2020.12.14 11:45 AUSTRALIAN INSTITUTE OF PHYSICS CONGRESS

Quantum control in foundational experiments, or *HV in XXI*

Daniel Terno

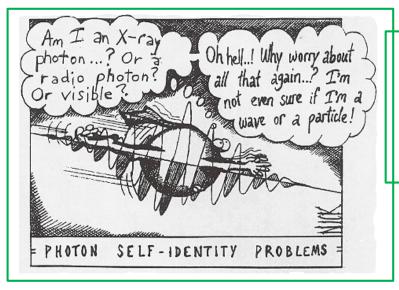
School of Mathematical and Physical Sciences



Shenzhen Institute of Quantum Science and Engineering

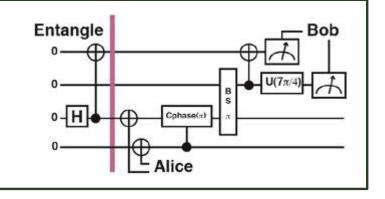
南方种技大学

two parts of the story



Wave particle duality Complementarity Delayed choice experiments and their HV interpretation

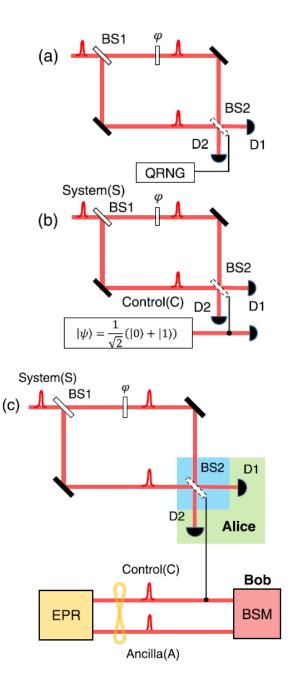
Gates and quantum control in service of quantum foundations



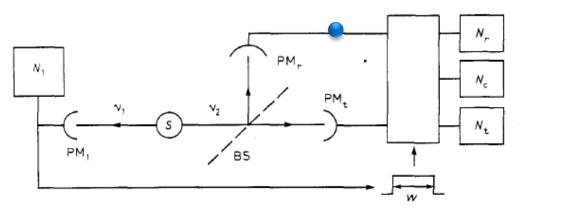
references & promo

- Ma, Kofler, & Zeilinger,
 Delayed-choice gedanken experiments and their realizations,
 Rev. Mod. Phys. 88, 015005 (2016)
 - Ionicioiu and Terno, Phys. Rev. Lett. 107, 230406 (2011).
 - Ionicioiu, Mann, & Terno, Phys. Rev. Lett. 114, 060405 (2015)
- Brandenburger & Yanofsky,
 A classification of hidden-variable properties, J. Phys. A 41, 425302 (2008)
 - Gisin & Gisin, Phys. Lett. A 297, 279 (2002).
 - Branciard, Gisin, & Pironio, Phys. Rev. Lett. 104, 170401 (2010).

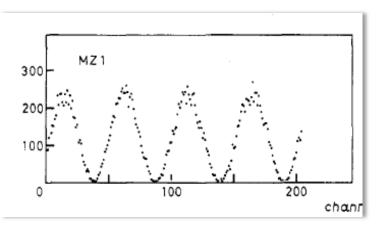
Ionicioiu, Jennewein, Mann, and Terno, Nature Comm. 5, 3997 (2014)
 Wang, Terno, Brukner, Zhu, Ma, Phys. Rev. A 106, 053715 (2022)



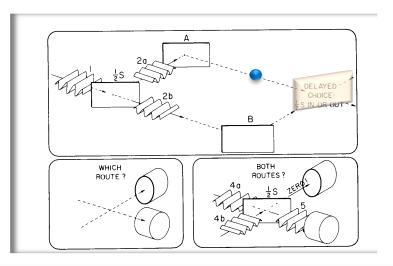
wave-particle duality

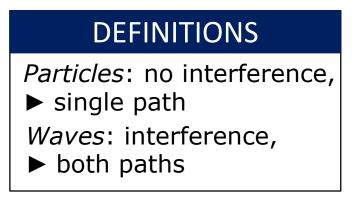


Single photons **behave as** particles Single photons **behave as** waves



P. Grangier, G. Roger and A. Aspect Europhys. Lett. 1, 173 (1986)

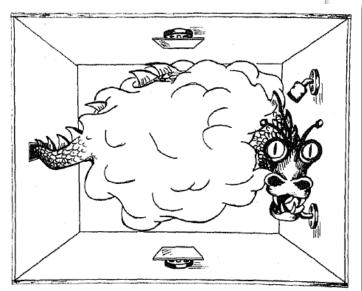




complementarity

... the information provided by different experimental procedures that in principle cannot, because of the physical character of the needed apparatus, be performed simultaneously, cannot be represented by any mathematically allowed quantum state of the system. The elements of information obtainable from incompatible measurements are said to be *complementary*.

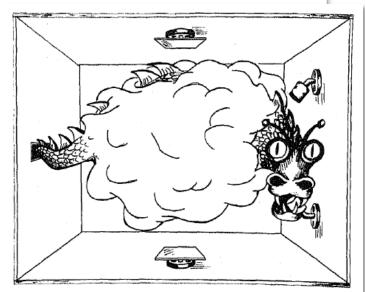
Stapp, in Compendium of Quantum Physics



complementarity

... the information provided by different experimental procedures that in principle cannot, because of the physical character of the needed apparatus, be performed simultaneously, cannot be represented by any mathematically allowed quantum state of the system. The elements of information obtainable from incompatible measurements are said to be *complementary*.

Stapp, in Compendium of Quantum Physics



conspiracy

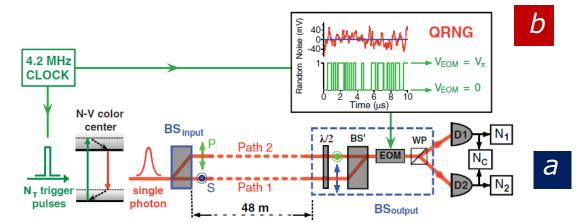
The photon could know in advance of entering the apparatus whether the latter has been set up in the "wave" configuration with BS_2 in place or the "particle" one $(BS_2 removed)$ and adjust accordingly.

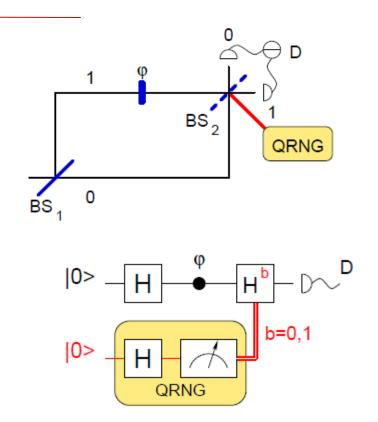
delayed choice

+ QRNG

Open interferometer [particle] $n(a) = (\frac{1}{2}, \frac{1}{2})$

Closed interferometer [wave] $n(a) = (\cos^2 \frac{\varphi}{2}, \sin^2 \frac{\varphi}{2})$





Jacques *et al.*, Science **315**, 966 (2007) *Spacelike separation between the source and the RNG*

control the world without attracting attention

HV M. Born, *Quantenmechanik der Stoßvorgänge*, Z. Physik **38**, 803 (1926).

Purpose: reproduce observed statistics and maintain classical concepts

Construction: HV exist, control the world, but are unknown

$$p(a,b...|A,B...) \coloneqq \sum p(a,b...|A,B...;\lambda)p(\lambda)$$

Adequacy: reproduce observed statistics

Measurements and settings: *A,A';B,B'* Outcomes *a,a';b,b'*

 $p(a,b... \mid A,B...) \equiv q(a,b... \mid A,B...)$

control the world without attracting attention

HV M. Born, *Quantenmechanik der Stoßvorgänge*, Z. Physik **38**, 803 (1926).

Purpose: reproduce observed statistics and maintain classical concepts

Construction: HV exist, control the world, but are unknown

$$p(a,b...|A,B...) \coloneqq \sum p(a,b...|A,B...;\lambda)p(\lambda)$$

Adequacy: reproduce observed statistics

Measurements and settings: *A,A';B,B'* Outcomes *a,a';b,b'*

 $p(a,b... \mid A,B...) \equiv q(a,b... \mid A,B...)$

Counter-HV action

♦ consider a set-up
♦ make a QM prediction
♦ make a HV prediction

♦ compare

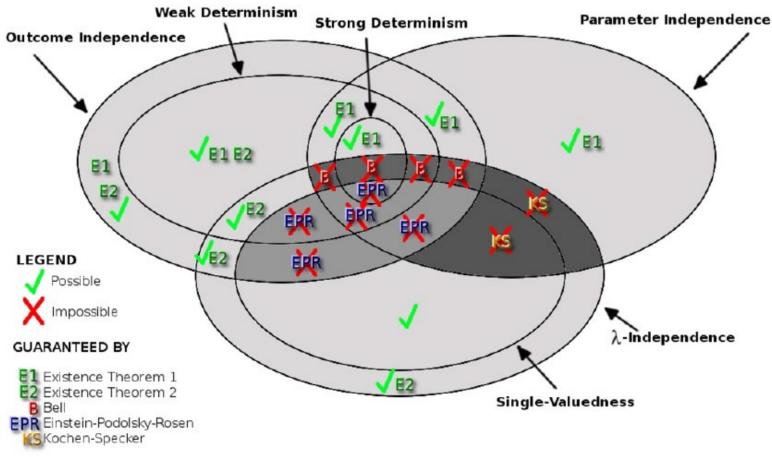
get a contradiction

♦ make an experiment

Counter-counter-HV action

- □ find a loophole
- □ introduce conspiratorial correlations

how to... HIDDEN VARIABLES



Brandenburger & Yanofsky JPA **41** 425302 (2008)

Determinism: once hidden variables are defined, there are no residual randomness [several flavors]

□ Parameter independence: the outcome of any measurement depends only on the HV and the set-up of this measurement

 $p(a \mid A, B, C, ..., \lambda) = p(a \mid A, \lambda)$

 \Box HV (λ-)independence: determination of the hidden variable is independent of the choice of measurement

 $p(\lambda | A, B...) = p(\lambda | A', B'...)$

outcome independence +parameter independence = Bell's locality

HV theories: objectivity [definiteness]

What is the basis for assertion of wave-particle duality?
Can we detect "it" first and decide what was it later?

- □ Is space-like separation necessary?
- □ What if the controlling devices are quantum?

Extensions & questions

HV theories: objectivity [definiteness]

What is the basis for assertion of wave-particle duality? \Box Can we detect "it" first and decide what was it later? □ Is space-like separation necessary? □ What if the controlling devices are quantum?

HV Conspiracy

 \Box A hidden variable $\lambda = p, w$ set at production/before splitting

$$p(a \mid b = 1, \lambda = w) = (\cos^2 \frac{\phi}{2}, \sin^2 \frac{\phi}{2})$$

$$p(a \mid b = 0, \lambda = n) = 0$$

$$p(a | b = 0, \lambda = p) = (\frac{1}{2}, \frac{1}{2})$$

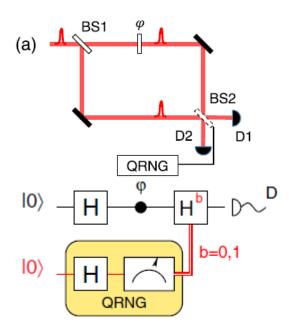
Extensions & questions

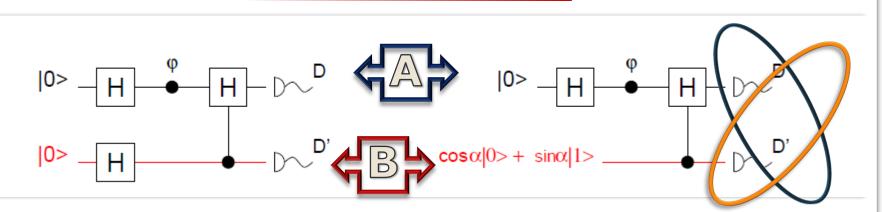
□ Emission probability with $\lambda = p, w$

$$p(\lambda) = (f, 1-f)$$

$$p(a | b = 0, \lambda = w) = (x, 1 - x)$$
$$p(a | b = 1, \lambda = p) = (y, 1 - y)$$

quantum control

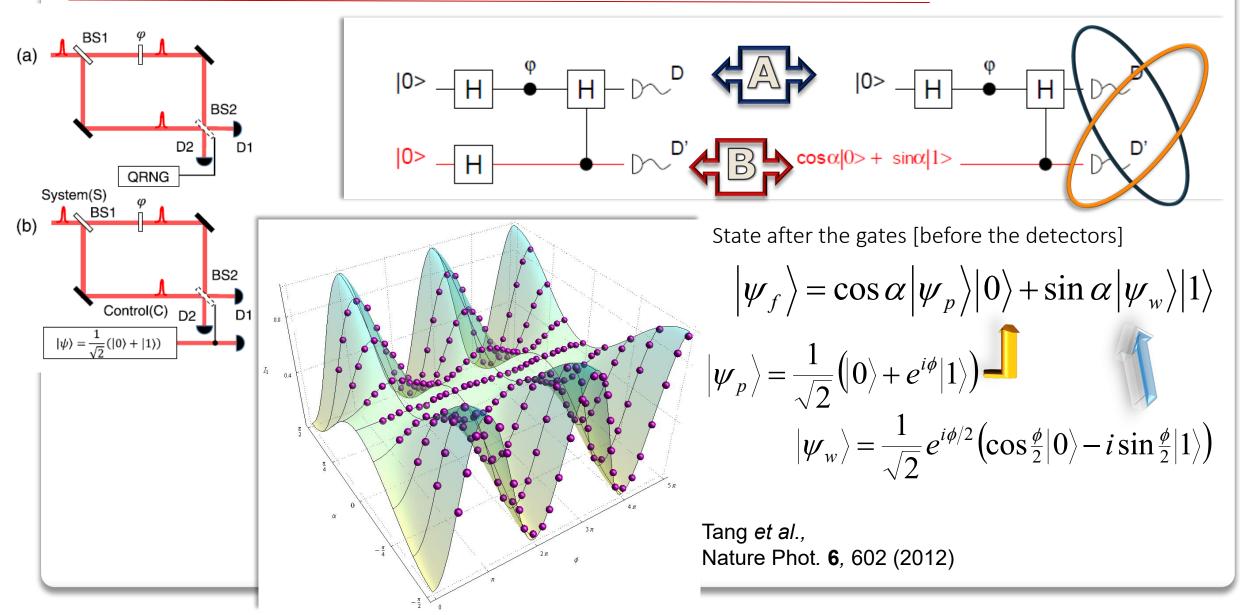




State after the gates [before the detectors]

$$\begin{aligned} \left|\psi_{f}\right\rangle &= \cos\alpha \left|\psi_{p}\right\rangle \left|0\right\rangle + \sin\alpha \left|\psi_{w}\right\rangle \left|1\right\rangle \\ \left|\psi_{p}\right\rangle &= \frac{1}{\sqrt{2}} \left(\left|0\right\rangle + e^{i\phi}\left|1\right\rangle\right) \\ \left|\psi_{w}\right\rangle &= \frac{1}{\sqrt{2}} e^{i\phi/2} \left(\cos\frac{\phi}{2}\left|0\right\rangle - i\sin\frac{\phi}{2}\left|1\right\rangle\right) \end{aligned}$$

quantum control



countering HV

HV model maintains♦ objectivity♦ determinism♦ ?

HV model must be adequate $q(a,b) = \sum_{\lambda=p,w} p(a,b,\lambda)$

countering HV

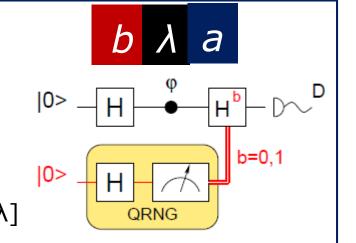
HV model maintains
◊ objectivity
◊ determinism
◊ ?

HV model must be adequate
$$q(a,b) = \sum_{\lambda=p,w} p(a,b,\lambda)$$

HV in WDC

adequacy is possible if $\begin{array}{l} q(a,b) = n(a,b) = \sum_{\lambda} p(a \mid b, \lambda) p(\lambda \mid b) n(b) \\ p(\lambda \mid b) = \delta_{\lambda p} \delta_{b0} + \delta_{\lambda w} \delta_{b1} \end{array}$

[violation of parameter independence] [countered by the spacelike separation] [counter-countered by the conspiracy: settings of QRNG with λ]

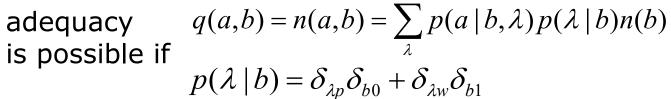


countering HV

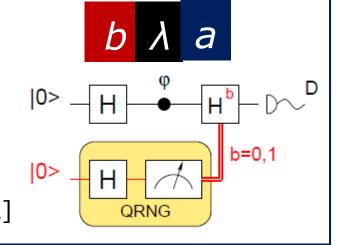
HV model maintains
♦ objectivity
♦ determinism
♦ ?

HV model must be adequate
$$q(a,b) = \sum_{\lambda=p,w} p(a,b,\lambda)$$

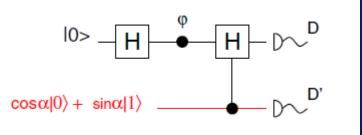
HV in WDC



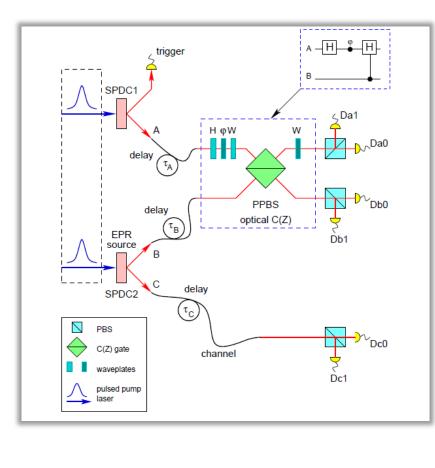
[violation of parameter independence] [countered by the spacelike separation] [counter-countered by the conspiracy: settings of QRNG with λ]



HV in QDC adequacy is possible if either [objectivity is lost] $p(a | b, \lambda) = p(a | b)$ [conspiracy: emission is governed by the gate settings] $f = \cos \alpha$



countering HV with entanglement (1)



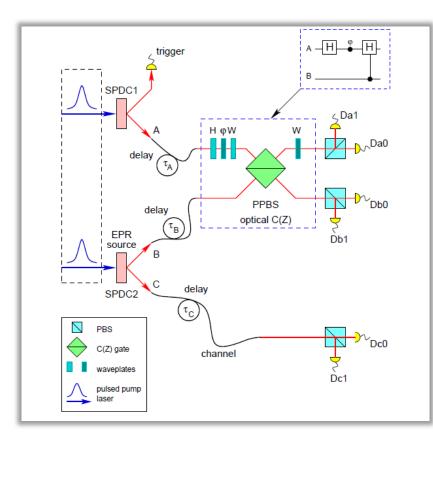
d MZI $|0\rangle - H - \varphi + D_A$ $\int \sqrt{\eta} |00\rangle_{BC} + \sqrt{1-\eta} |11\rangle_{BC}$ $\alpha - D^{C} D_C$

three assumptions

(i) **Determinism**: HV determines all the outcomes (3 flavours) (ii) **A-independence**: HV are not influenced by the settings (iv) **Local** (λ) independence: the space of HV has a product structure and $p(\lambda_S, \lambda_B) = p_S(\lambda_S) p_B(\lambda_B)$

IJMT 2014

countering HV with entanglement (1)



d MZI $|0\rangle - H - \varphi + D_A$ $\int \nabla D_B$ $\sqrt{\eta} |00\rangle_{BC} + \sqrt{1-\eta} |11\rangle_{BC}$ $\alpha - D^{-} D_C$

three assumptions

 π

 $3\pi/4$

 $\pi/2$

 $\pi/4$

a

0.75 0.5 0.25

 $\pi/2 \quad 3\pi/4$

0.5

n

0.5 V

(i) **Determinism**: HV determines all the outcomes (3 flavours) (ii) **A-independence**: HV are not influenced by the settings (iv) **Local** (λ) independence: the space of HV has a product structure and $p(\lambda_S, \lambda_B) = p_S(\lambda_S) p_B(\lambda_B)$

IJMT 2014

countering HV with entanglement (2)



□ High-quality Bell state measurement [but not a good refutation of HV] FIG. 2. Experimental setup. Entangled photons *C* and *A* are generated in the $|\psi^+\rangle$ state from a β -barium borate crystal (BBO1). From BBO2 we detect photon *T* and herald the existence of photon *S*. We then send photon *S* through the polarization Mach-Zehnder interferometer. Alice performs polarization measurements on photon *S* with two waveplates and a polarizing beam splitter, which project the polarization of photon *S* along θ_1 . Photons *C* and *A* are sent to Bob, who employs a Bell-state analyzer to project these two photons onto a coherent superposition of $|\phi^-\rangle$ and $|\psi^+\rangle$. HWP₂ tunes the superposition of the bipartite states of photons *C* and *A*

Adequacy of (a/the) HV model(s) is achieved by the loss of objectivity: the state of BS₂ is undefined

WTBZM 2022

countering HV with entanglement (2): details

The state of three photons:

$$\begin{split} |\psi^{f}\rangle &= \frac{1}{2} [|p\rangle_{S}(|\phi^{-}\rangle_{CA} - i|\psi^{+}\rangle_{CA}) + e^{i\pi/4}|w\rangle_{S}(|\phi^{-}\rangle_{CA} + i|\psi^{+}\rangle_{CA})] \\ &= \frac{1}{\sqrt{2}} \left[\frac{e^{i(\pi/4)}|w\rangle_{S} + |p\rangle_{S}}{\sqrt{2}}|\phi^{-}\rangle_{CA} + i\frac{e^{i(\pi/4)}|w\rangle_{S} - |p\rangle_{S}}{\sqrt{2}}|\psi^{+}\rangle_{CA} \right] \\ &= \frac{1}{\sqrt{2}} \left[(e^{i(\theta+\pi/4)}|w\rangle + e^{-i\theta}|p\rangle)_{S}(\cos\theta|\phi^{-}\rangle + \sin\theta|\psi^{+}\rangle)_{CA} + (e^{i(\theta-\pi/4)}|w\rangle + ie^{-i\theta}|p\rangle)_{S}(\sin\theta|\phi^{-}\rangle - \cos\theta|\psi^{+}\rangle)_{CA} \right] \end{split}$$

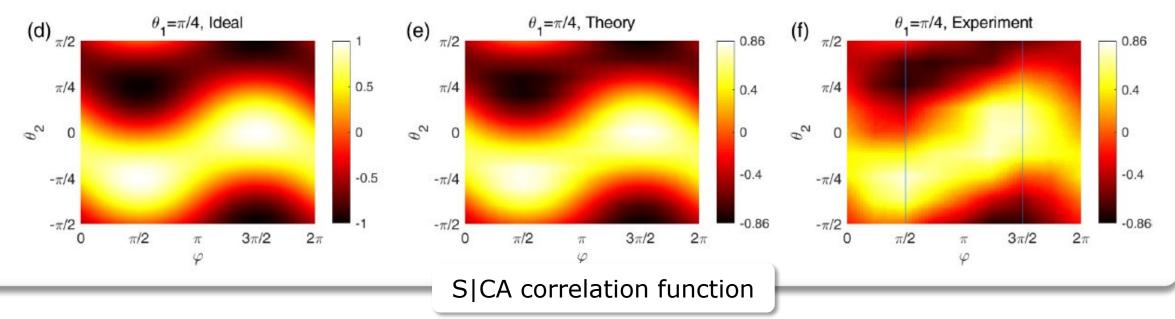
Superpositions in *w/p* of *S* are created by projecting onto the Bell states; the Bell state superposition *w* & *p*

countering HV with entanglement (2): details

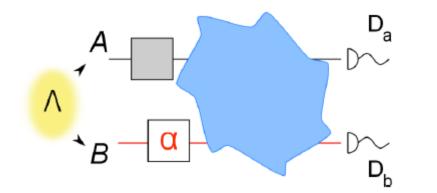
The state of three photons:

$$\begin{split} |\psi^{f}\rangle &= \frac{1}{2} [|p\rangle_{S}(|\phi^{-}\rangle_{CA} - i|\psi^{+}\rangle_{CA}) + e^{i\pi/4} |w\rangle_{S}(|\phi^{-}\rangle_{CA} + i|\psi^{+}\rangle_{CA})] \\ &= \frac{1}{\sqrt{2}} \left[\frac{e^{i(\pi/4)} |w\rangle_{S} + |p\rangle_{S}}{\sqrt{2}} |\phi^{-}\rangle_{CA} + i \frac{e^{i(\pi/4)} |w\rangle_{S} - |p\rangle_{S}}{\sqrt{2}} |\psi^{+}\rangle_{CA} \right] \\ &= \frac{1}{\sqrt{2}} \left[(e^{i(\theta + \pi/4)} |w\rangle + e^{-i\theta} |p\rangle)_{S}(\cos\theta |\phi^{-}\rangle + \sin\theta |\psi^{+}\rangle)_{CA} + (e^{i(\theta - \pi/4)} |w\rangle + ie^{-i\theta} |p\rangle)_{S}(\sin\theta |\phi^{-}\rangle - \cos\theta |\psi^{+}\rangle)_{CA} \right] \end{split}$$

Superpositions in *w/p* of *S* are created by projecting onto the Bell states; the Bell state superposition *w* & *p*



a bonus feature: HV & three incompatible assumptions



Empirical statistics

$$e(a,b) = (xe_p, (1-x)e_w, x(1-e_p), (1-x)(1-e_w))$$

$$e(b) = (x, 1-x) \quad \blacktriangleleft \text{ controller}$$

two types of stats
$$\blacktriangleright$$
 $\bar{e}_{p}(a) = (e_{p}, 1 - e_{p}), \quad \bar{e}_{w}(a) = (e_{w}, 1 - e_{w})$
 $e(a, b) = p(a, b) = \sum_{\Lambda} p(a, b, \Lambda) = \sum_{\Lambda} p(a, b|\Lambda) p(\Lambda)$

HV settings

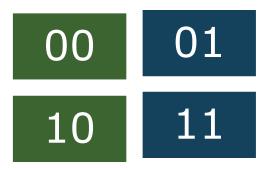
The system is definitely one or another

$$p(a|b = 1, \lambda = w) = \bar{e}_{w}(a)$$
(O) Objectivity
$$p(a|b = 0, \lambda = p) = \bar{e}_{p}(a) \qquad \lambda = \lambda(\Lambda)$$

HV theory is (weakly) deterministic

 $p(a, b|\Lambda) = \chi_{ab}(\Lambda)$

(i) Determinism



Boundaries of the regions depend on the settings

HV settings

Is λ -independent

 $p(\lambda)$ is independent of the settings[#]

Λ

В

IMT, Phys. Rev. Lett. **114**, 060405 (2015)

Adequacy | three assumptions

Objectivity: two types of statistics e_p , e_w **Determinism**: HV determines all the outcomes **A-independence**: single HV that is not influenced by the settings

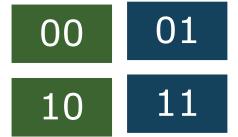
HV (i-ii) simulate QM if we don't ask too much

- Assume a uniform distribution $p(\Lambda)$ (ii) is satisfied
- Follow the weak determinism: let \mathcal{L}_{ii} to depend on the measurement parameters $p(i, j \mid \alpha, ..., \Lambda) = 1 \quad \forall \Lambda \in \mathcal{L}_{ij}$ built in

Basically cheat:

$$\begin{split} q_{ij} &\coloneqq p_{ij} = \sum_{\Lambda} p(i,j \mid lpha;\Lambda) p(\Lambda) \ &= \sum_{\Lambda \in \mathcal{L}_{ij}} 1 \end{split}$$
 (adequacy) is satisfied

Follows Bell, not-so-famous-paper, 1964



Boundaries of the regions depend on the settings

LOGIC

Stage 1: find a unique non-trivial solution to (i)+(ii)+(0)Ignoring how it arises from Λ Exists (very special), but $p_s(\lambda \mid b) = \delta_{\lambda p} \delta_{b0} + \delta_{\lambda w} \delta_{b1} = p_s(b \mid \lambda)$ 0001 $p_s(\lambda \mid b) = \delta_{\lambda p} \delta_{b0} + \delta_{\lambda w} \delta_{b1} = p_s(b \mid \lambda)$ $p_s(a, b, \lambda) = e(a, b) p_s(b \mid \lambda)$ pWStage 2: derive a contradiction

By checking how the boundaries shift (long) OR

$$p_s(\lambda) = [x(\alpha), 1 - x(\alpha)] \equiv p[\lambda(\Lambda)]$$