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Quantum field theory (QFT) describes nature using continuous fields, but physical properties of QFT

are revealed in terms of measurements of observables at a finite resolution. We describe a multi-scale

representation of free scalar bosonic and Ising model fermionic QFTs using Daubechies wavelets [1].

Making use of the orthogonality and self similarity of the wavelet basis functions, we demonstrate some

well known relations such as scale dependent subsystem entanglement entropy and renormalisation of

correlations in the ground state. The multi-scale basis allows for an exact holographic mapping from

a boundary QFT to a bulk representation in one higher spatial dimension [2]. Conformal field theories

(CFTs) in (14 1)D have a bulk dual where the scaling of mutual information falls off exponentially with

a distance given by the 3D anti-de Sitter (AdS3) metric. With the Daubechies wavelet family, the radius

of curvature depends on the chosen integer index, essentially forming a tunable bulk geometry [3].

We find new applications of the wavelet transform
as a compressed representation of ground states of
QFTs. One is the identification of quantum phase
transitions via fidelity overlap [4], which has poten-
tial to benefit experiments by allowing the relevant
entropic information to be obtained from observ-
ables on only a few renormalized degrees of free-
dom. Another is a test of the conjecture [5] that
the entanglement of purification in conformal field
theories CFTs is equal to the minimal-area cross-
section of the entanglement wedge. Entanglement
of purification is notoriously difficult to calculate
because the minimization must be performed over
an extensive number of parameters, but the com-
pressed representation allows approximation using
only a few coarse-grained degrees of freedom.

[1] D. J. George, Y. R. Sanders, M. Bagher-
imehrab, B. C. Sanders, and G. K. Brennen,
Phys. Rev. D (accepted), arXiv:2201.06211.

[2] C.H.Leeand X. L. Qi, Phys. Rev. B93,035112
(2016). DOI:10.1103/PhysRevB.93.035112.

[3] S. Singh and G. K. Brennen,
arXiv:1606.05068.

[4] P. Zanardi and N. Paunkovic, Phys. Rev.
E 74, 031123 (2006). DOI:10.1103/Phys-
RevE.74.031123.

[5] K. Umemoto and T. Takayanagi, Nature
Physics 14, 573 (2018). DOI:10.1038/s41567-
018-0075-2.

Scale r

Figure: Physical degrees of freedom of a (1 +1)D
CFT at the finest scale are represented by scale
modes (black), and form the boundary in the
holographic picture. Coarser wavelet modes (blue)
and the coarsest scale modes (orange) form the
bulk description and are related to the boundary by
a unitary wavelet transformation. When the ratio
of size ¢ to separation d of subregions A and B is
small (top) then the mutual information is zero and
there is no entanglement wedge. When this ratio is
large (bottom) there is an entanglement wedge and
the cross-section ¥}, takes a well-defined value.
The ellipses define subsystems of coarse modes.
If these accurately capture the mutual information
between A and B, then we speak of compressed
representations of p4p.



