical Hall physics circa 1880



Edwin Hall showed the transverse resistivity ρ_H of a thin metallic plate varies linearly with the strength B of the perpendicular magnetic field $\rho_H =$ $qn_{\rho l}$ q is the charge (-e for electrons), n_{el} is the 2D carrier density

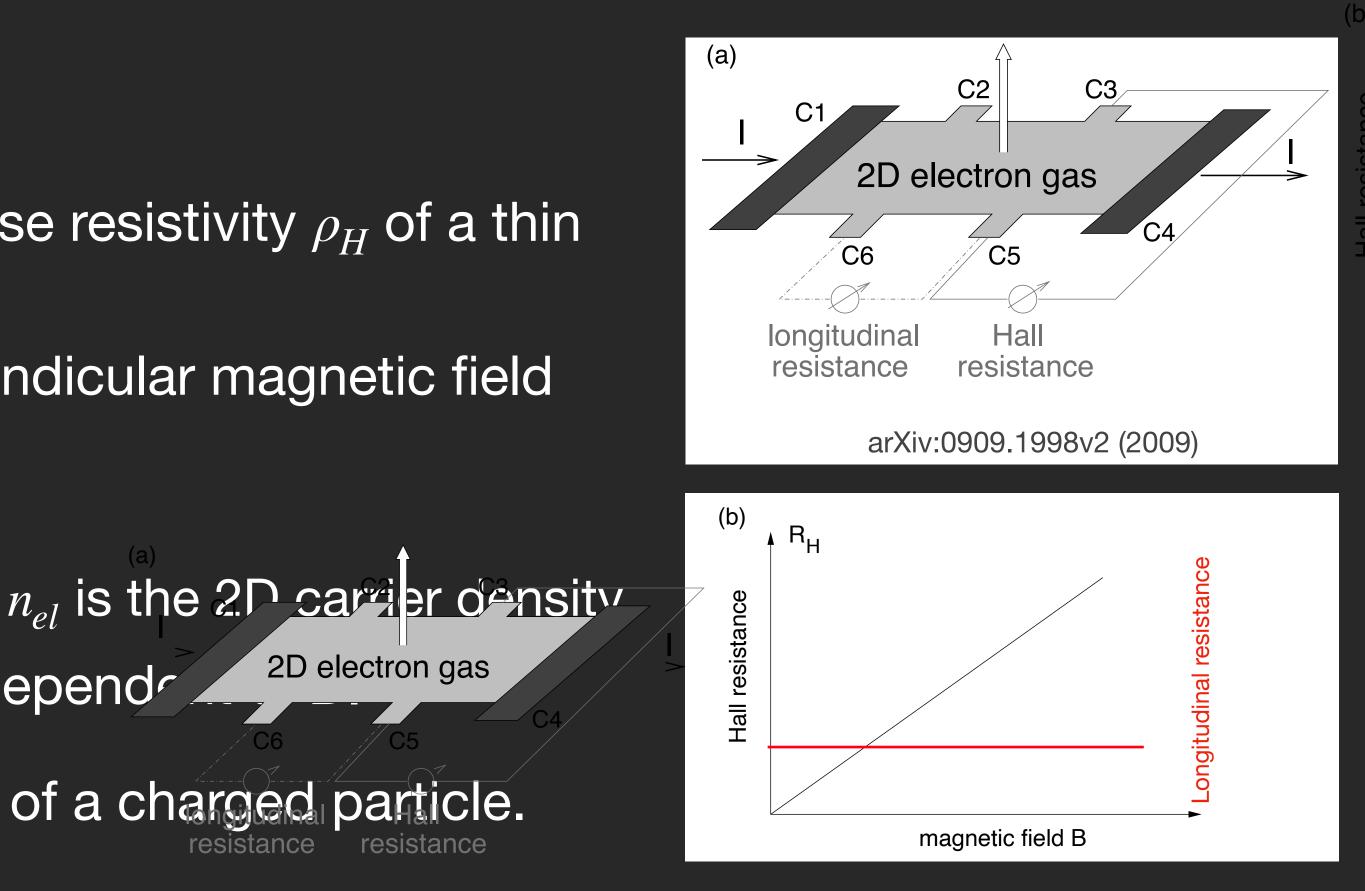
Wikipedia

The longitudinal resistivity is independed

Just the Lorentz force changing the trajectory of a charged particle.

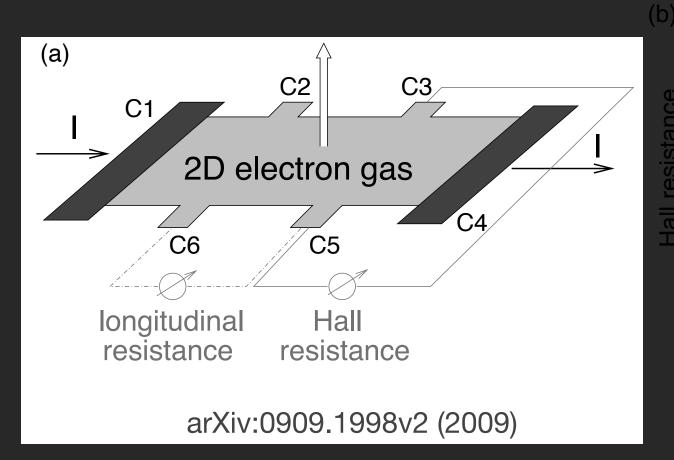
For a quasi 2D system, $R_H L = A$. $\rho = R$ making it robust with geometry change.

Another feature: In a semiconductor the carrier density and carrier mobility can found independent of each other.



- In the lab, we measure **Resistance** not **resistivity**, and $R = (L/A) \rho$ [l = length, A = cross section]

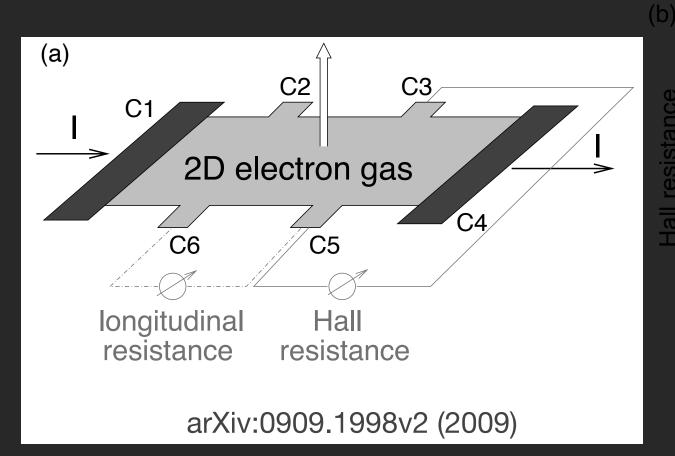
2



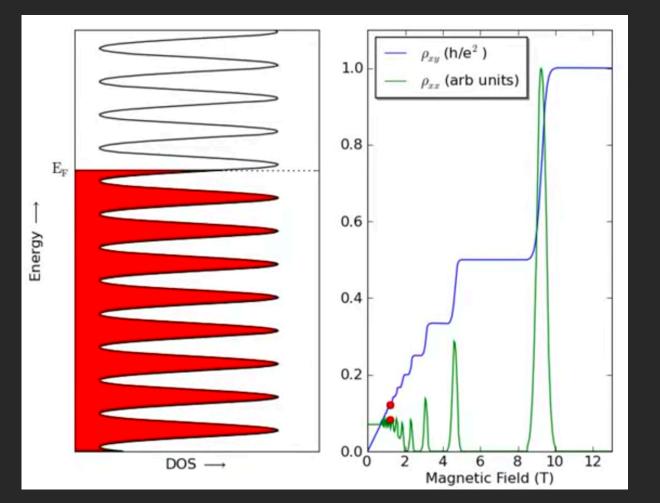
Parabolic bands: $\epsilon_n = \hbar \omega_C (n + 1/2)$,

In a 2D system quantisation of allowed electron/hole energies can present

n is an integer, cyclotron freq, $\omega_c = \frac{-qB}{-qB}$ M iff charged-carrier scattering, τ^{-1} is weak, *i.e.*, $\omega_c \tau > 1$ Quantisation of Density of States, $\rho(\epsilon) = \sum g_n \delta(\epsilon - \epsilon_n) g_n$ - degeneracy



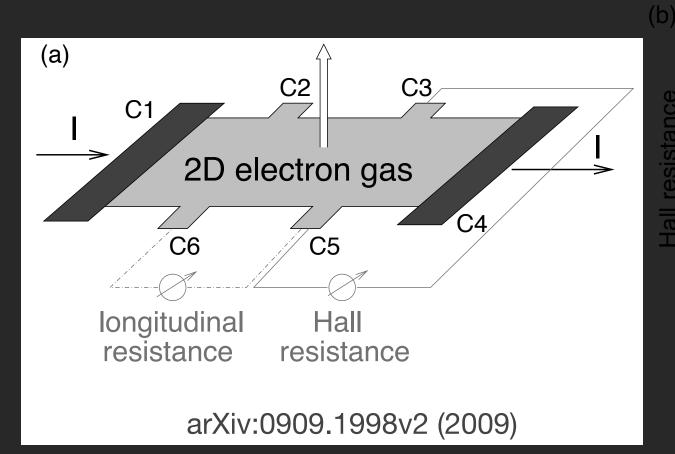
Parabolic bands: $\epsilon_n = \hbar \omega_C (n + 1/2)$,



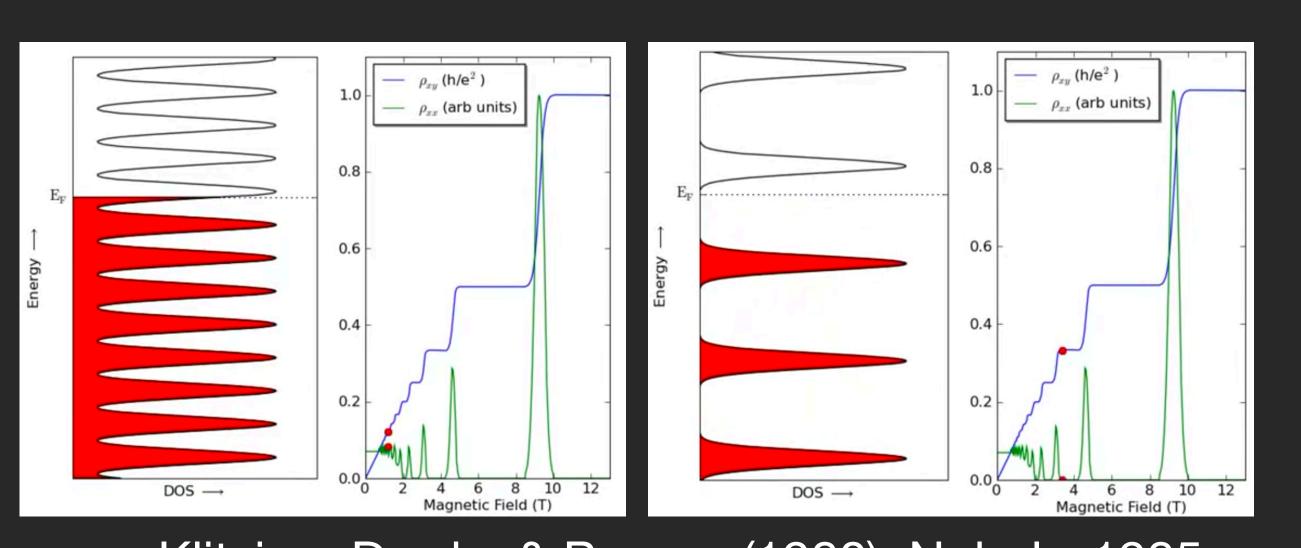
- v. Klitzing, Dorda, & Pepper (1980), Nobel - 1985 When R_{I} is minimum, a LL is filled, and R_{H} remains flat until the Fermi level, E_F is biased into the next LL.

In a 2D system quantisation of allowed electron/hole energies can present

n is an integer, cyclotron freq, $\omega_c = \frac{-qB}{-qB}$ iff charged-carrier scattering, τ^{-1} is weak, *i.e.*, $\omega_c \tau > 1$ Quantisation of Density of States, $\rho(\epsilon) = \sum g_n \delta(\epsilon - \epsilon_n) g_n$ - degeneracy



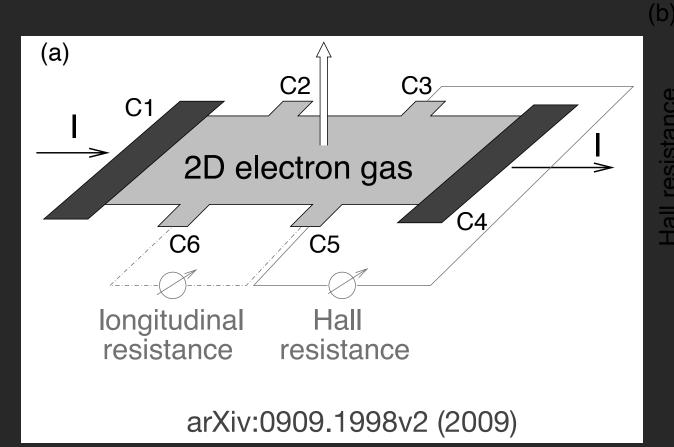
Parabolic bands: $\epsilon_n = \hbar \omega_C (n + 1/2)$,



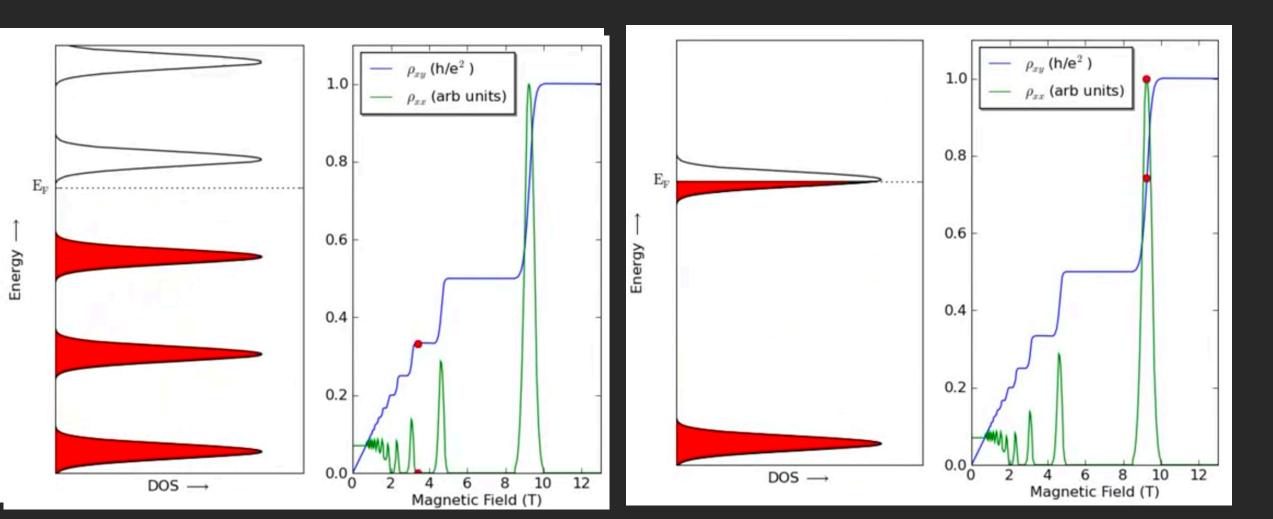
- v. Klitzing, Dorda, & Pepper (1980), Nobel - 1985 When R_{I} is minimum, a LL is filled, and R_{H} remains flat until the Fermi level, E_F is biased into the next LL.

In a 2D system quantisation of allowed electron/hole energies can present

n is an integer, cyclotron freq, $\omega_c = \frac{-qB}{-qB}$ iff charged-carrier scattering, τ^{-1} is weak, *i.e.*, $\omega_c \tau > 1$ Quantisation of Density of States, $\rho(\epsilon) = \sum g_n \delta(\epsilon - \epsilon_n) g_n$ - degeneracy



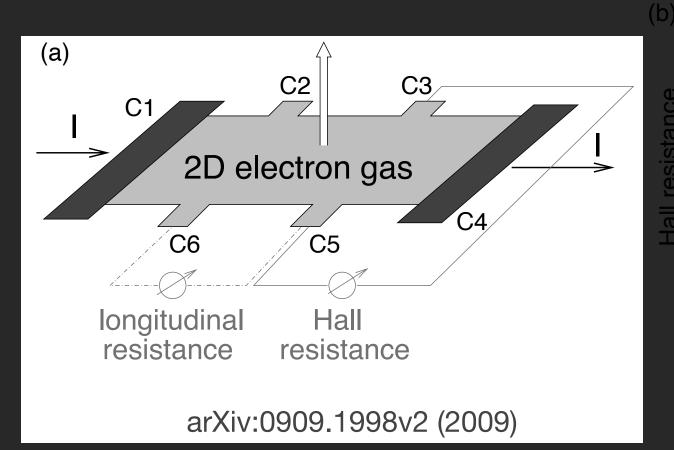
Parabolic bands: $\epsilon_n = \hbar \omega_C (n + 1/2)$,



- v. Klitzing, Dorda, & Pepper (1980), Nobel - 1985 When R_{I} is minimum, a LL is filled, and R_{H} remains flat until the Fermi level, E_F is biased into the next LL.

In a 2D system quantisation of allowed electron/hole energies can present

n is an integer, cyclotron freq, $\omega_c = \frac{-qB}{-qB}$ iff charged-carrier scattering, τ^{-1} is weak, *i.e.*, $\omega_c \tau > 1$ Quantisation of Density of States, $\rho(\epsilon) = \sum g_n \delta(\epsilon - \epsilon_n) g_n$ - degeneracy



Parabolic bands: $\epsilon_n = \hbar \omega_C (n + 1/2)$,

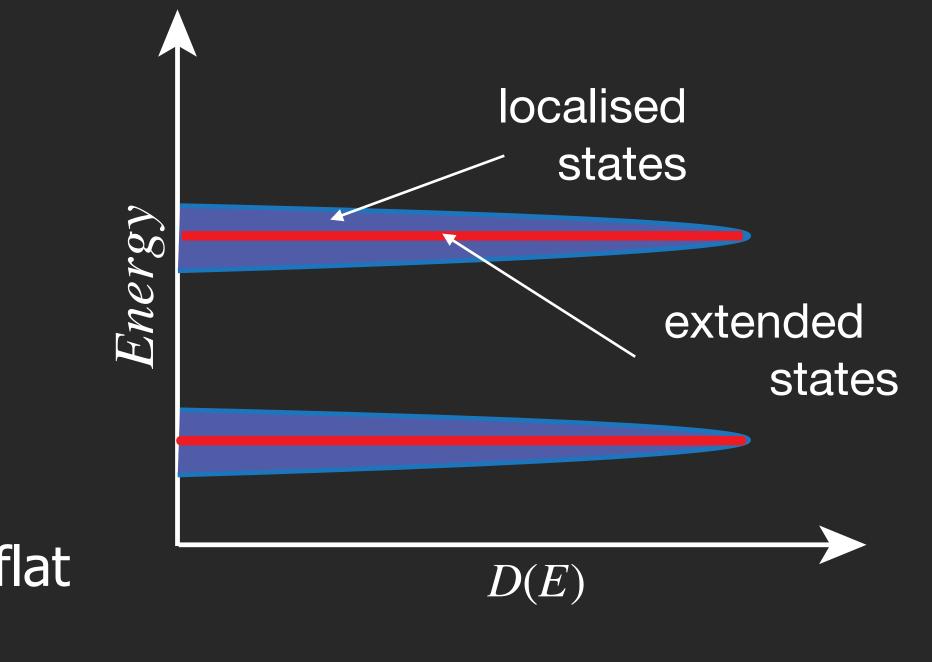
 ρ_{rr} (arb units) 0.6 0.4 0.2 $DOS \rightarrow$ Magnetic Field (T)

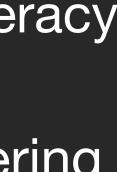
- v. Klitzing, Dorda, & Pepper (1980), Nobel - 1985 When R_L is minimum, a LL is filled, and R_H remains flat until the Fermi level, E_F is biased into the next LL.

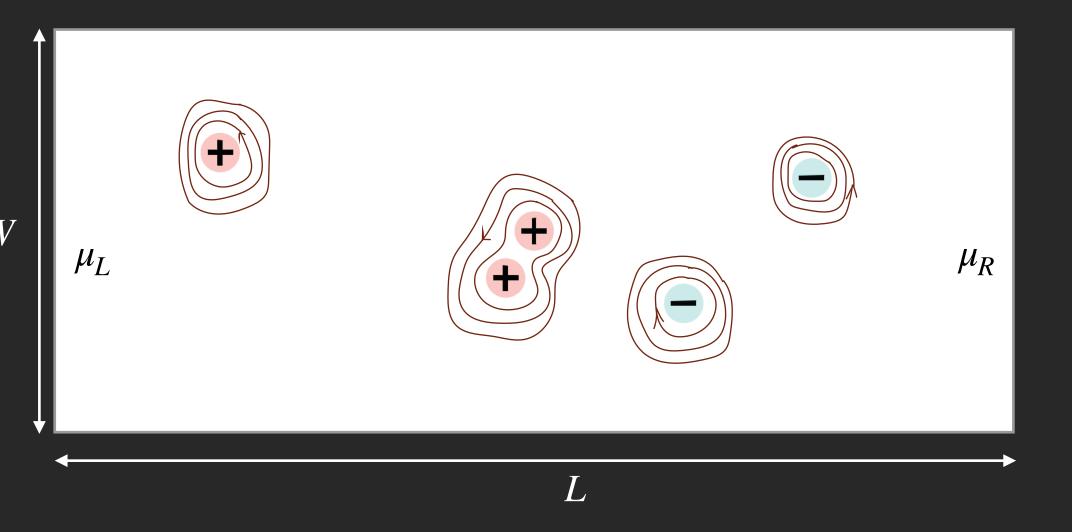
In a 2D system quantisation of allowed electron/hole energies can present

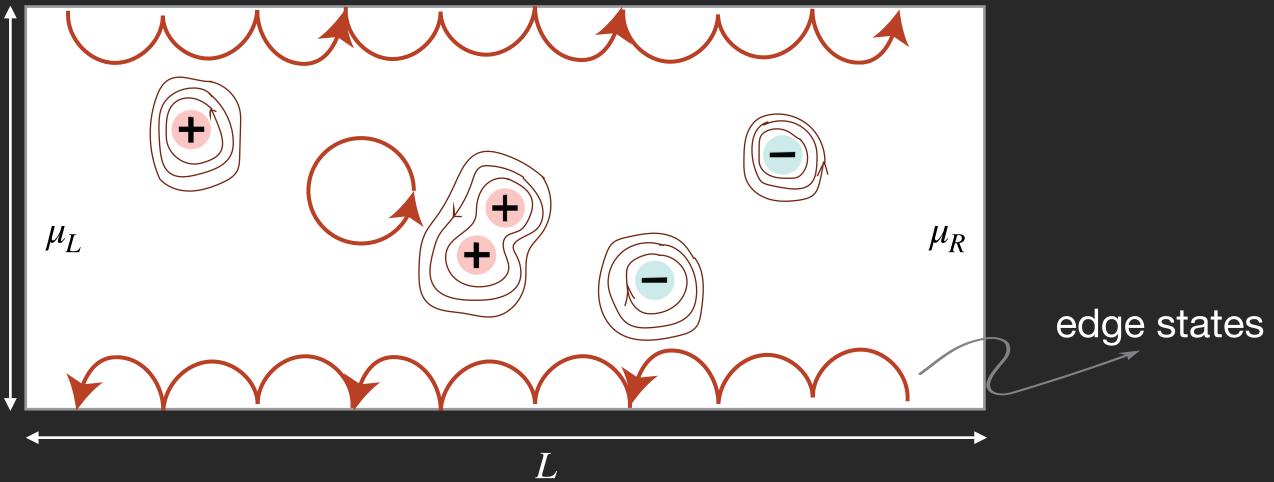
n is an integer, cyclotron freq, $\omega_c = -qB$ iff charged-carrier scattering, τ^{-1} is weak, *i.e.*, $\omega_c \tau > 1$ Quantisation of Density of States, $\rho(\epsilon) = \sum g_n \delta(\epsilon - \epsilon_n) g_n$ - degeneracy

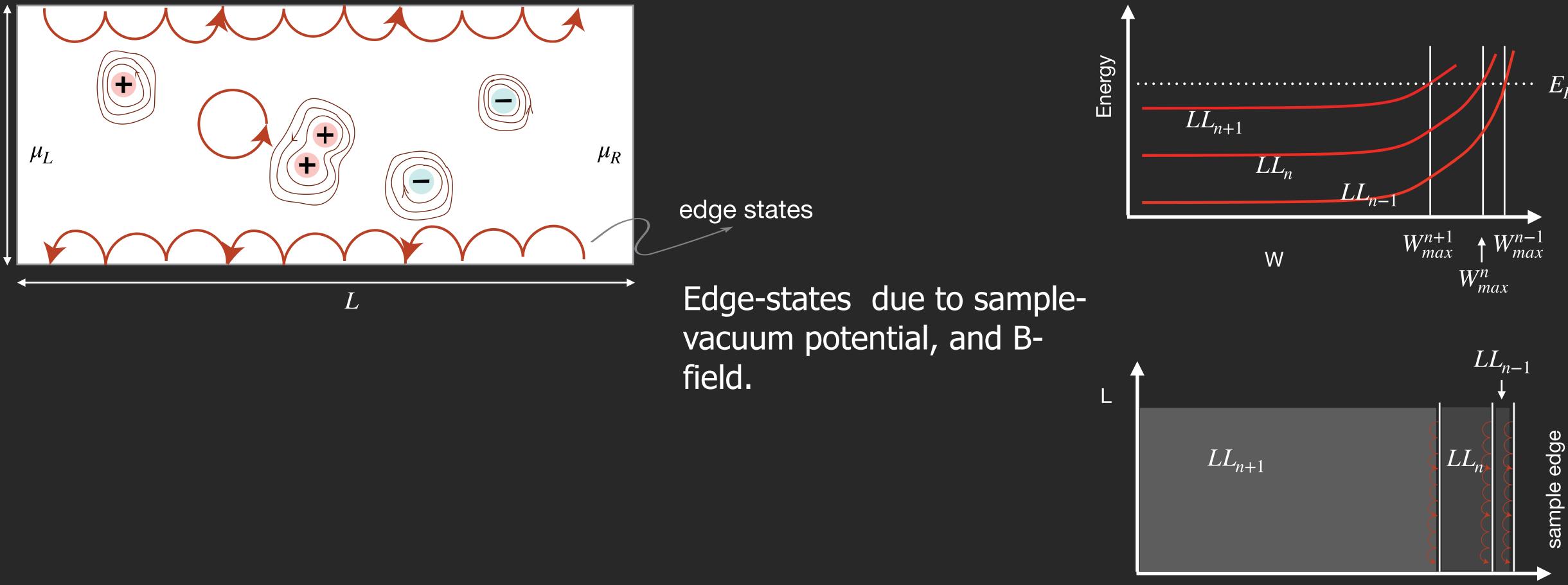
Peaks in the DOS are broadened by impurity scattering



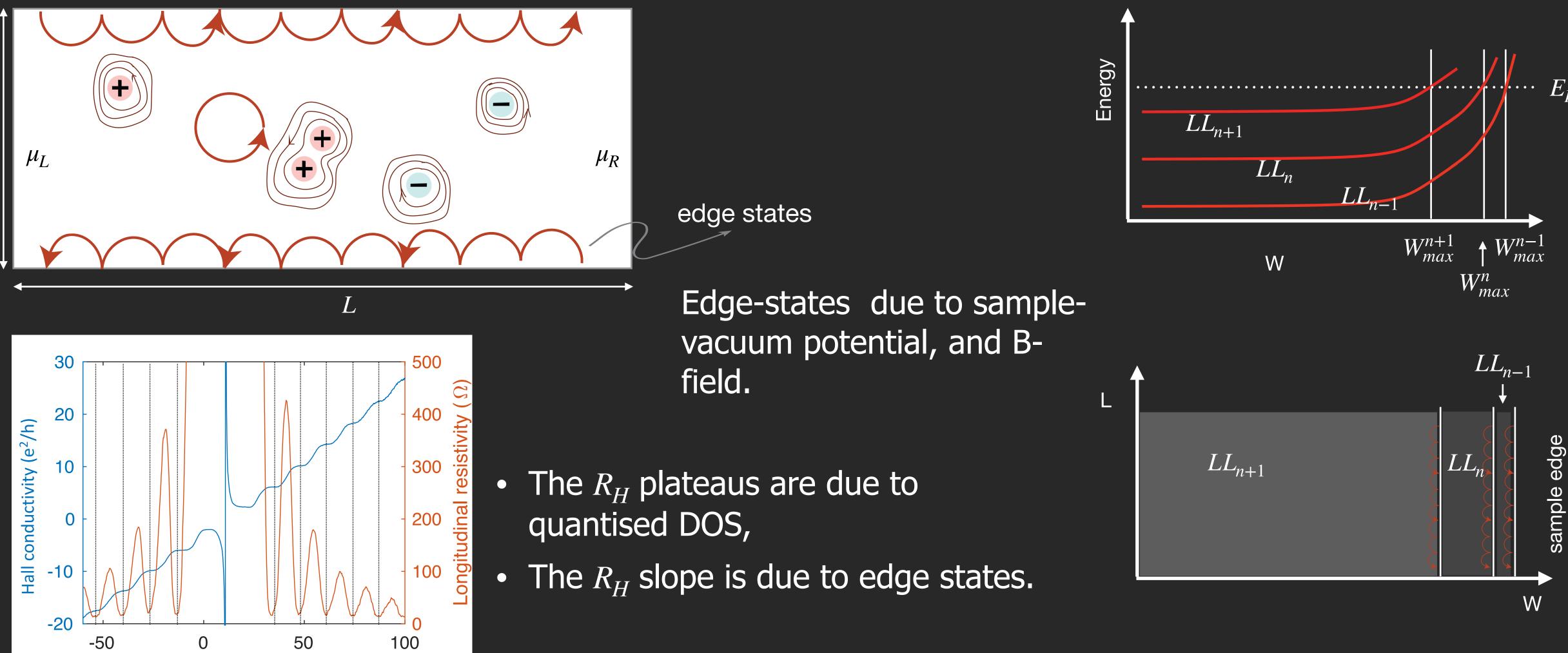








Backgate Voltage (V)

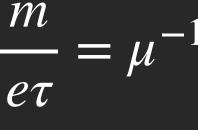


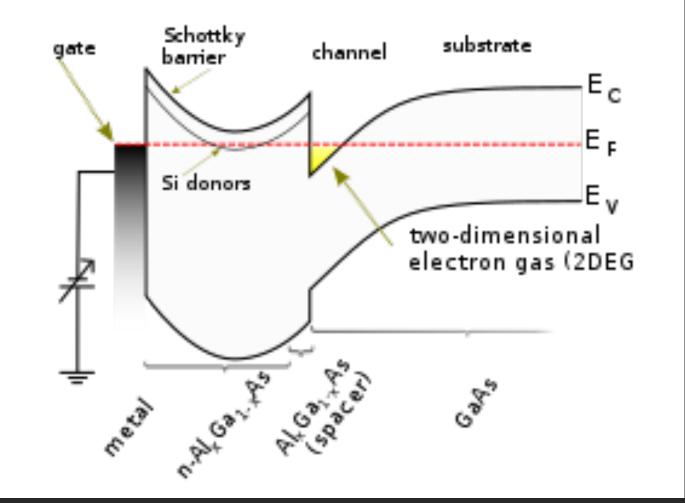
The III-V 2D Electron Gas (2DEG)

Initial integer quantum Hall (Stuttgart) - MOS structure

 $\omega_c \tau > 1$ defines a critical magnetic field, $B_c \approx \frac{m}{m} = \mu^{-1}$

With current III-V materials $\mu > 10^7 \text{cm}^2/\text{Vs}$ $B_c \approx 1\text{mT}$



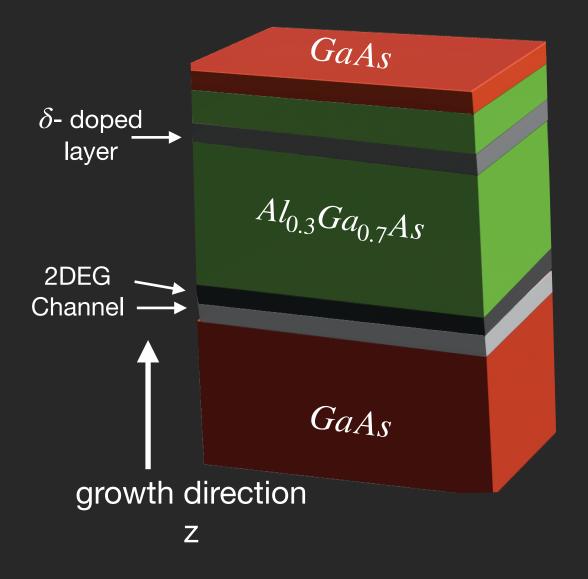


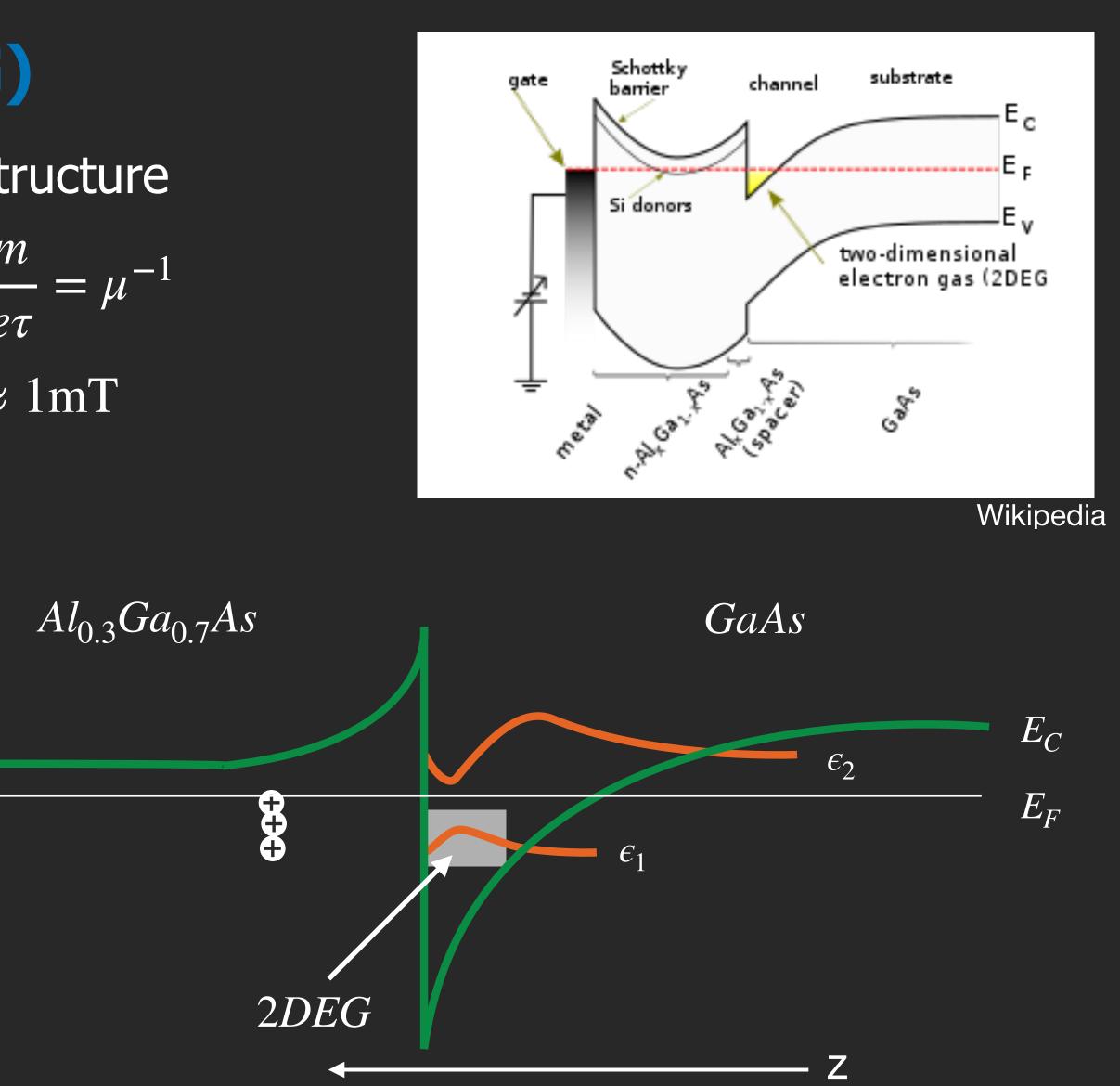
Wikipedia

The III-V 2D Electron Gas (2DEG)

Initial integer quantum Hall (Stuttgart) - MOS structure $\omega_c \tau > 1$ defines a critical magnetic field, $B_c \approx \frac{m}{e\tau} = \mu^{-1}$ With current III-V materials $\mu > 10^7 \text{cm}^2/\text{Vs}$ $B_c \approx 1\text{mT}$

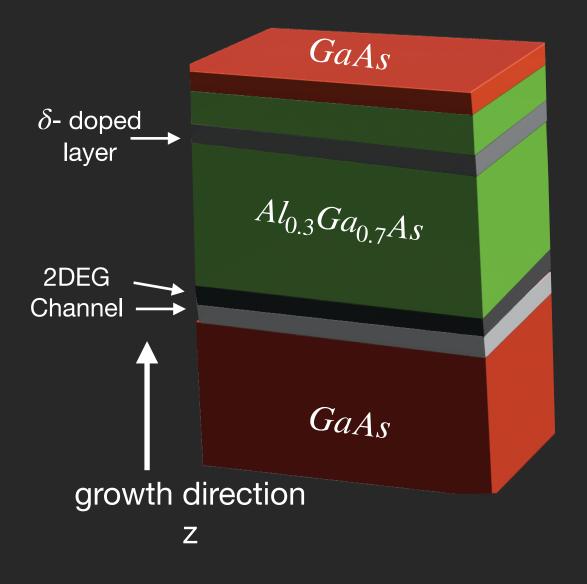
 E_{C}





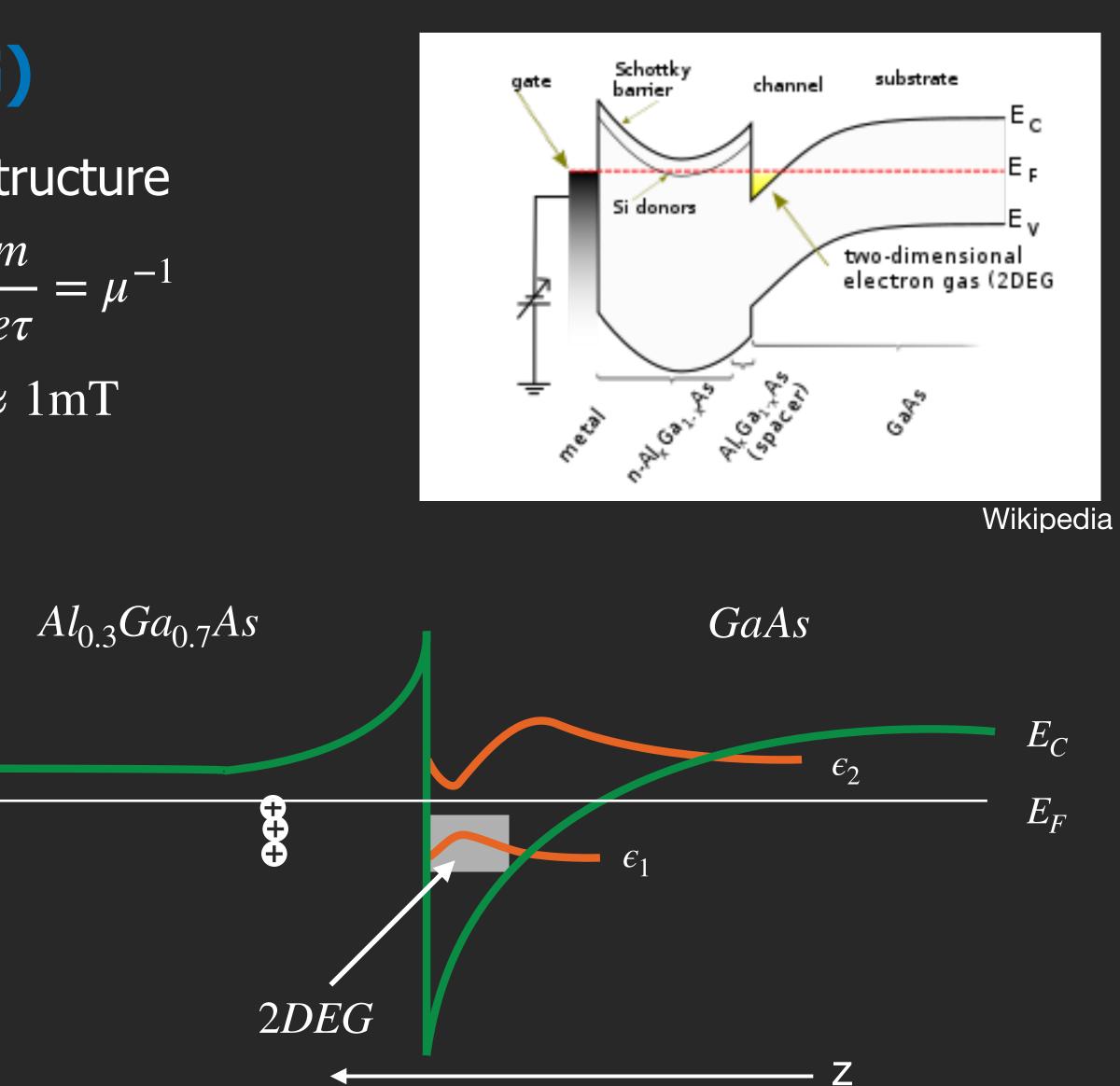
The III-V 2D Electron Gas (2DEG)

Initial integer quantum Hall (Stuttgart) - MOS structure $\omega_c \tau > 1$ defines a critical magnetic field, $B_c \approx \frac{m}{e\tau} = \mu^{-1}$ With current III-V materials $\mu > 10^7 \text{cm}^2/\text{Vs}$ $B_c \approx 1\text{mT}$



Let's look at a different way to make a 2-dimensional electron gas: Using Graphene

 E_{C}



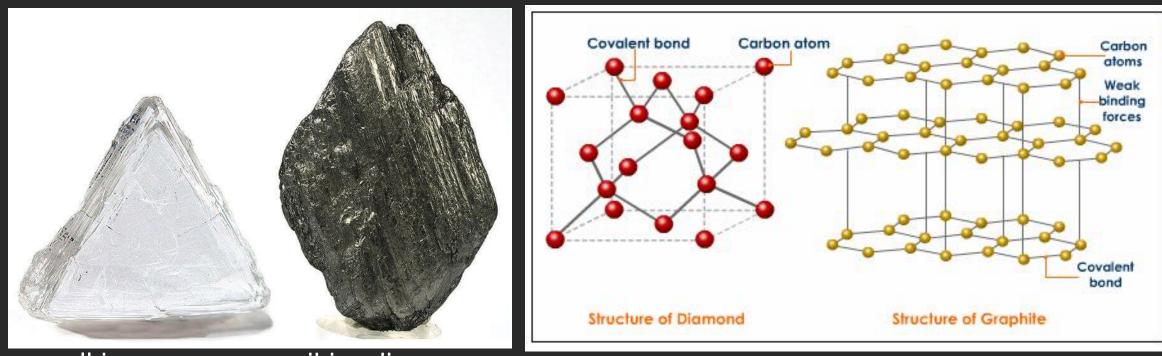
Allotropes of carbon

all images: www.wikipedia.com

• Two "natural" forms of carbon—they are 3 dimensional: **Diamond** and **Graphite** have been well known for ages.

One is one of the hardest of materials, the other, one of the softest.

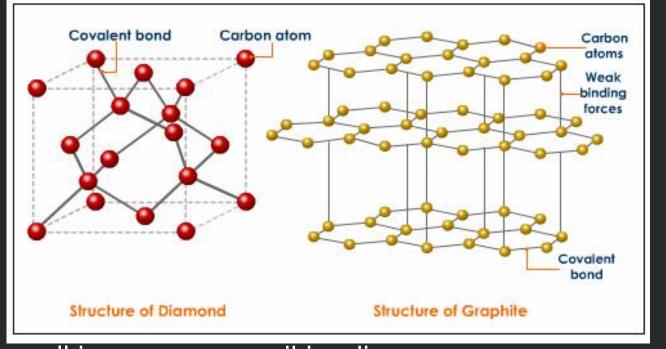
Allotropes of carbon



all images: www.wikipedia.com

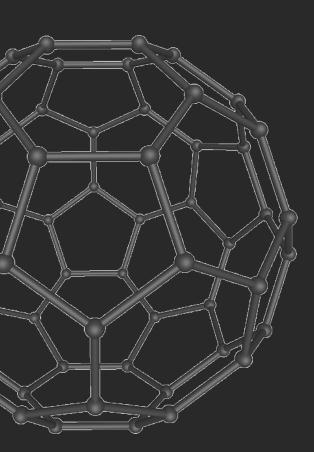
Two "natural" forms of carbon—they are 3 dimensional: Diamond and Graphite have been well known for ages. One is one of the hardest of materials, the other, one of the softest.

Allotropes of carbon



all images: www.wikipedia.com

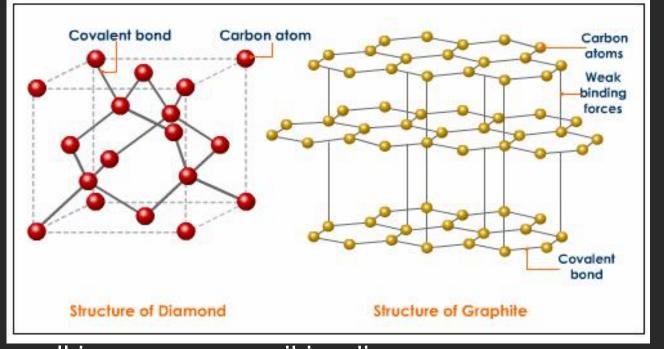
- Two "natural" forms of carbon—they are 3 dimensional: **Diamond** and **Graphite** have been well known for ages.
- 0D forms of carbon: Fullerenes (1985 C₆₀)



One is one of the hardest of materials, the other, one of the softest.

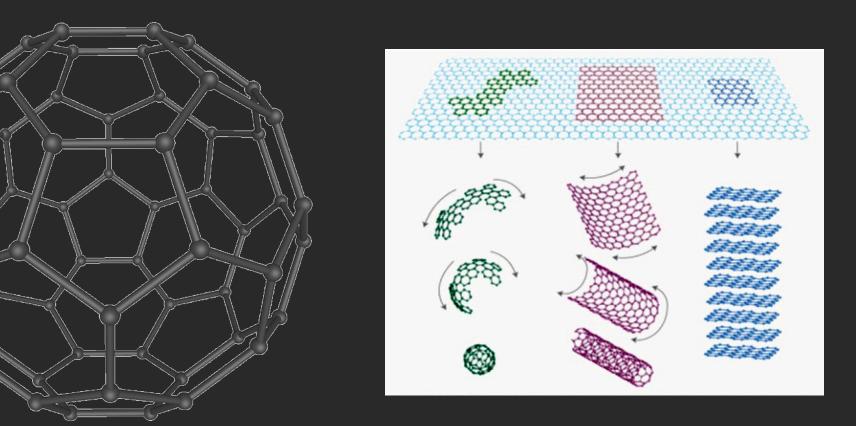
H. W. Kroto, Nature. **318**,162–163 (1985).

Allotropes of carbon



all images: www.wikipedia.com

- Two "natural" forms of carbon—they are 3 dimensional: **Diamond** and **Graphite** have been well known for ages.
- 0D forms of carbon: Fullerenes (1985 C₆₀)
- 1D forms of carbon: Carbon nanotubes (1991)

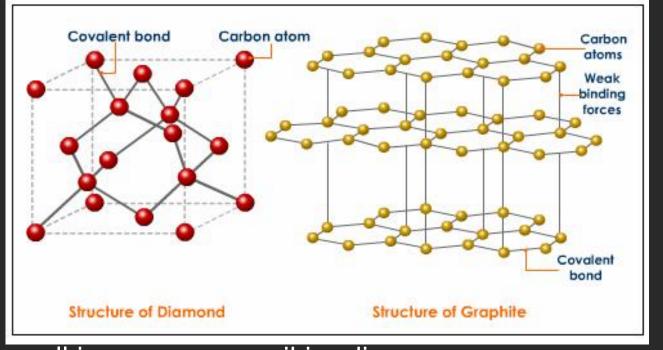


One is one of the hardest of materials, the other, one of the softest.

H. W. Kroto, Nature. **318**,162–163 (1985).

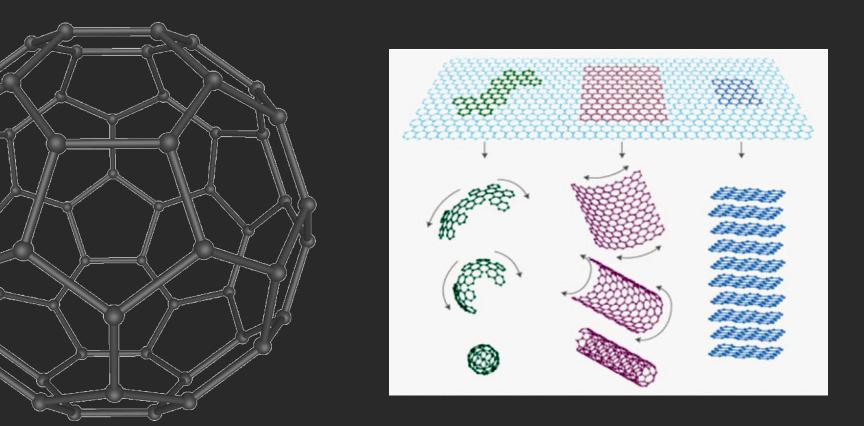
S. lijima, Nature **56,** 354 (1991).

Allotropes of carbon



all images: www.wikipedia.com

- Two "natural" forms of carbon—they are 3 dimensional: **Diamond** and **Graphite** have been well known for ages.
- 0D forms of carbon: Fullerenes (1985 C₆₀)
- 1D forms of carbon: Carbon nanotubes (1991)
- we know as graphene.



One is one of the hardest of materials, the other, one of the softest.

H. W. Kroto, Nature. **318**,162–163 (1985).

S. lijima, Nature 56, 354 (1991).

Expect for diamond (sp³), all allotropes are based on a 2D layer,

The curious case of graphene

An isolated single 2D layer, graphene, was not seen until 2004. K. S. Novoselov, et al., Science. **306**, 666 (2004).

Most believed 2D layers were not stable against thermal vibration.

 sp^2 hybridise, plane bonding. Remaining p—orbital out of plane

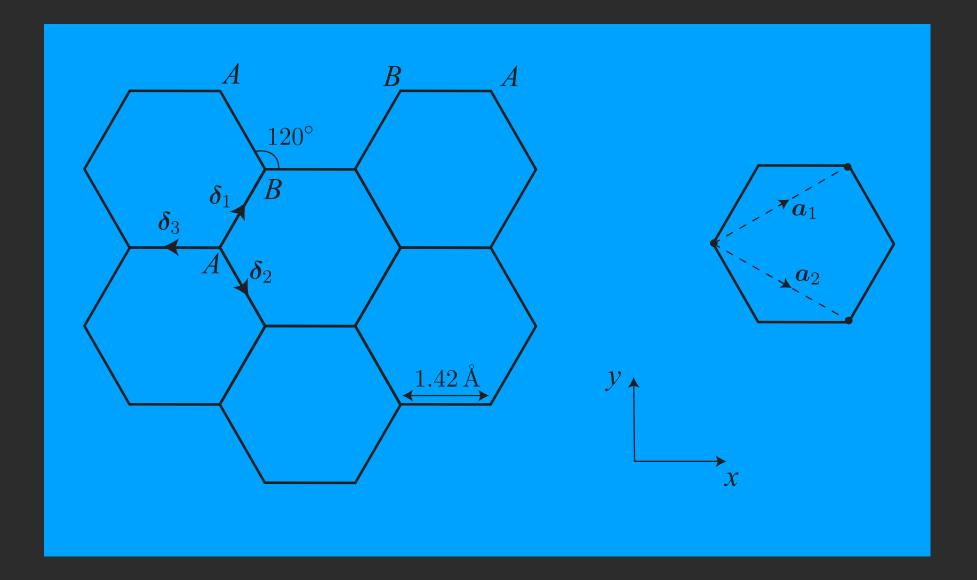


The curious case of graphene

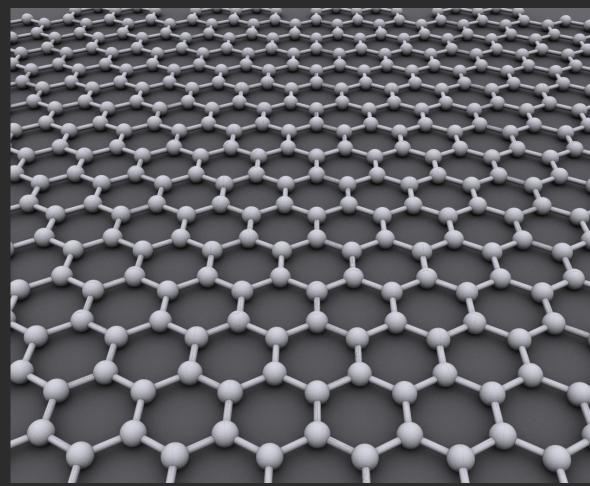
An isolated single 2D layer, graphene, was not seen until 2004. K. S. Novoselov, et al., Science. **306**, 666 (2004).

Most believed 2D layers were not stable against thermal vibration.

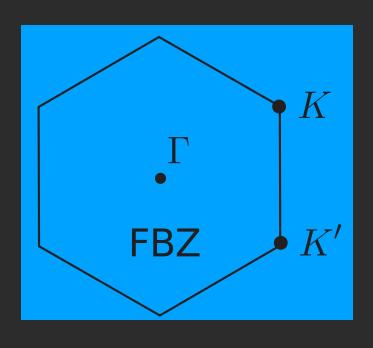
 sp^2 hybridise, plane bonding. Remaining p—orbital out of plane



Two non-equivalent sublattices, A and B, are mirror symmetric.



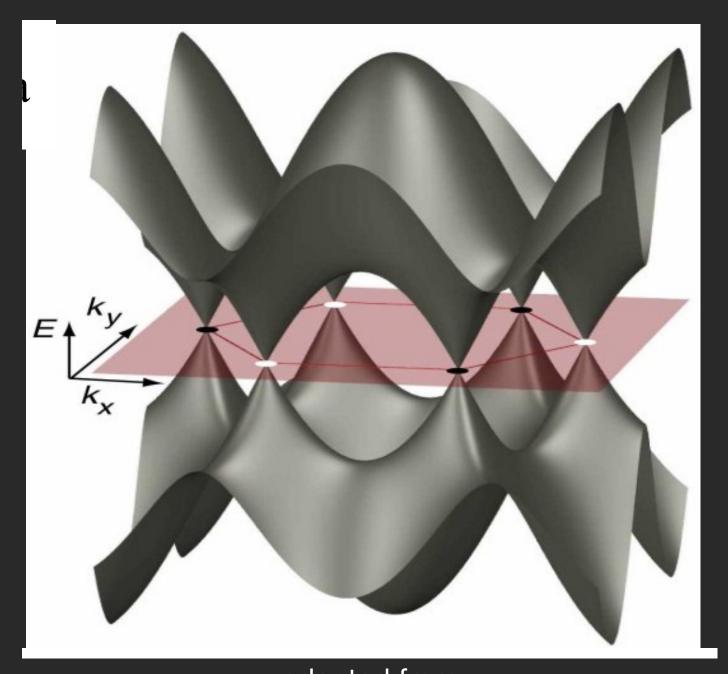
7

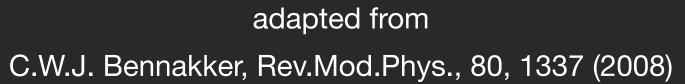


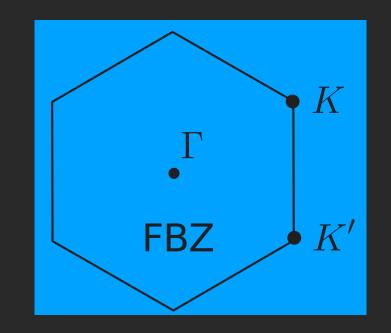
Reciprocal lattice — First Brillouin zone (FBZ), Each sublattice point, K and K` in FBZ are :

$$K = \frac{2\pi}{3a}(1, \frac{1}{\sqrt{3}}), \qquad K' = \frac{2\pi}{3a}(1, -\frac{1}{\sqrt{3}})$$

Graphene bang (structure $\sqrt{3}$)



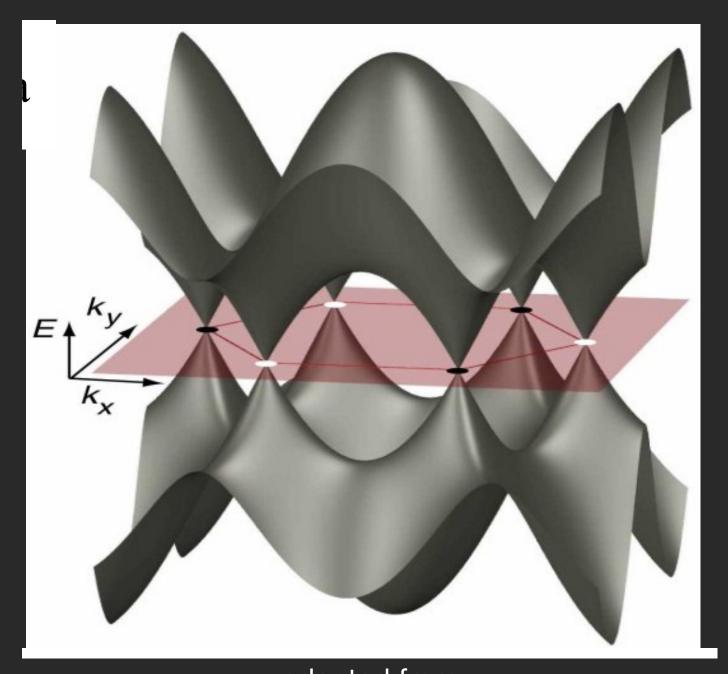


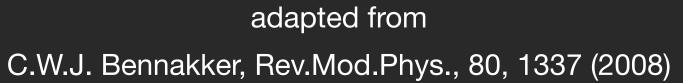


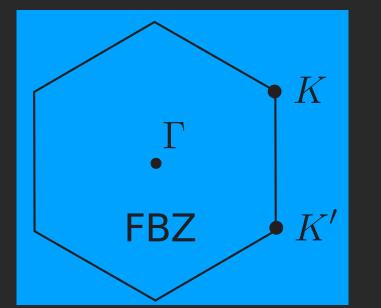
- The valance and conduction bands meet at K, K points. With no doping, no DOS at E_f .
- A perfect semi-metal.

1.
$$H = -t \sum_{|\vec{R}\rangle} \left(|\vec{R}\rangle \langle \vec{R} + \vec{\tau} | + |\vec{R}\rangle \langle \vec{R} - \vec{a}_1 + \vec{\tau} | + |\vec{R}\rangle \langle \vec{R} - \vec{a}_2 + \vec{\tau} | + \vec{h} \rangle \langle \vec{R} - \vec{h}_2 + \vec{\tau} | + \vec{h} \rangle \langle \vec{R} - \vec{h}_2 + \vec{h} \rangle \langle \vec{R} - \vec{h} \rangle \langle$$

Graphene bang (structure $\sqrt{3}$)







- A perfect semi-metal.

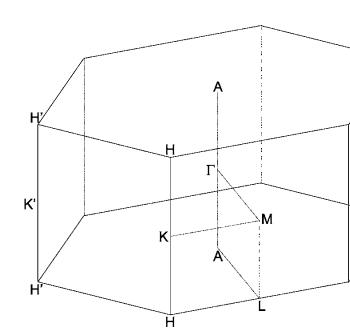
1.
$$H = -t \sum_{|\vec{R}\rangle} \left(|\vec{R}\rangle \langle \vec{R} + \vec{\tau} | + |\vec{R}\rangle \langle \vec{R} - \vec{a}_1 + \vec{\tau} | + |\vec{R}\rangle \langle \vec{R} - \vec{a}_2 + \vec{\tau} | + \vec{h} \rangle \langle \vec{R} - \vec{h}_2 + \vec{\tau} | + \vec{h} \rangle \langle \vec{R} - \vec{h}_2 + \vec{h} \rangle \langle \vec{R} - \vec{h} \rangle \langle$$

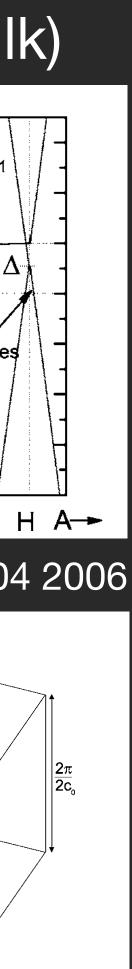
Reference: Graphite (bulk)

The valance and conduction bands meet at K, K points. With no doping, no DOS at E_f .

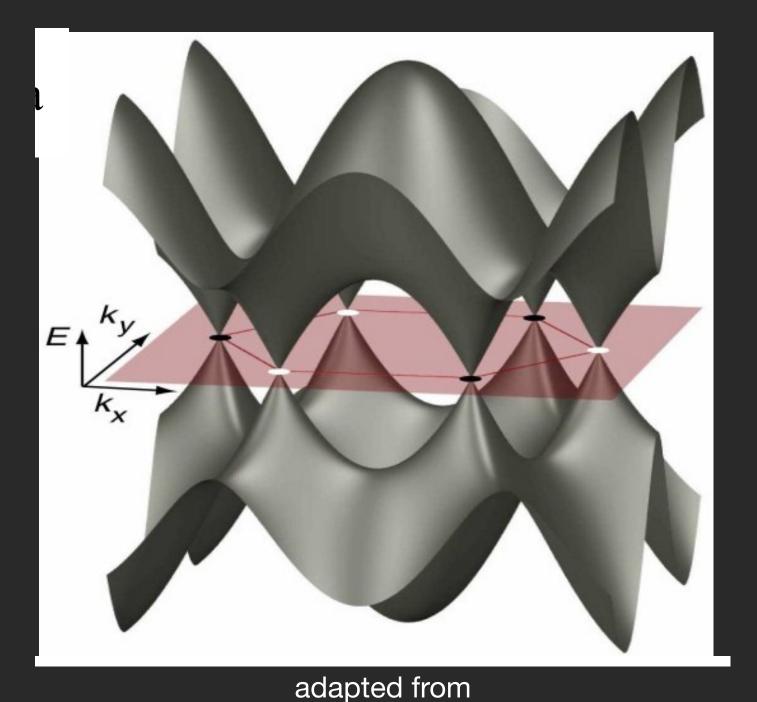
0.04 E, 0.02 () 0.00 0.02 -0.02 -0.04 Holes Fermi energy Electrons Minority holes 2γ₂ -0.06 -0.08 E_{2} (b) -0.10 Κ **←**Γ

Partoens & Peeters, PRB, 74, 075404 2006





Graphene band (structure $\sqrt{3}$)



C.W.J. Bennakker, Rev.Mod.Phys., 80, 1337 (2008)

1.

FBZ

 $\epsilon(q) \approx \hbar \nu_F(q_x - iq_y) + 0 (1 + q/K)$

- Then the dispersion (wrt **q**)
- No band curvature. $H = -t\sum \left(\left| \vec{R} \right\rangle \left\langle \vec{R} + \vec{\tau} \right| + \left| \vec{R} \right\rangle \left\langle \vec{R} - \vec{a}_1 + \vec{\tau} \right| + \left| \vec{R} \right\rangle \left\langle \vec{R} - \vec{a}_2 \right\rangle \right]$

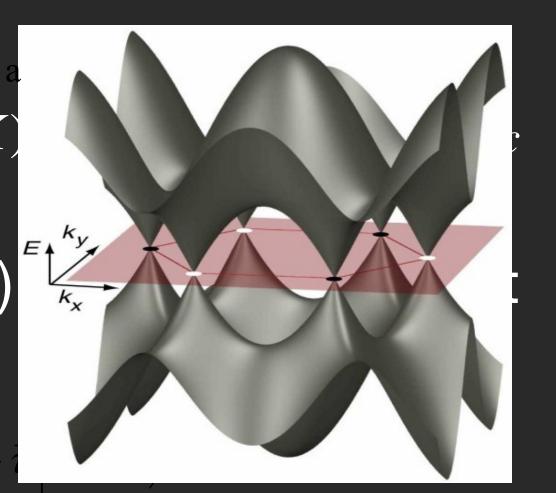
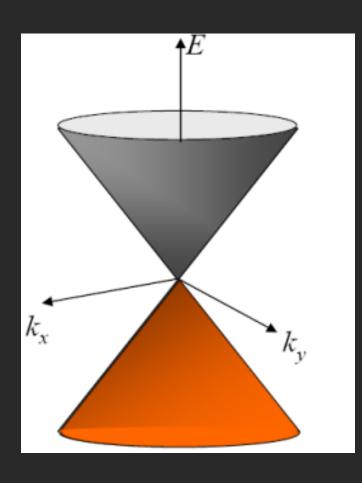


Figure A-6. Graphene band structure. a) Three dimensional band structure. Adapted from C.W.J. Beenakker,

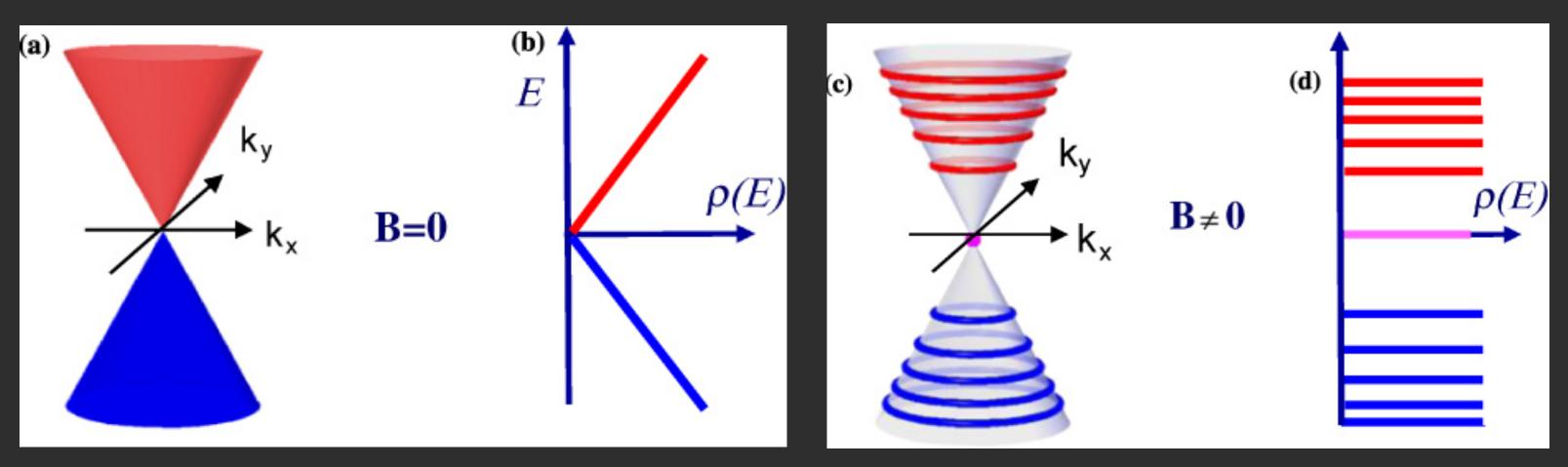
The valance and conduction bands meet at K, K` points. With no doping, no DOS at E_{f}^{a} . $\vec{E}_{f}^{(3,\sqrt{3})}$, $\vec{a}_{2} = \frac{a}{2}(3,-\sqrt{3})$ $\vec{R} + \vec{\tau}$ $\vec{\tau} = (\vec{a}_2 + \vec{a}_1)/3.$ • A perfect semi-metal $\vec{G}_1 = \frac{2\pi}{3a}(1,\sqrt{3}), \vec{G}_2 = \frac{2\pi}{3a}(1,-\sqrt{3})$



Part III: Integer quantum Hall physics in graphene

- Add a perpendicular magnetic field, B
- Eigenenergies:

$$\epsilon_n = sign(n) \frac{\hbar \nu_F}{l_B} \sqrt{2 \mid n \mid}; \quad l_B = \sqrt{\frac{\hbar}{eB}}$$

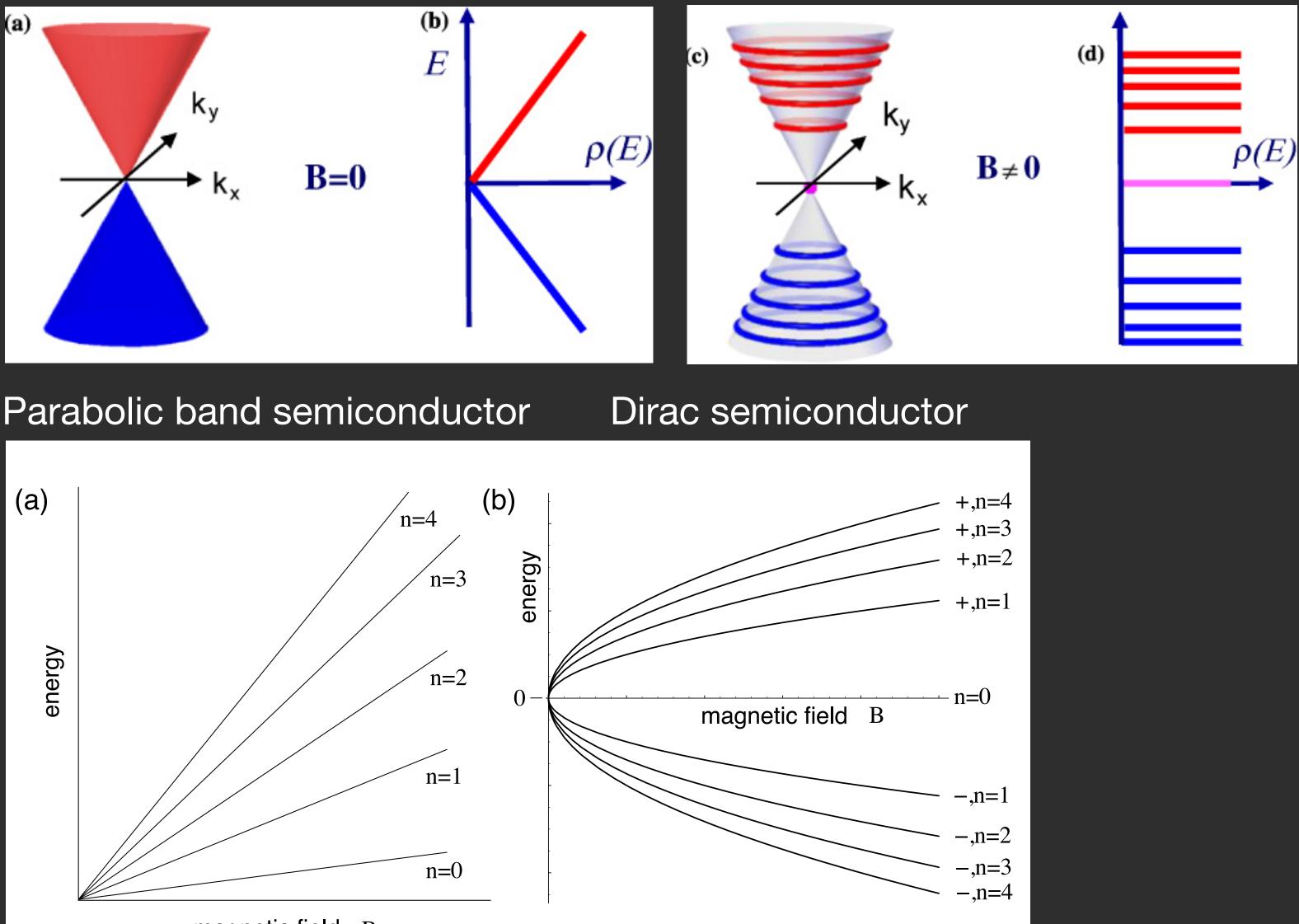


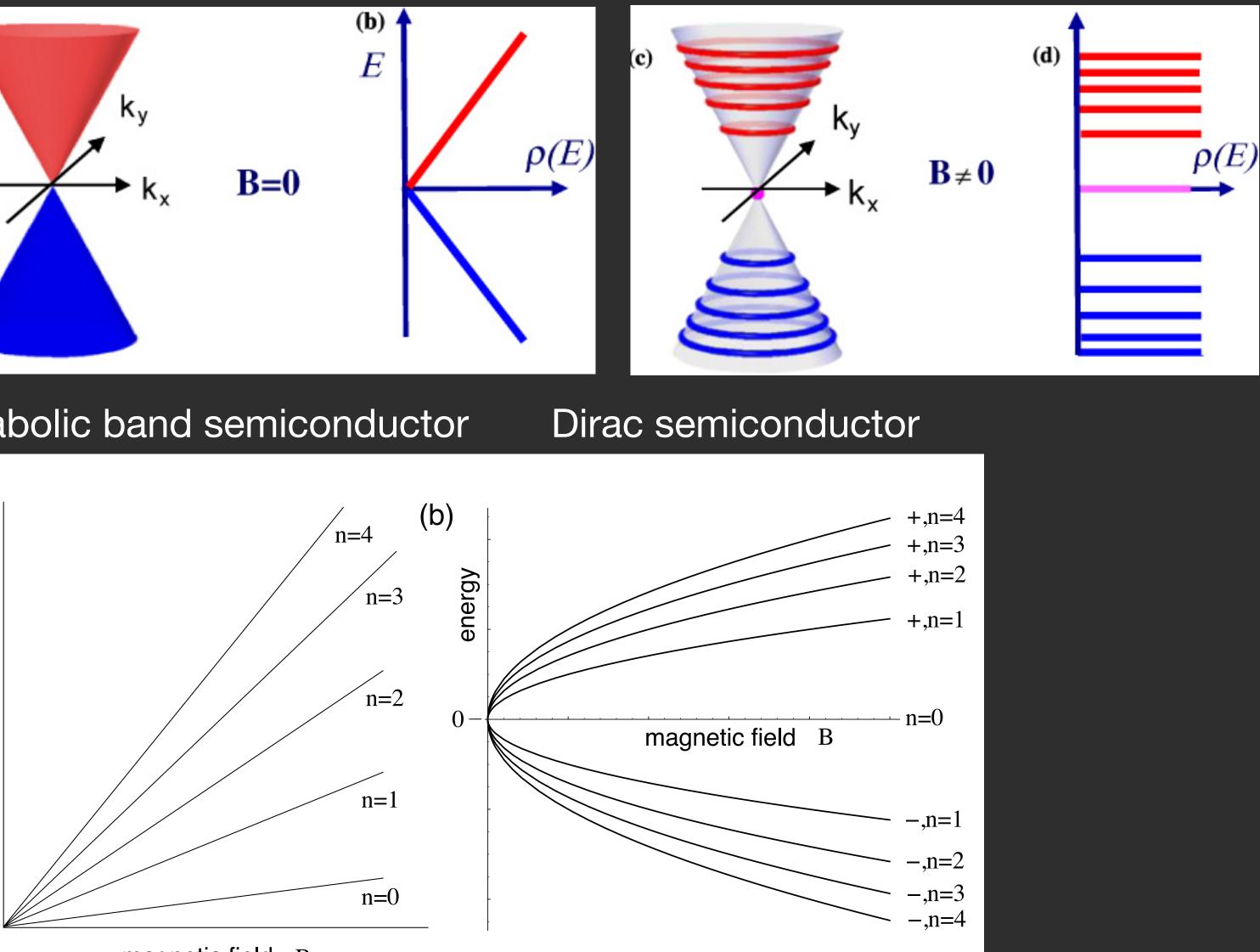
Part III: Integer quantum Hall physics in graphene

- Add a perpendicular magnetic field, B
- Eigenenergies:

$$\epsilon_n = sign(n) \frac{\hbar \nu_F}{l_B} \sqrt{2 |n|}; \quad l_B = \sqrt{\frac{\hbar}{eB}}$$

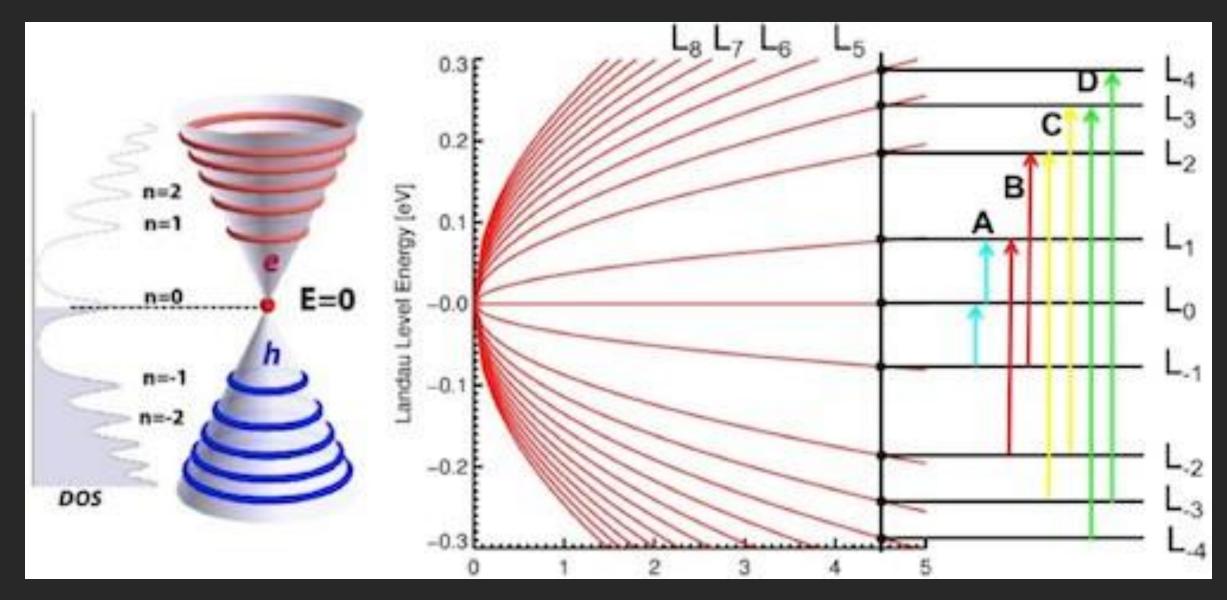
- Normal semiconductors:
- $\epsilon_n = \hbar \omega_c (n + 1/2) \propto B(n + 1/2)$



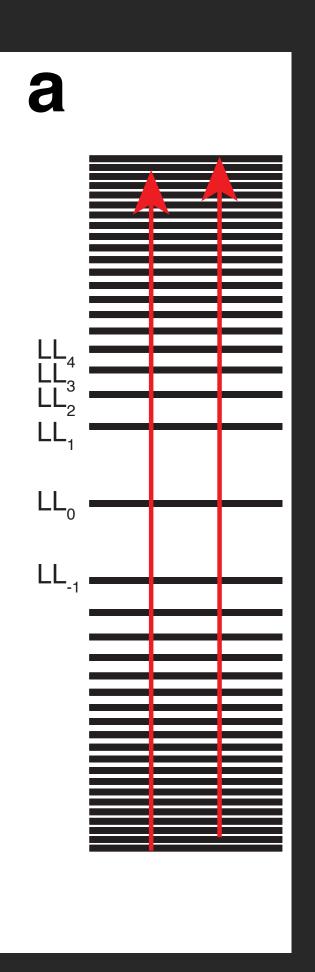


magnetic field B

Part IV: In the non-equilibrium regime using light



- •The anharmonic energy level spacing in graphene allows unique energy transitions (within a factor of 2).
- Dipole-allowed transitions for $|n_f| |n_i| \pm 1$.
- With graphene in the integer quantum-Hall regime; Excite holes below E_f to empty electron states above E_f ; Using selection rules: $|n_f| - |n_i| \pm 1$.

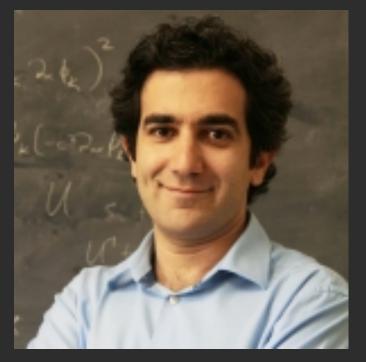


Now an experiment, and a cast of characters



Bin Cao

Tobias Grass



Mohammad Hafez

Optical and electrical measurements: Olivier Gazzano, Tobias Huber-Loyola, Markus Müller

<u>Theory</u>: Michael Gullens

Joint Quantum Institute, NIST and University of Maryland College, MD USA

B. Cao, T. Grass, et al., ACS Nano 2022, 16, 11, 18200–18209

Sample Prep: 1 Jiuning Hu, Dave Newell, National Institute of Standards and Technology Gaithersburg, MD USA

<u>Sample Prep: 2</u>: Kishan Ashokbhai Patel, Luca Anzi, Roman Sordan L-NESS, Department of Physics, Politecnico di Milano, Como

BN: Kenji Watanabe, Takashi Taniguchi National Institute for Materials Science, Tsukuba, Japan

11

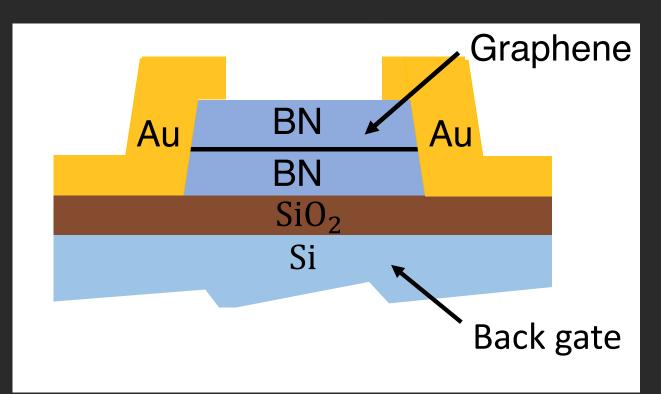
The graphene sample

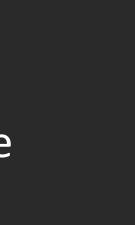
• A typical structure:

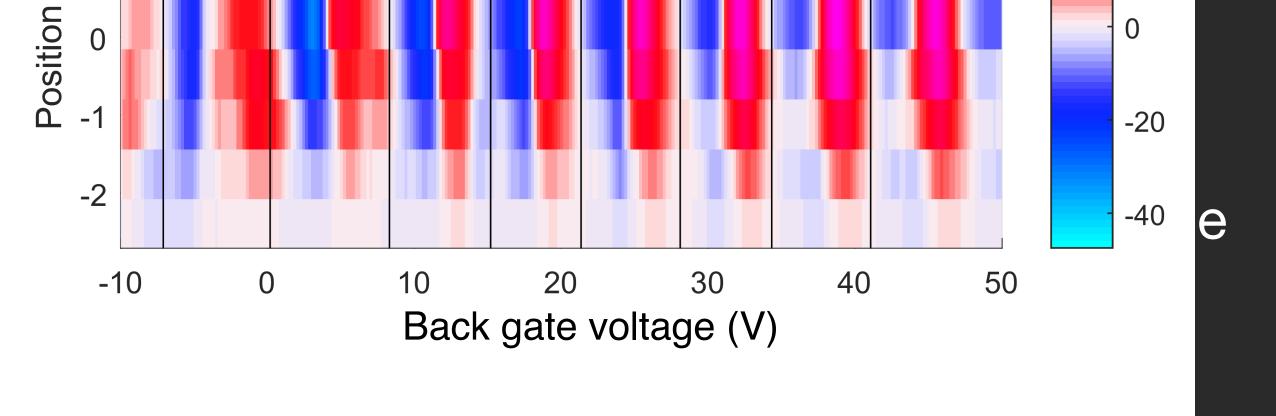
Exfoliated hBN, graphene, BN encapsulated graphene Back-gated SiO₂/Si, with metallic back contact Sizes range from $3 \times 3 \mu m$ to $10 \times 10 \mu m$ **Ohmic contacts**:

Through an e-beam deposits AI hard mask Graphene & hBN etched selectively by O₂ and SF₆ RIE plasma Leaves pristine graphene exposed edges Ohmic contacts: Cr/Pd/Au (2/5/80 nm) patterned by e-beam lithography and e-beam

Two-terminal device with back gate

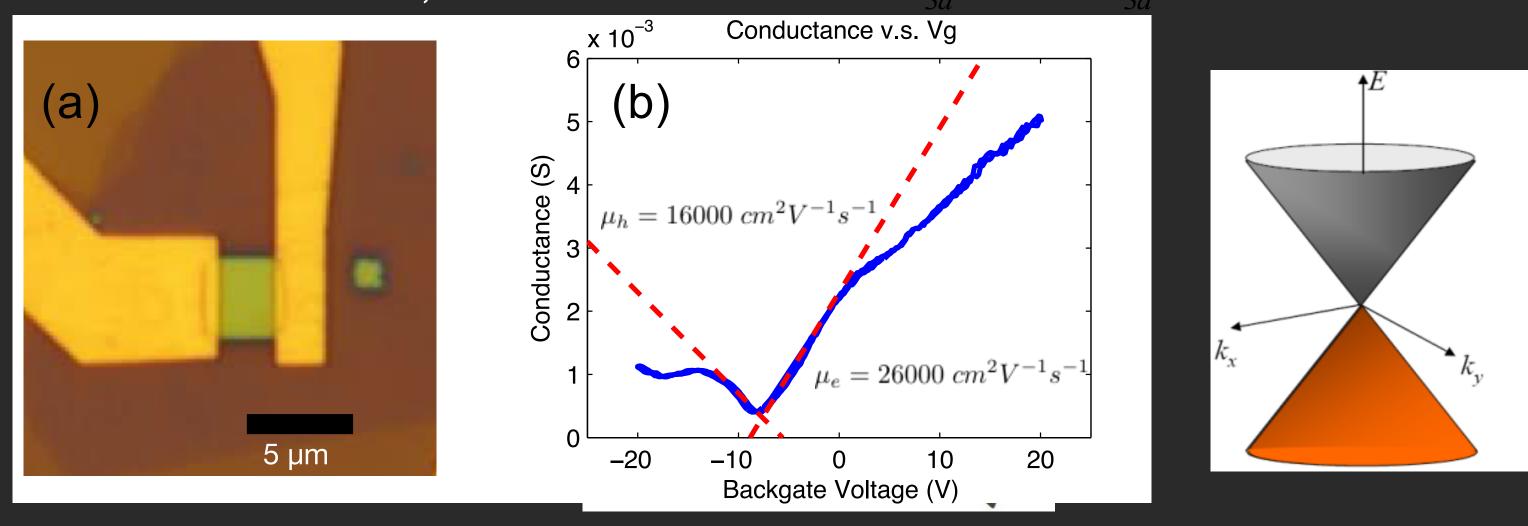






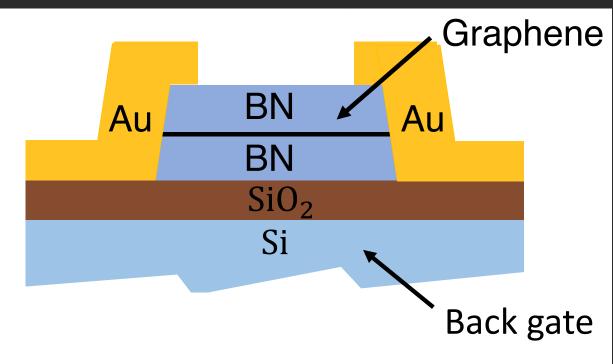
Onme contacts.

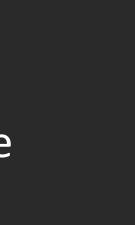
Through an e-beam deposits AI hard mask Si Graphene & hBN etched selectively by O₂ and SF₆ RIE plasma Leaves pristine graphene exposed edges $\vec{a}_1 = \frac{a}{2}(3,\sqrt{3}), \vec{a}_2 = \frac{a}{2}(3,-\sqrt{3})$ Ohmic contacts: Cr/Pd/Au (2/5/80 nm) patterned by e-beam lithography and e-beam $\vec{G}_1 = \frac{2\pi}{2}(1,\sqrt{3}), \ \vec{G}_2 = \frac{2\pi}{2}(1,-\sqrt{3})$ No B field, 4K Conductance



Size: 2.49µm * 3.87µm Figure A-6. Graph 26 b 000 ructure 2a) Three dimensional band structure. Adapted from C.W.J. Beenakker, Rev.Mod.Inge., 50 266 DOD b 200m into low energy dispersion at one of the K points shows the electron-hole symmetric $\mu_h^{\text{irac core}} = 16,000 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$

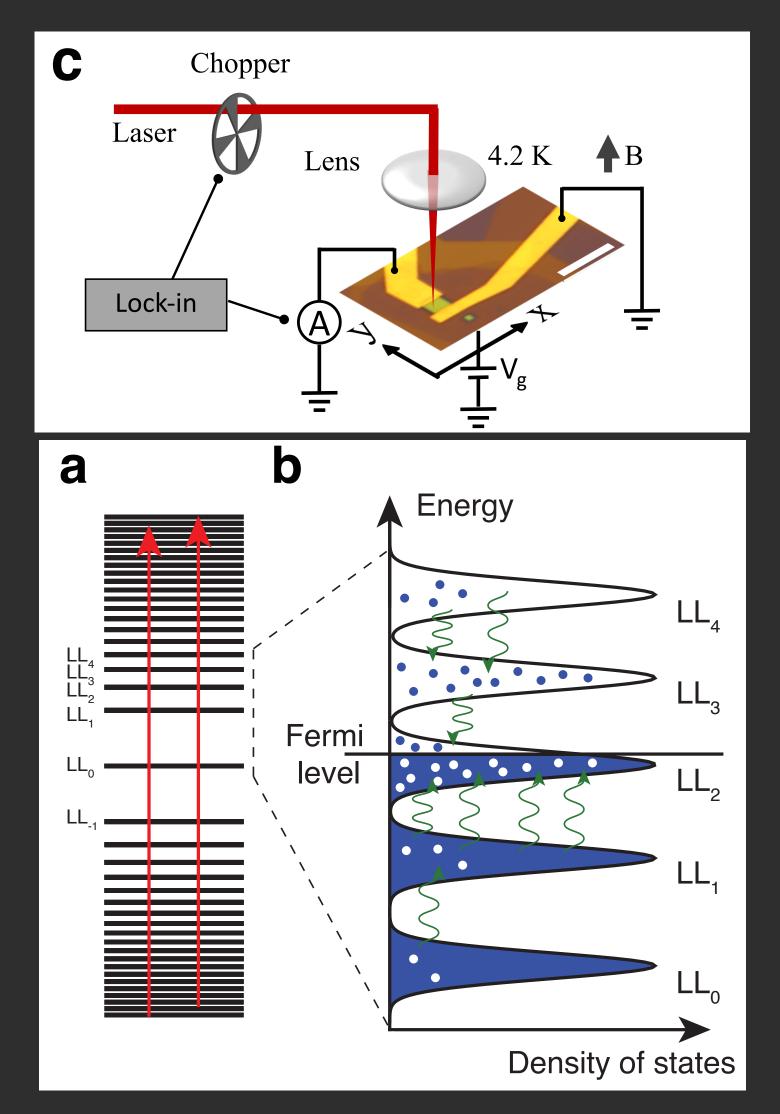
Two-terminal device with back gate





Photocurrent in the IQH - Non-equilibrium transport

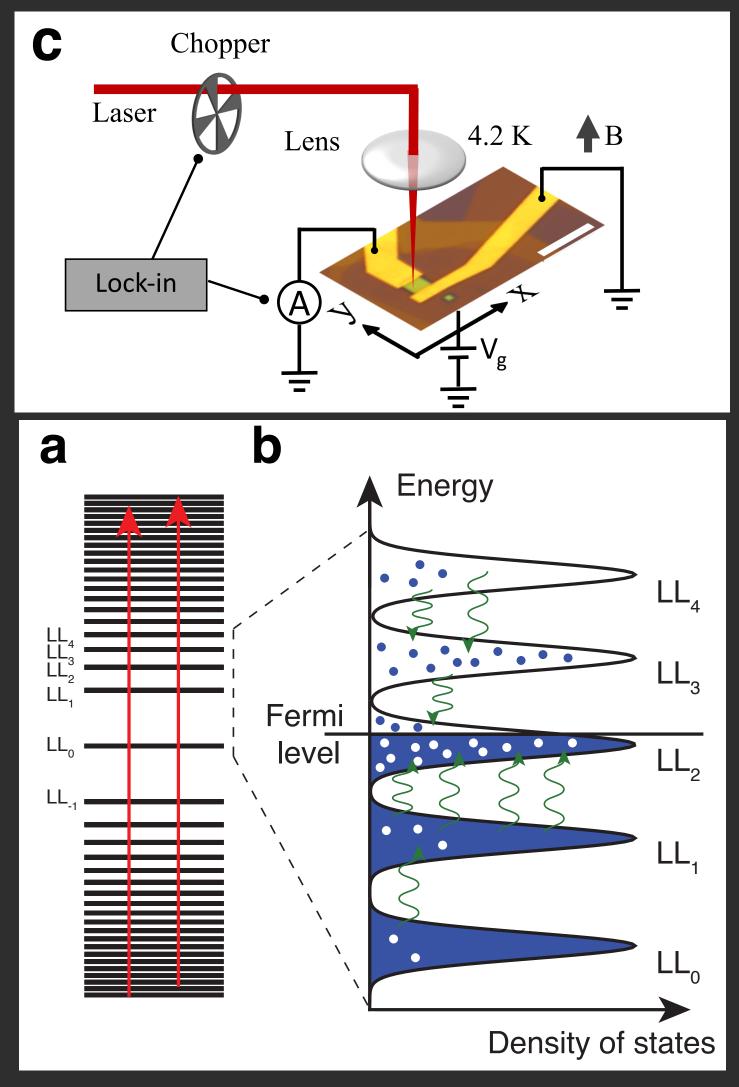
- Fast (sub ps) relaxation and diffusion, creating photocurrents.



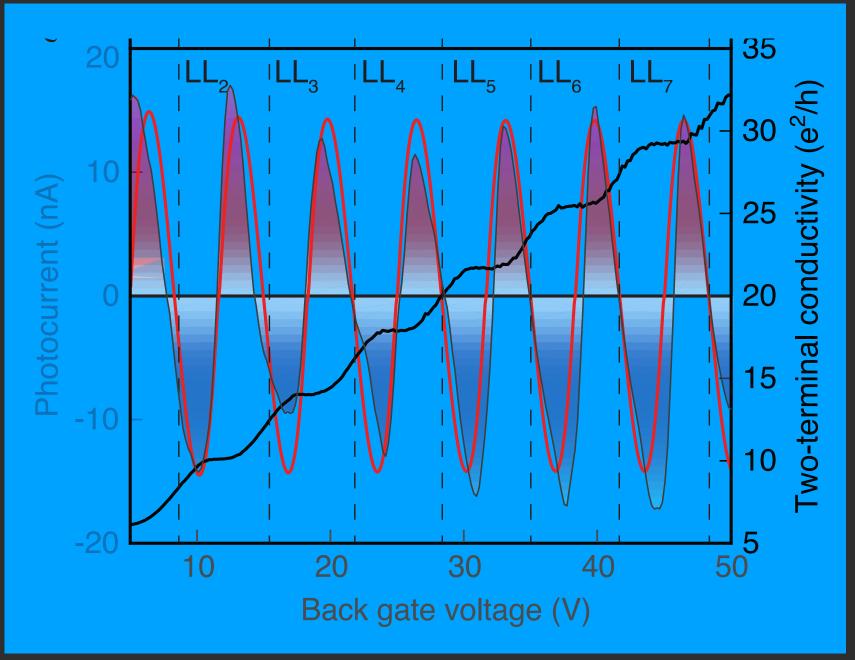
• Excite with 930 nm light, create e and h populations at $|n| \approx 36$;

Photocurrent in the IQH - Non-equilibrium transport

- Excite with 930 nm light, create e and h populations at $|n| \approx 36$; • Fast (sub ps) relaxation and diffusion, creating photocurrents.



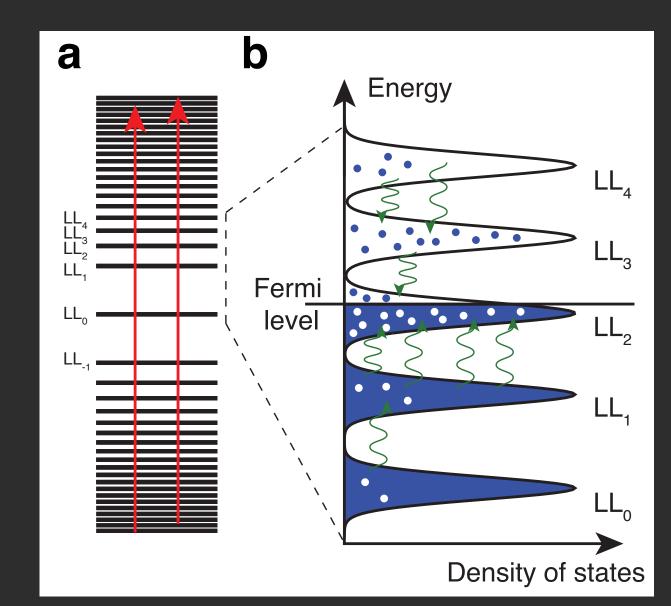
4.2K B= 4T



- Backgate voltage control E_f , no injected current.
- Photocurrent oscillations track LL's.
- Zeros in photocurrent are at half filling.

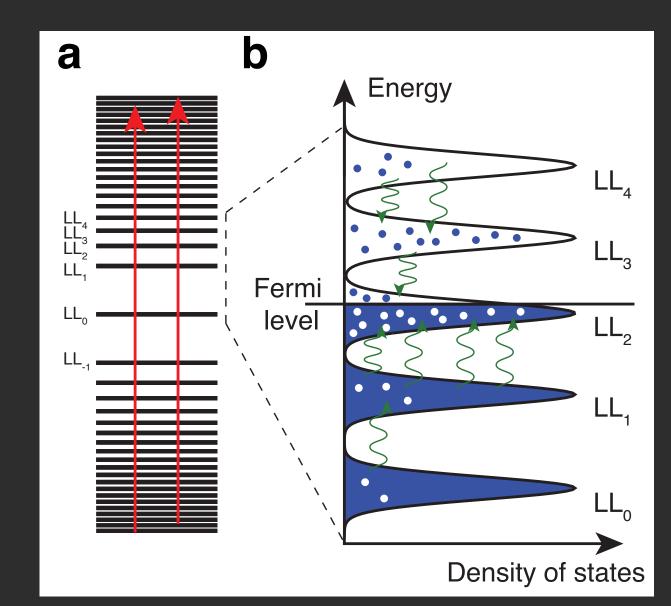
Why do we get any photocurrent?

- Why should we get any photocurrent?
- We create electrons & holes in equal amounts, they decay (~100 fs), and recombine.



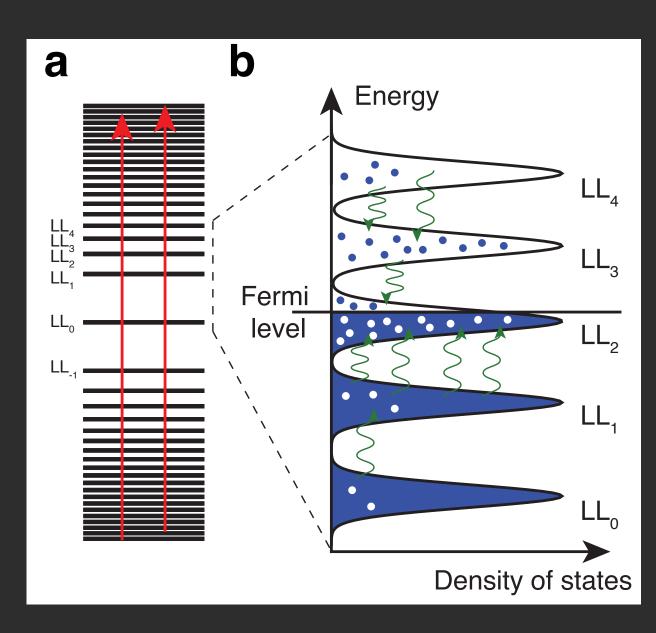
Why do we get any photocurrent?

- Why should we get any photocurrent?
- We create electrons & holes in equal amounts, they decay (~100 fs), and recombine.
- Not quite.



Why do we get any photocurrent?

- Why should we get any photocurrent?
- We create electrons & holes in equal amounts, they decay (~100 fs), and recombine.
- Not quite.
- or contacts.
- number of available states at the Fermi level.

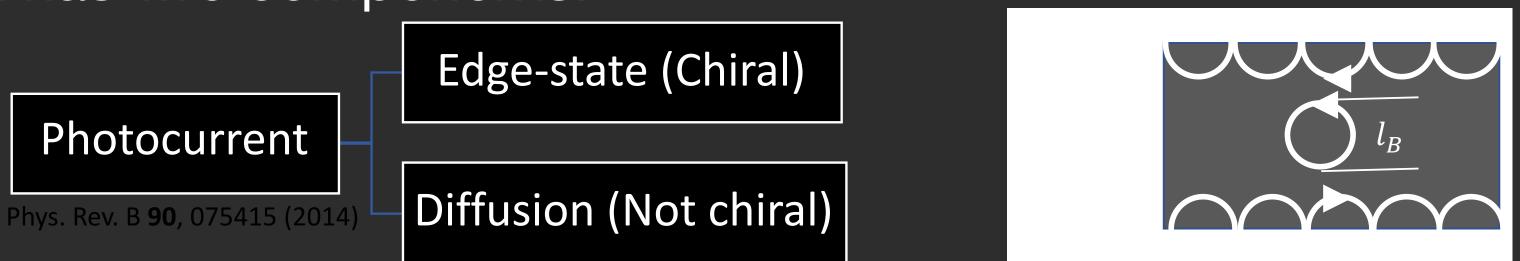


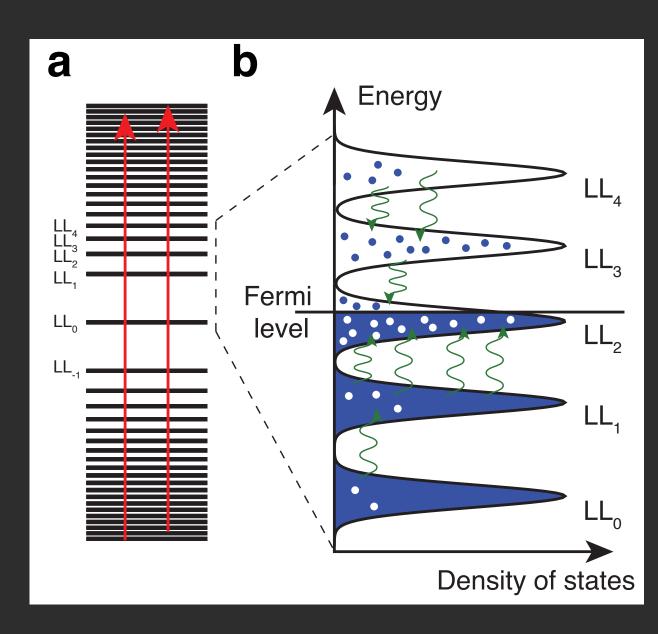
• Two processes: <u>Relaxation</u> of hot carriers to E_f or <u>Diffusion</u> of hot carriers to edges

• Relaxation process of excess hot carriers of one type depends on unbalanced

Why do we get any photocurrent?

- Why should we get any photocurrent?
- We create electrons & holes in equal amounts, they decay (~100 fs), and recombine.
- Not quite.
- or contacts.
- number of available states at the Fermi level.
- Photocurrent has two components:

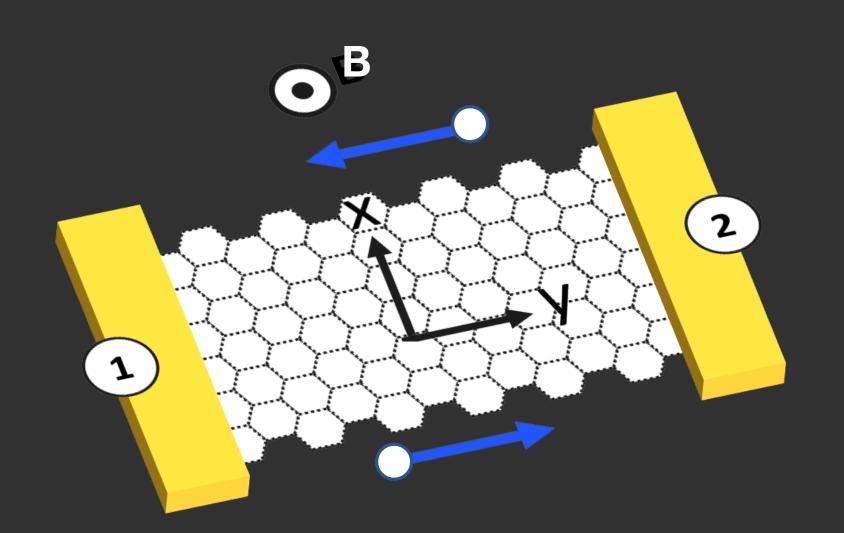




• Two processes: <u>Relaxation</u> of hot carriers to E_f or <u>Diffusion</u> of hot carriers to edges

• Relaxation process of excess hot carriers of one type depends on unbalanced

Separate photocurrent contributions related to edge & extended states



- When B flips direction the edge state currents flip directions. I (B⁺) - I(B⁻) will add the edge-state currents.
- Diffusive extended-state currents (total electron and hole current) diffusing to contacts are unaffected by sign of B.
 - I (B⁺) I(B⁻) negates diffusive extended state currents, but $I(B^+) + I(B^-)$ will add the currents.
- Renormalise to focus on edge states: $I(B^+) I(B^-)$.

15

Modify the energy spectrum mentioned earlier:

$$\epsilon_n = sign(n) \frac{\hbar \nu_F}{l_B} \sqrt{2 \mid n \mid};$$

 $v_{\rm F}$ Fermi velocity, l_B magnetic length, $l_B = \sqrt{\frac{\hbar}{eB}}$ n Landau level index

$$\epsilon_n = sign(n) \frac{\hbar \nu_F}{l_B} \sqrt{2 \mid n \mid} + \lambda sgn(q) V(x)$$

 $\lambda = +1$ for conduction band $\lambda = -1$ for valence band q the carrier charge V(x) the edge confining potential.

Modify the energy spectrum mentioned earlier:

$$\epsilon_n = sign(n) \frac{\hbar \nu_F}{l_B} \sqrt{2 \mid n \mid};$$

 $v_{\rm F}$ Fermi velocity, l_B magnetic length, $l_B = \sqrt{\frac{\hbar}{eB}}$ n Landau level index

$$\epsilon_n = sign(n) \frac{\hbar \nu_F}{l_B} \sqrt{2 \mid n \mid} + \lambda sgn(q) V(x)$$

 $\lambda = +1$ for conduction band $\lambda = -1$ for valence band q the carrier charge V(x) the edge confining potential.

Group velocity in the y-direction:

$$\nu_g = \frac{\partial \epsilon_{\lambda,n}}{\partial k_y} \propto \lambda q \frac{\partial V(x)}{\partial x}$$

k is the edge-state momentum in y

 Modify the energy spectrum mentioned earlier:

$$\epsilon_n = sign(n) \frac{\hbar \nu_F}{l_B} \sqrt{2 \mid n \mid};$$

 $v_{\rm F}$ Fermi velocity, l_{B} magnetic length, $l_{B} = \sqrt{\frac{\hbar}{eB}}$ n Landau level index

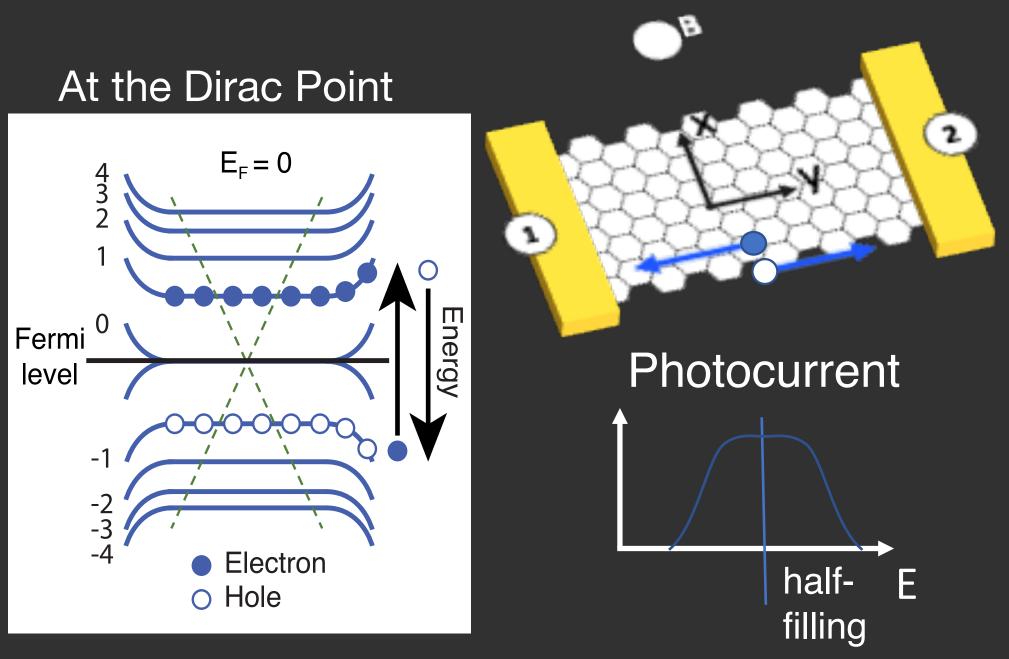
$$\epsilon_n = sign(n) \frac{\hbar \nu_F}{l_B} \sqrt{2 \mid n \mid} + \lambda sgn(q) V(x)$$

 $\lambda = +1$ for conduction band $\lambda = -1$ for valence band q the carrier charge V(x) the edge confining potential.

Group velocity in the y-direction:

$$\nu_g = \frac{\partial \epsilon_{\lambda,n}}{\partial k_y} \propto \lambda q \frac{\partial V(x)}{\partial x}$$

k is the edge-state momentum in y

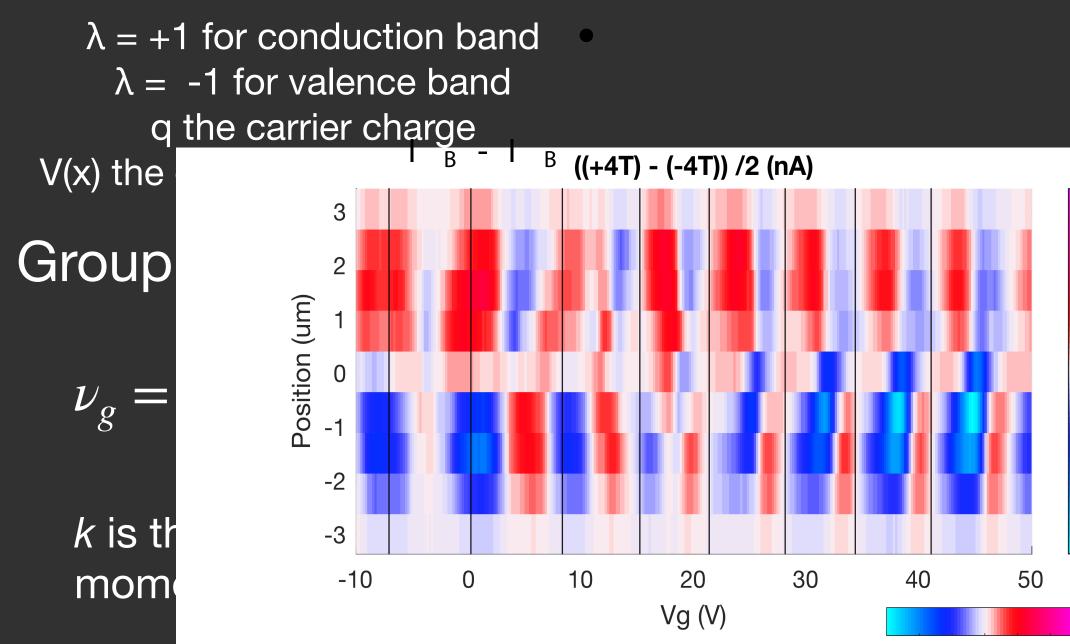


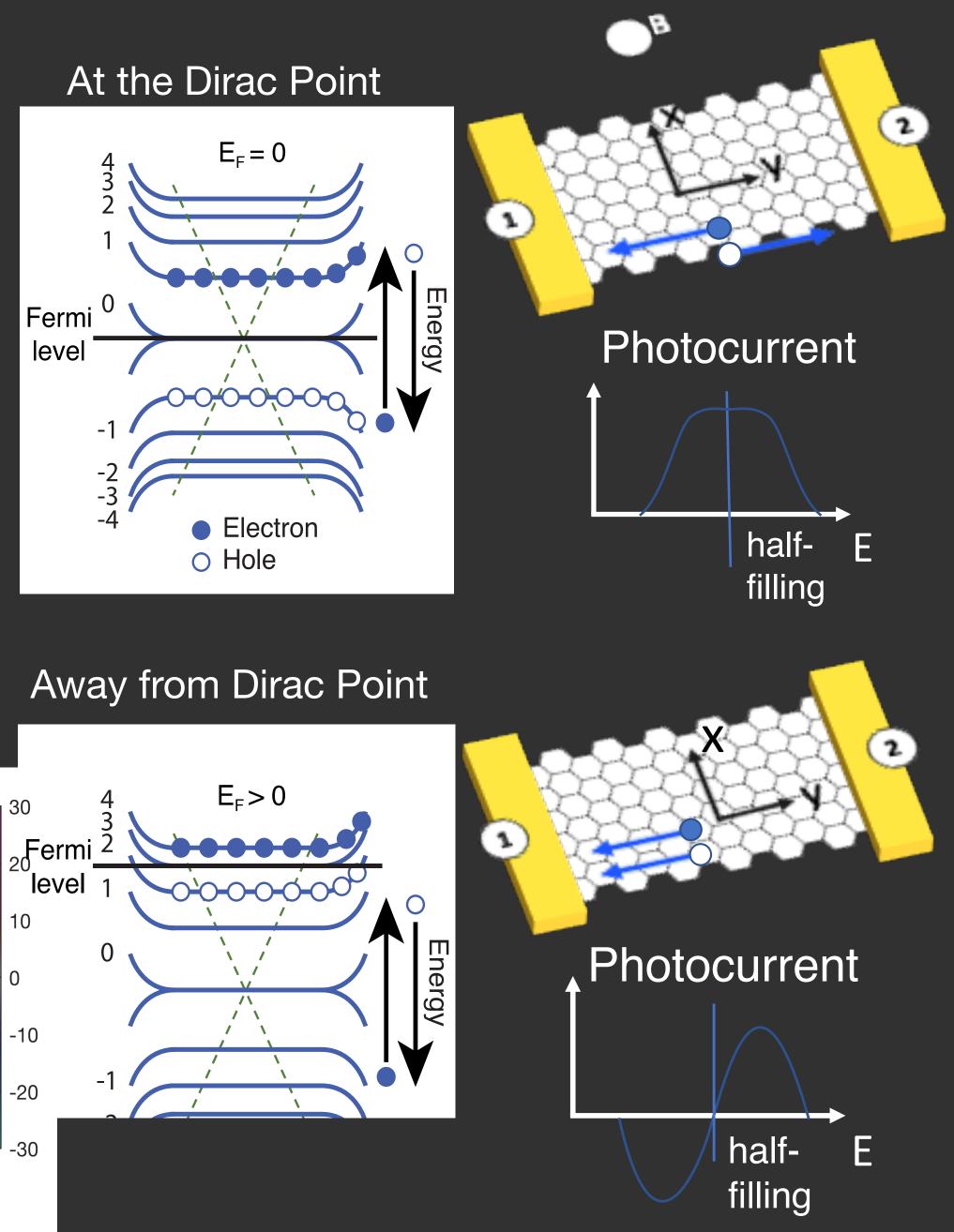
Modify the energy spectrum mentioned earlier:

$$\epsilon_n = sign(n) \frac{\hbar \nu_F}{l_B} \sqrt{2 \mid n \mid};$$

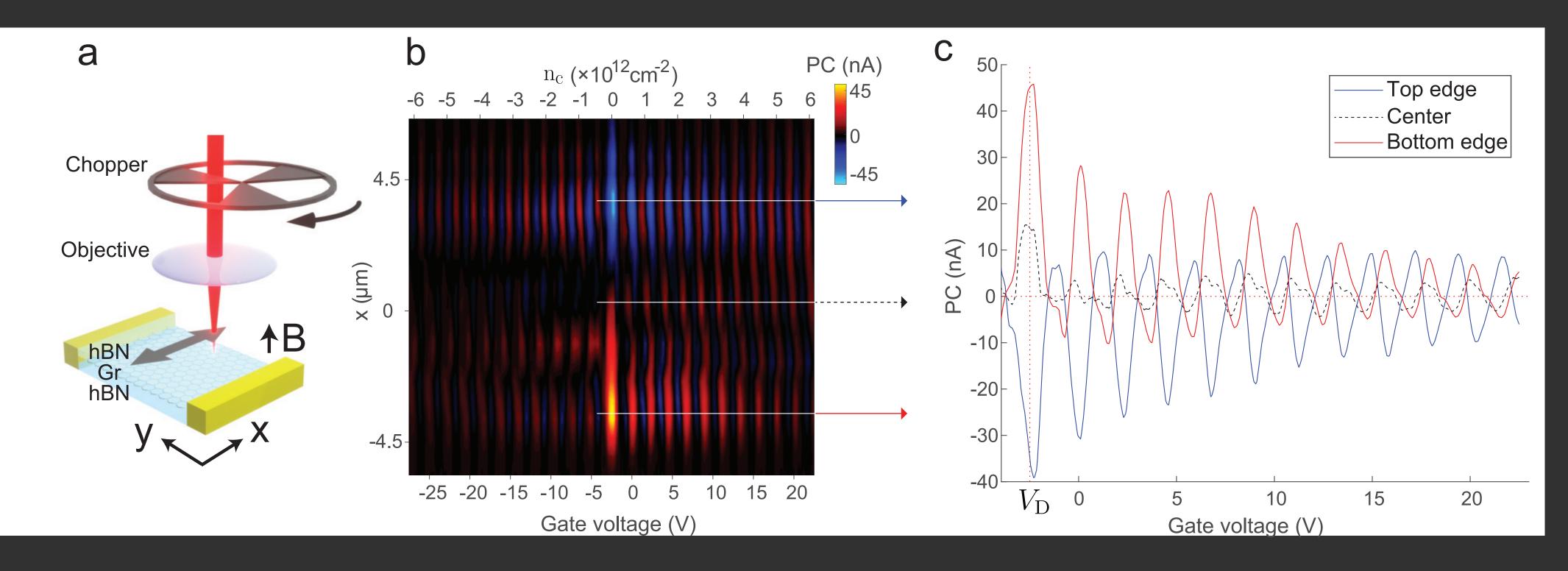
 $v_{\rm F}$ Fermi velocity, l_B magnetic length, $l_B = \sqrt{\frac{\hbar}{eE}}$ n Landau level index

$$\epsilon_n = sign(n) \frac{\hbar \nu_F}{l_B} \sqrt{2 \mid n \mid} + \lambda sgn(q) V(x)$$





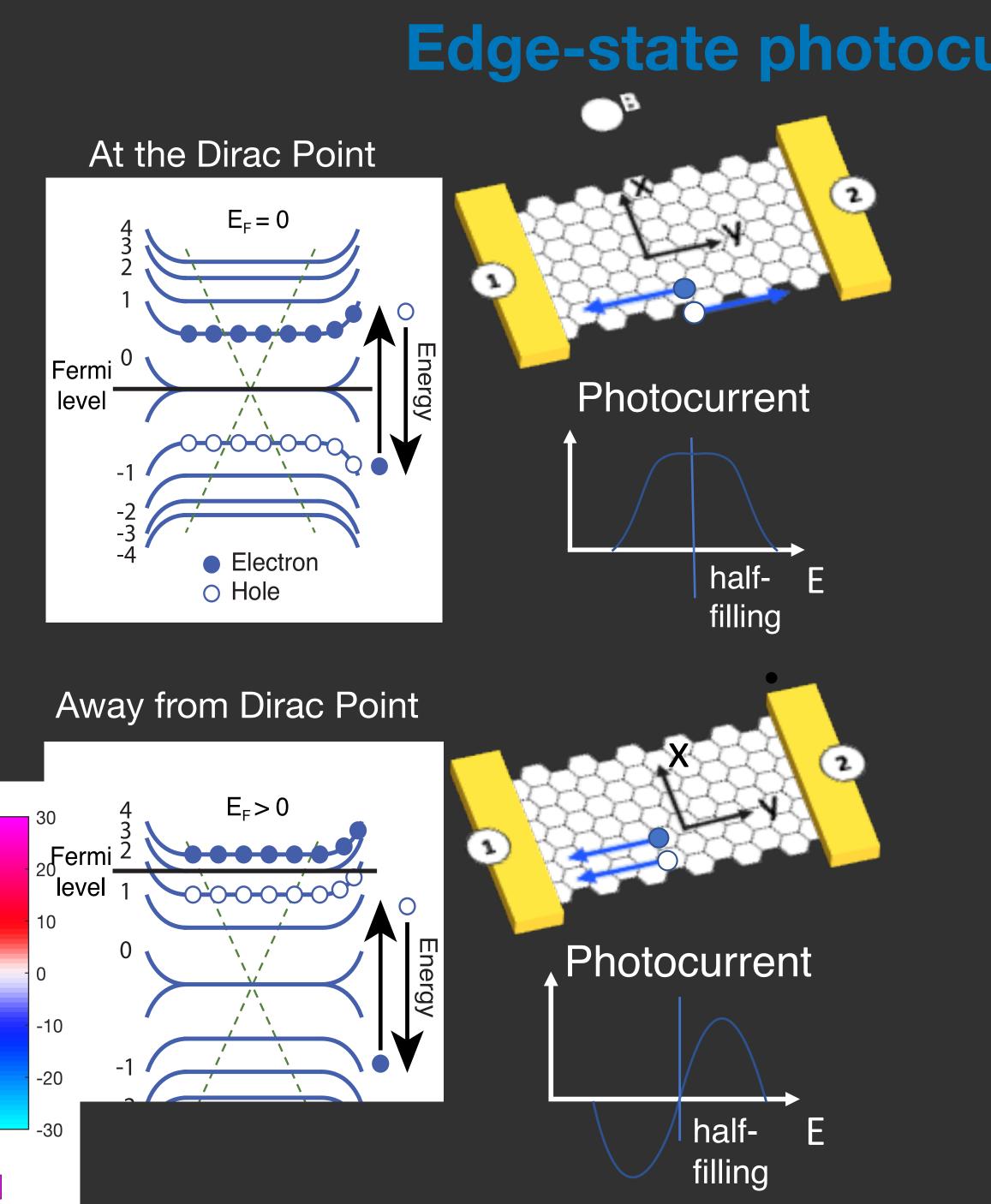
Edge-state currents from photoexciation



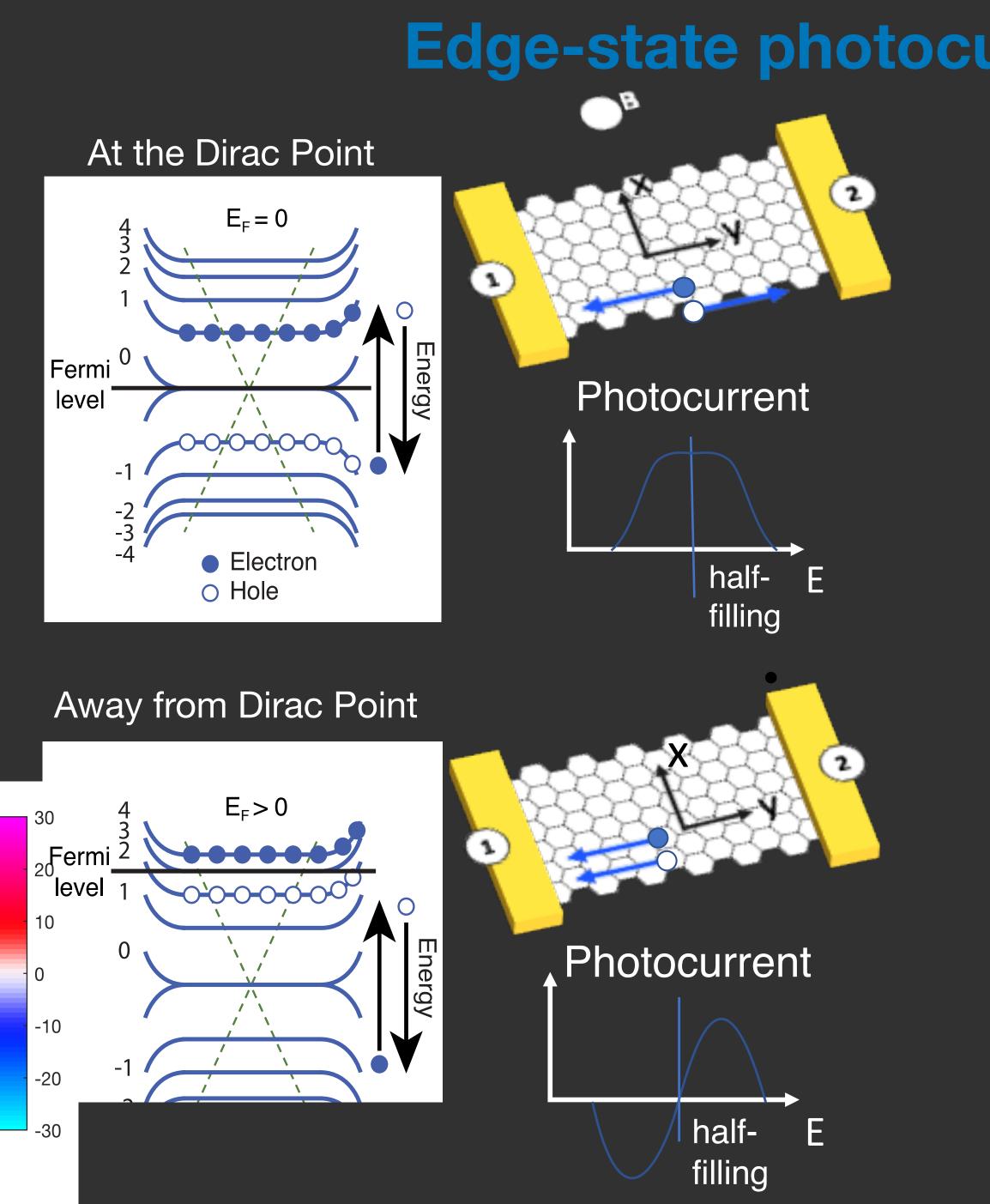
$$I\left(B^+ - B^-\right)$$

Edge-state current contributions

- Little B-field dependent transport in the sample center. • Edge states currents are more concentrated at edges.

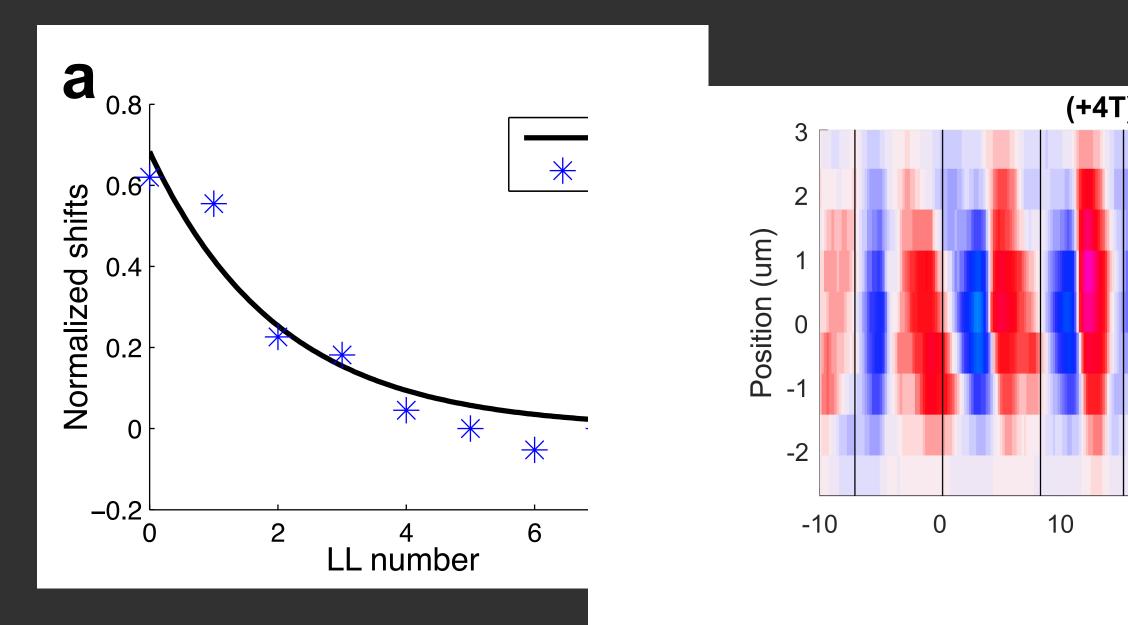


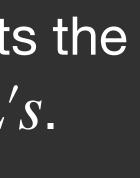
Edge-state photocurrent half-filling with LL



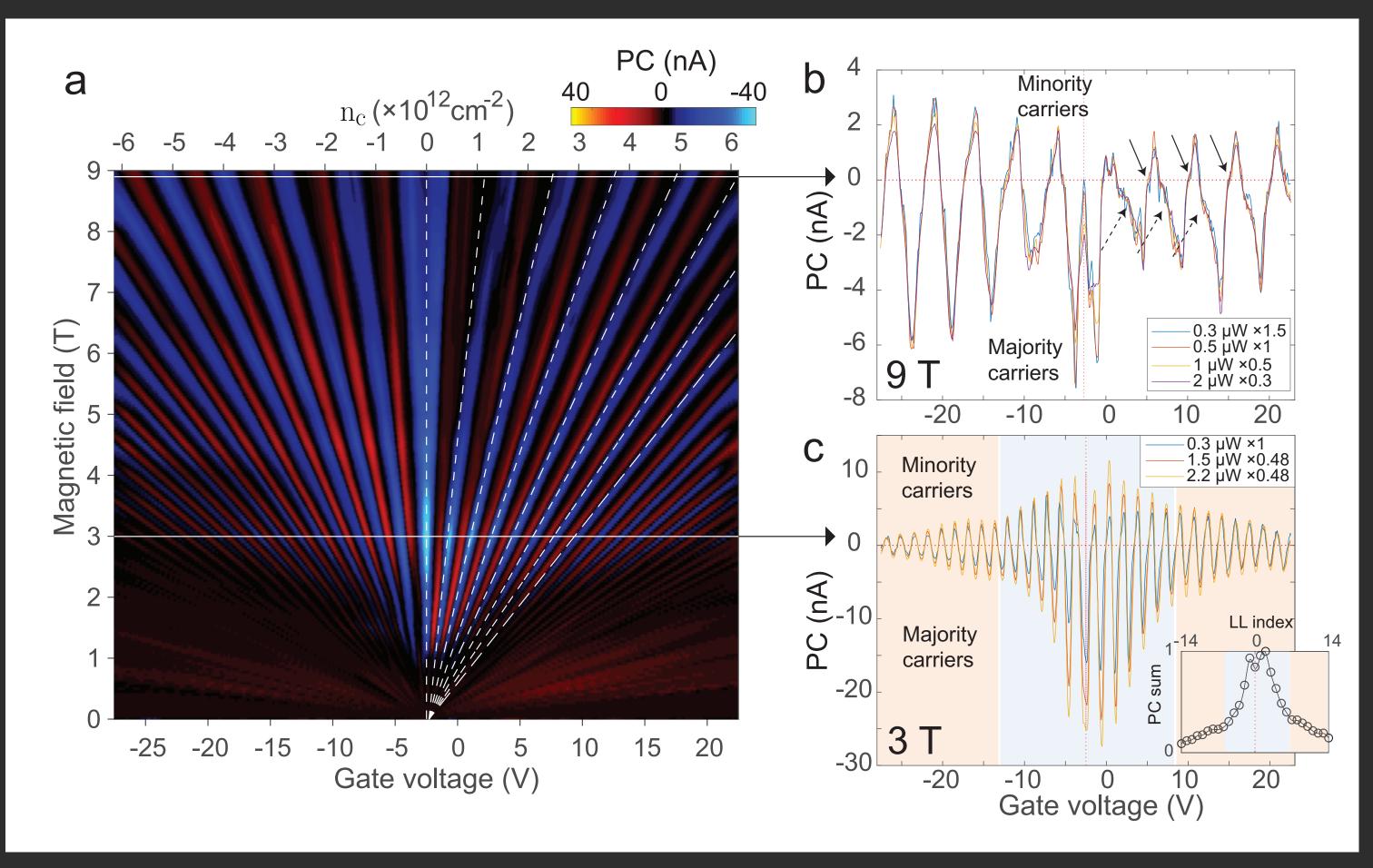
Edge-state photocurrent half-filling with LL

- At LL_0 half filling of LL is a PC peak
- While away from LL_0 PC is 0.
- Because of edge states have multi-LL components the PC moves from a peak value to 0 over several LL's.





Shape of the photocurrent envelop as a function of B – field The case for carrier multiplication



Carrier multiplication:

The majority carrier envelop could be due to e^- and h^+ adding around LL_0 . But the minority carrier envelope can only be explained by carrier multiplication.

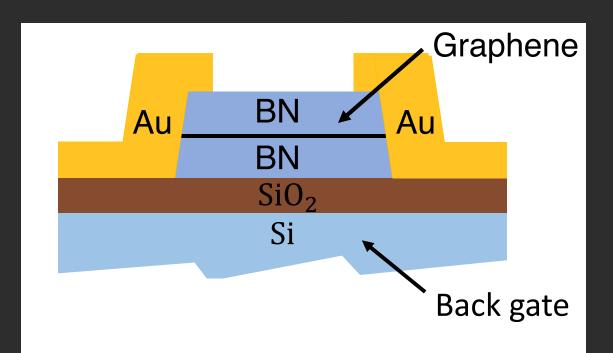
9T region: The photocurrent is flat

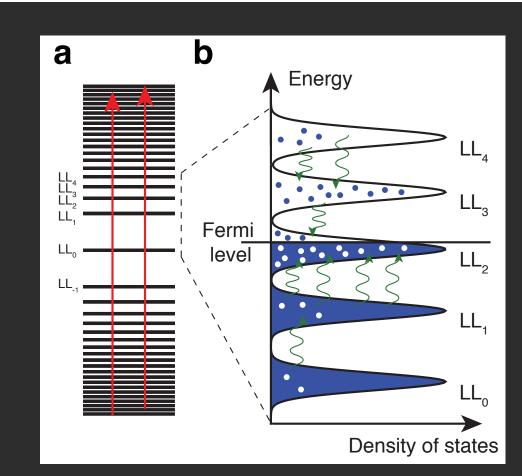
Lower B-fields, 3T: Large photocurrent majority (e^{-}) carrier envelope But also a smaller PC minority carrier envelope.

Summary and thoughts

- Using a graphene back-gated device structure at 4K
- Investigate integer quantum Hall physics with a non-equilibrium carrier distribution created by a laser

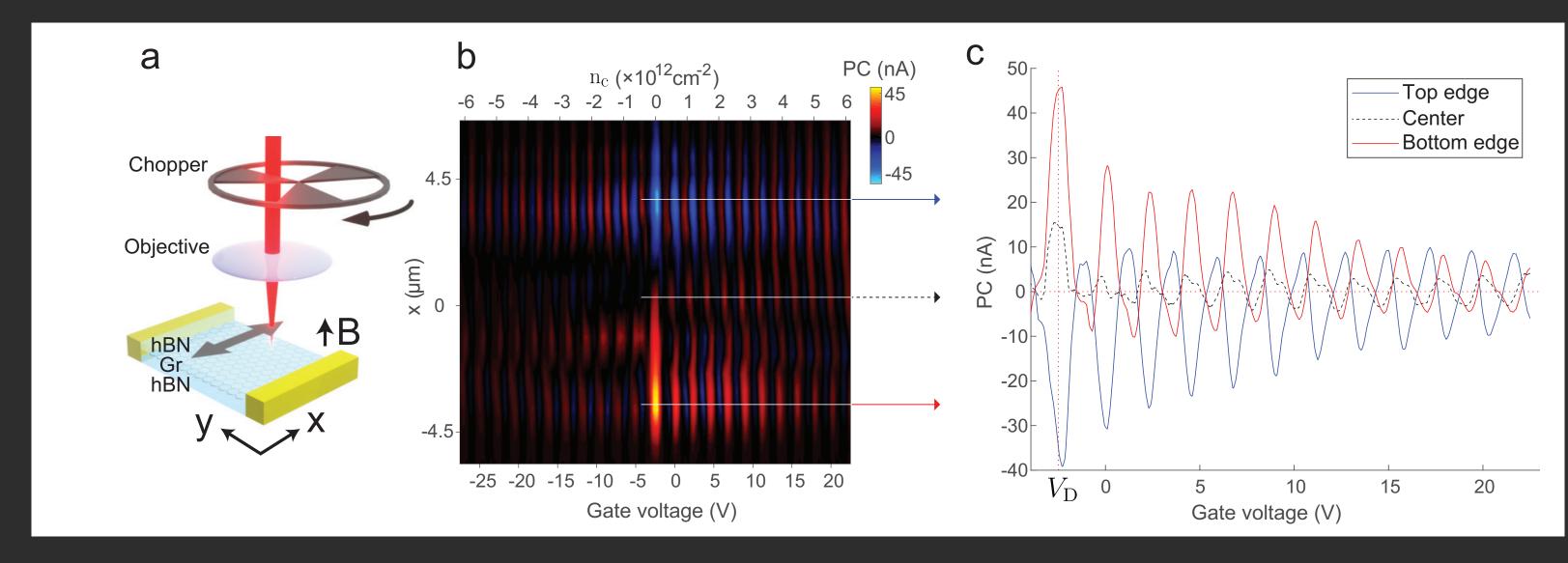
cture at 4K with a non-equilibrium



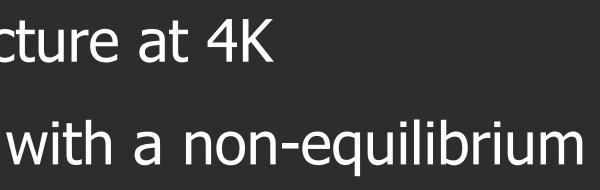


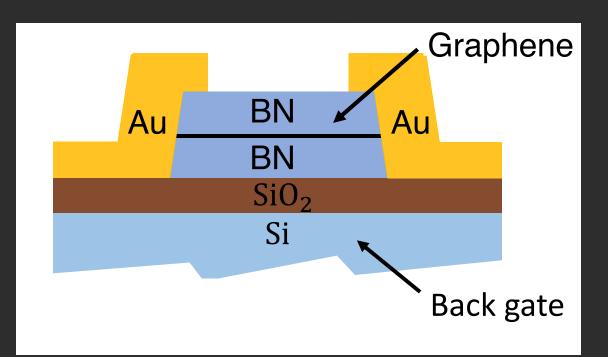
Summary and thoughts

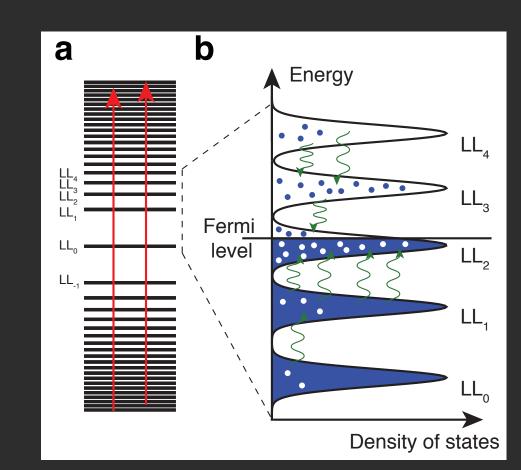
- Using a graphene back-gated device structure at 4K
- Investigate integer quantum Hall physics with a non-equilibrium carrier distribution created by a laser



- Current occurs as carriers diffuse to edge-states before recombination
- with Fermi-level position in an LL.







• Edge-state currents are linked to the changing availability of states for each carrier type

- in edge states.
- come from different bands and both are majority carriers.
- Away from the Dirac point their currents band.
- Strong evidence of carrier multiplication.



