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The wavelet basis

• A discrete wavelet basis is defined by a set {ℎ 𝑗 } of wavelet coëfficients from which
scaling (or father) and wavelet (or mother) functions are recursively defined:

𝑠 (𝑥) = D
[∑︁

𝑗

ℎ 𝑗T 𝑗𝑠 (𝑥)
]
, 𝑤 (𝑥) = D

[∑︁
𝑗

(−1) 𝑗ℎmax( 𝑗 )− 𝑗T 𝑗𝑠 (𝑥)
]

where D 𝑓 (𝑥) =
√

2𝑓 (2𝑥) and T 𝑓 (𝑥) = 𝑓 (𝑥 − 1) are dyadic scaling and translation
operators.

• Scaling functions behave like low-pass filters and wavelet functions like high-pass
filters.
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Daubechies wavelet family

• The Daubechies db-K wavelet family is defined as the (unique) minimal-size set {ℎ 𝑗 }
such that the first K moments of𝑤 (𝑥) vanish.
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• They have particularly nice orthonormality properties (and, excepting K = 1, no
closed-form expression!):∫
d𝑥 𝑠𝑘𝑛 (𝑥)𝑠𝑘𝑚 (𝑥) = 𝛿𝑚,𝑛,

∫
d𝑥 𝑤𝑘

𝑛 (𝑥)𝑤𝑙
𝑚 (𝑥) = 𝛿𝑚,𝑛𝛿𝑘,𝑙 ,

∫
d𝑥 𝑠𝑘𝑛 (𝑥)𝑤𝑘+𝑙

𝑚 (𝑥) = 0 (𝑙 ≥ 0)
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Countable basis for square-integrable functions

Scaling functions
at some scale 0

Wavelet functions
at scale 0

Wavelet functions
at scale 1

Wavelet functions
at scale 2

Wavelet
functions
at scale
𝑟 ≥ 3

{ ⊕ ⊕ ⊕ ⊕
· · · }

L2 (R) = H0
⊕

W0
⊕

W1
⊕

W2
⊕∞

𝑟=3 W𝑟

• Wavelet functions provide “refinement” to the coarse-grained scaling function
representation:

H𝑟+1 = H𝑟 ⊕ W𝑟 =⇒ H𝑛 = H0 ⊕𝑛−1
𝑟=0 W𝑟
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Holographic principle and the wavelet transform
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• The wavelet transform is an Exact
Holographic Mapping (EHM)

• Bulk and boundary representations
contain identical information:

H𝑛 = H0 ⊕𝑛−1
𝑟=0 W𝑟

• The support of boundary modes widens
as you decrease scale towards the center.
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Wavelet transform (2D)
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Daubechies wavelet index K

• Left-to-right: K = {1, 2, 3, 5}
• Top-to-bottom: Scale/resolution
𝑟 = {0, 1, 2}

• A larger K (more vanishing
moments) results in a sparser
wavelet representation and
reduced error, resulting in a
more recognisable image (but
only to a point).
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Bosonic Hamiltonian
• Free scalar bosonic model (with periodic boundary conditions):

Ĥb(𝑥, 𝑡) =
1
2

(
Π̂2(𝑥, 𝑡) +

(
∇Φ̂(𝑥, 𝑡)

)2
+𝑚2

0Φ̂
2(𝑥, 𝑡)

)
, Π̂(𝑥, 𝑡) := 𝜕𝑡 Φ̂(𝑥, 𝑡)

Commutators:
[
Φ̂(𝑥, 𝑡), Φ̂(𝑥 ′, 𝑡)

]
=
[
Π̂(𝑥, 𝑡), Π̂(𝑥 ′, 𝑡)

]
= 0,

[
Φ̂(𝑥, 𝑡), Π̂(𝑥 ′, 𝑡)

]
= iδ(𝑥 − 𝑥 ′)1

• Massless phase is described by bosonic CFT, with long-range correlations:

⟨Φ̂(𝑥)Φ̂(𝑥 ′)⟩ = − 1
4𝜋

(ln
(
(𝑥 − 𝑥 ′)2)), ⟨Π̂(𝑥)Π̂(𝑥 ′)⟩ = − 1

2𝜋 (𝑥 − 𝑥 ′)2 .

• Massive phase exhibits exponential decay of correlation functions for |𝑥 − 𝑦 | ≫𝑚−1
0 :

⟨Φ̂(𝑥)Φ̂(𝑥 ′)⟩ → − 𝑒−𝑚0 |𝑥−𝑥 ′ |√︁
8𝜋𝑚0 |𝑥 − 𝑥 ′ |

, ⟨Π̂(𝑥)Π̂(𝑥 ′)⟩ →
√︂

𝑚0

8𝜋 |𝑥 − 𝑥 ′ |3𝑒
−𝑚0 |𝑥−𝑥 ′ | ,

• Discrete bosonic Hamiltonian:

𝐻̂
(𝑛)
b :=

1
2

∑︁
ℓ∈Z

Π̂ (𝑛;s)
ℓ

Π̂ (𝑛;s)
ℓ

+ 1
2

∑︁
ℓ,ℓ ′∈Z

Φ̂(𝑛;s)
ℓ

𝐾
(𝑛)
ℓ,𝑛ℓ ′Φ̂

(𝑛;s)
ℓ ′ , 𝐾

(𝑛)
ℓ,ℓ ′ := −4𝑛Δ(2)

ℓ ′−ℓ +𝑚
2
0 δℓ,ℓ ′
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Fermionic Hamiltonian
• Free Ising model (Majorana spinor formulation) (Boyanovsky 1989):

Ĥf(𝑥, 𝑡) =
1
2

(
−ib̂𝑇 (𝑥, 𝑡)Z𝜕𝑥 b̂(𝑥, 𝑡) +𝑚0b̂

𝑇 (𝑥, 𝑡)Y b̂(𝑥, 𝑡)
)
, b̂(𝑥, 𝑡) ≡

[
𝑏0(𝑥, 𝑡)
𝑏1(𝑥, 𝑡)

]
Anticommutator:

{
𝑏𝜎 (𝑥), 𝑏𝜎 ′ (𝑥 ′)

}
= 2𝛿𝜎,𝜎 ′𝛿 (𝑥 − 𝑥 ′)

• Massless phase correlator (continuum limit, system size 𝑋 , antiperiodic boundaries):〈
𝑏0(𝑥)𝑏1(𝑥 ′)

〉
= − 1

𝑋 sin (𝜋 (𝑥 − 𝑥 ′)/𝑋 )
• In a wavelet basis (showing the explicit quadratic structure):

𝐻̂
(𝑛)
f = − i

2

∑︁
ℓ,ℓ ′∈Z

𝜎,𝜎 ′∈{0,1}

𝑄
(𝑛)
ℓ,𝜎 ;ℓ ′,𝜎 ′𝑏

(𝑛;𝑠 )
ℓ,𝜎

𝑏
(𝑛;𝑠 )
ℓ ′,𝜎 ′ , 𝑏

(0;s)
ℓ,𝜎

:=
∫

d𝑥 𝑠 (0)
ℓ

(𝑥)𝑏𝜎 (𝑥)

𝑄
(𝑛)
ℓ,𝜎 ;ℓ ′,𝜎 ′ := (−1)𝜎2𝑛Δ(1)

ℓ ′−ℓ𝛿𝜎,𝜎 ′ +𝑚0𝛿ℓ,ℓ ′ (𝜎 ′ − 𝜎)

• Δ(𝑛)
ℓ

are derivative overlap coefficients, rational values calculable using properties of
the wavelet family. See Beylkin 1992.
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Example: Bosonic coupling matrix 𝐾 and GS
covariance matrix Γ

Top: Boundary Hamiltonian coupling
and covariance matrices showing
near-neighbour coupling only.

Bottom: Bulk Hamiltonian coupling and
covariance matrices showing
near-neighbour coupling and coupling
across scales. Note also dominance of
coarse scale fields in top-left of
covariance matrix.
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FIG. 2: One dimensional Daubechies K = 3 scale functions and
wavelets plotted as a function of x at three scales for a system of size
L = 10. (a) Scale functions {s0

n(x)}L�1
n=0 ; (b) Wavelets {w0

n(x)}L�1
n=0 ;

(c) {w1
n(x)}2L�1

n=0 ; and (d) {w2
n(x)}4L�1

n=0 . Here and in the main text we
assume hard wall boundaries.
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FIG. 3: Visualization of the 1280⇥ 1280 coupling matrix K in the
wavelet basis for a one dimensional free scalar field. The system size
is L = 10 and the maximum scale is lmax = 6 so that the total num-
ber of modes is V = 1280. The diagonal stripe indicates couplings
within a given scale while the off diagonal stripes represent couplings
between scales.

The scale-scale mode couplings are encoded in Kss, the scale-
wavelet couplings in Ksw and the wavelet-wavelet couplings
in Kww. These matrices are:

[Kss]a,b = m2
0da,b +D0

a,b (0  a,b < L)

[Ksw(l)]a,b = D0,l
a,b (0  a < L,0  b < L2l ,0  l  lmax)

[Kww(l, j)]a,b = m2
0da,bd j,l +Dl, j

a,b

(0  a < L2l ,0  b < L2 j,0  j  l  lmax)

(30)

The values of these coupling overlap integrals for K = 3 are

obtained from the following relations. First we use the scaling
function components defined in Eq. 2

h0 = 1
16

p
2
(1+

p
10+

p
5+2

p
10)

h1 = 1
16

p
2
(5+

p
10+3

p
5+2

p
10)

h2 = 1
16

p
2
(10�2

p
10+2

p
5+2

p
10)

h3 = 1
16

p
2
(10�2

p
10�2

p
5+2

p
10)

h4 = 1
16

p
2
(5+

p
10�3

p
5+2

p
10)

h5 = 1
16

p
2
(1+

p
10�

p
5+2

p
10)

(31)

The coefficients gn = (�1)nh5�n. The coefficients D0
m,n =

D0
n,m with

D0
0,0 = 5.2576013450,

D0
0,1 = �3.3828986455

D0
0,2 = 0.87333354692,

D0
0,3 = �0.11139112377

D0
0,4 = �5.3243362257⇥10�3,

(32)

and D0
m,n = 0 for |m�n| > 4. Because the derivatives of trans-

lations of the father functions form a partition of unity [10]

Â
n

n∂xslmin
n (x) = 1,

the coefficients satisfy the following constraint

Â
n

nD0
m,n = 0.

The other coefficients are

D0,l
a,b = 22(l+1)ha|[H(l)]l+1D(l)GT (l)|bi

Dl, j
a,b = 22(l+1)ha|G(l, j)[H(l, j)]l� jD(l, j)GT (l, j)|bi

(33)
where the scale dependent matrices are

H(l) = Â2(l+1)(L+4)�5
m,n=0 hn�2m|mihn|

H(l, j) = Â2(l� j)(2(2 jL�4))�5
m,n=0 hn�2m|mihn|

D(l) = Â2(l+1)(L+4)�5
m,n=0 D0

m,n|mihn|
D(l, j) = Â2(l� j)(2(2 jL�4)�5

m,n=0 D0
m,n|mihn|

G(l) = Â2(l+1)(L+4)�5
m,n=0 gn�2m|mihn|

G(l, j) = Â2(l� j)(2(2 jL�4)�5
m,n=0 gn�2m|mihn|.

(34)

An example of a K matrix is plotted in Fig. 3. Because the
wavelets have compact support, the coupling matrix is sparse
having ' 10V log(V ) non zero elements, with the factor of 10
arising from the fact that Daubechies K wavelets have overlap
with 2(2K �1) translates within any given scale.

B. Constructing the ground state of the free field theory

We would like to encode the vacuum state |Gi in Eq. 28
into a qubit register. As described in Appendix A, let the val-
ues r j be discretized via an m bit string x j = x j,0x j,1 . . .x j,m�1
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Bosonic correlators (critical phase)
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10-14

10-12

10-10

10-8

10-6

10-4

5 10 20 50

10-12

10-9

10-6

〈
Φ̂(𝑟 ;w)

0 Φ̂(𝑟 ;w)
ℓ

〉
≈ − 2𝑛−𝑟

4𝜋 ℓ2KK
×
(
2K
K

) 〈
𝑥K

〉2

𝑤

5 10 20 50

10-12

10-9

10-6

〈
Π̂ (𝑟 ;w)

0 Π̂ (𝑟 ;w)
ℓ

〉
≈ 2𝑟−𝑛 (2K + 1)

2𝜋 ℓ2K+2 ×
(
2K
K

) 〈
𝑥K

〉2

𝑤

Polynomial decay with exponent proportional to K
(analytic expressions: Singh and Brennen 2016)
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Bosonic correlators (massive phase)

10 20 30 40

10-12

10-9

10-6

5 10 15 20 25 30

10-12

10-9

10-6

〈
Φ̂(𝑟 ;w)

0 Φ̂(𝑟 ;w)
ℓ

〉
≈ −2𝑛−𝑟𝑒−ℓ𝑚̃

√
8𝜋ℓ𝑚̃

〈
𝑒−𝑚̃𝑥

〉
𝑤

〈
𝑒𝑚̃𝑥

〉
𝑤

5 10 15 20 25 30

10-12

10-9

10-6

〈
Π̂ (𝑟 ;w)

0 Π̂ (𝑟 ;w)
ℓ

〉
≈ 2𝑟−𝑛𝑒−ℓ𝑚̃

√︂
𝑚̃

8𝜋ℓ3

〈
𝑒−𝑚̃𝑥

〉
𝑤

〈
𝑒𝑚̃𝑥

〉
𝑤

where 𝑚̃ = 2𝑛−𝑟𝑚0 =⇒ scale-dependent mass renormalisation!
(analytic expressions: Singh and Brennen 2016)
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Fermionic correlators
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10-16

10-14

10-12

10-10

10-8

10-6
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10-12

10-9

10-6

Critical phase (analytic):〈
𝑏
(𝑟 ;w)
0,0 𝑏

(𝑟 ;w)
ℓ,1

〉
≈ i (−1)K

𝜋ℓ2K+1 ×
(
2K
K

) 〈
𝑥K

〉2

𝑤

Polynomial decay with exponent linear in K

5 10 15 20

10-12

10-9

10-6

Massive phase (least-squares):〈
𝑏
(𝑟 ;w)
0,0 𝑏

(𝑟 ;w)
ℓ,1

〉
∼ e−1.13ℓ𝑚̃, 𝑚̃ = 2(𝑛−𝑟 )𝑚0

Exponential decay with mass renormalisation!
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Holographic picture - critical vs massive

(r,0)

(r, )l

(r,0)

(r, )l

• Same-scale correlators in the critical
phase correspond to a negatively curved
AdS(2+1) geodesic distance in the bulk.

• Cross-scale correlators can be shown to
decay exponentially.

• In the massive phase, exponential decay
corresponds to Euclidean geometry (i.e.
flat space) in the bulk.

• Expected given that the massive theory
is not conformal.
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Mutual information and bulk radius of curvature
• Mutual information is a useful basis-independent quantity for measuring correlations:

𝐼 (𝐴 : 𝐵) = 𝑆 (𝜌A) + 𝑆 (𝜌B) − 𝑆 (𝜌𝐴𝐵) .

• To find the bulk radius of curvature 𝑅 in the critical phases, adopt the ansatz:

𝐼 ((𝑟, 0), (𝑟, ℓ)) = 𝑆0e−𝑑𝑔 ( (𝑟,0),(𝑟,ℓ ) )/𝜉

with geodesic distance 𝑑𝑔 ((𝑟, 0), (𝑟, ℓ)) = 2𝑅 ln(ℓ/𝑅) and 𝜉 the correlation length.
• Then for the scalar bosonic CFT, for large K , (Singh and Brennen 2016):

𝑅(K) ≈ 0.32K − 0.88/K + 0.43

• And for the critical Ising model, for large K , (Brennen, unpublished):

𝑅(K) ≈ 0.32K + 0.66

• Linear dependence on K can be linked to the Daubechies wavelets coupling modes
within a neighbourhood of 2K , or equivalently being simulable by a circuit of
nearest-neighbour gates of depth K .
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Holographic subsystem entropy (bosonic CFT)

• The subsystem entanglement entropy 𝑆 (𝜌𝐴) of a
bosonic 1 + 1D CFT is equal to the length of the
geodesic joining the boundary points in the bulk
AdS3 slice geometry.

𝑆 (𝜌𝐴) =
𝑐

3
log

|𝐴|
𝜖

• Combined entropy 𝑆 (𝜌𝐴𝐵) is equal to the length
of the geodesics joining the boundary points of
the two subregions.

• MI between two subregions of a bosonic
conformal field theory:

𝐼 (𝐴 : 𝐵) =
{

0 𝑑/ℓ ≥
√

2 − 1
−𝑐

3 log
(
(𝑑/ℓ)2 + 2𝑑/ℓ

)
𝑑/ℓ <

√
2 − 1

.

A

B

S(ρAB) = 2c
3 log ℓ
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Mutual information and the entanglement wedge
Scale 𝑟

0

𝑛

...

... 𝐴 𝐵

ℓ ℓ𝑑

Scale 𝑟
0

𝑛

...

... 𝐴 𝐵

ℓ ℓ𝑑

Σ∗
𝐴𝐵

𝐼 (𝜌𝐴𝐵) = 0

𝐼 (𝜌𝐴𝐵) > 0
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Entanglement wedge cross-section

• Geometric quantity derivable from the properties of
the relevant CFT

𝐸𝑊 (𝜌𝐴𝐵) =
��Σ∗

𝐴𝐵

��
4𝐺𝑁

=
𝑐

6
log(1 + 2ℓ/𝑑)

• Conjectured equality with the Entanglement of
Purification (Umemoto and Takayanagi 2018):

𝐸𝑝 (𝜌𝐴𝐵)
?
= 𝐸W(𝜌𝐴𝐵)

• In the context of CFT, it shares several inequalities
with the EoP:

𝐼 (𝐴 : 𝐵)/2 ≤ 𝐸𝑊 (𝜌𝐴𝐵) ≤ min(𝑆 (𝜌A), 𝑆 (𝜌B))
𝐸𝑊 (𝜌𝐴𝐵) ≤ 𝐸𝑊 (𝜌𝐴(𝐵𝐶 ) ) ≤ 𝐸𝑊 (𝜌𝐴𝐵) + 𝐸𝑊 (𝜌𝐵𝐶 )

𝐸𝑊 (𝜌 (𝐴𝐴′ ) (𝐵𝐵′ ) ) ≥ 𝐸𝑊 (𝜌𝐴𝐵) + 𝐸𝑊 (𝜌𝐴′𝐵′)

3
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FIG. 1. The gray regions are the entanglement wedges MAB

dual to ⇢AB . The left one is for subsystems A and B in a
pure state e.g. a vacuum state in a CFT. The right one is for
subsystems for a thermal state of a CFT dual to a AdS black
hole. The surface which divides MAB into two parts each of
which ends on A and B is defined as ⌃AB , which is depicted
as the dotted surface. Equally, ⌃AB is the minimal surface

which computes the entanglement entropy between A [ �
(A)
AB

and B[�(B)
AB . The surface ⌃min

AB is obtained by minimizing the
area of ⌃AB by varying the choice of �A. Note also that when
A and B gets smaller and more separated, the entanglement
wedge gets disconnected into two parts in which case ⌃min

AB

becomes empty and we have EW = 0.

It is also obvious that EW (⇢AB) is a non-negative
quantity. When A and B are enough far away from
each other, the mutual information I(A : B) = S(⇢A) +
S(⇢B)�S(⇢AB) is vanishing in the classical gravity limit
[21]. In this case the entanglement wedge MAB is dis-
connected and therefore EW (⇢AB) = 0. Note that the
fact I(A, B) = 0 is equivalent to ⇢AB = ⇢A ⌦ ⇢B . As
soon as we pass the phase transition point and A gets
closer to B, we obtain a connected entanglement wedge
and have I(A, B) > 0. In this process, EW (⇢AB) sud-
denly increases to a finite value. However we have to
note that even if we have “I(A, B) = 0” in the classi-
cal gravity dual computation, this just means that there
is no O(N2) contribution to I(A : B), where N is the
gauge group rank of the dual CFT. Thus near the phase
transition point we actually have I(A : B) = O(1).

Furthermore, as first found in [9], we can prove the
following bound

EW (⇢AB) � 1

2
I(A : B). (15)

The proof of this inequality is sketched in Fig.2. Note
that this inequality is saturated when AB is a pure
state. Even though I(A : B) satisfies the monogamy
I(A : BB0) � I(A : B) + I(A : B0) in holographic the-
ories [13], the quantity EW (⇢AB) does not. Instead, we
can show the following inequality from the entanglement
wedge nesting property (11):

EW (⇢A(BC)) � EW (⇢AB), (16)

which is analogous to the extensiveness of mutual infor-
mation equivalent to the strong subadditivity of von Neu-
mann entropy.

Indeed, when ⇢ABC is a pure state, we can easily find
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FIG. 2. The proof of a bound for entanglement wedge cross
section. The left picture corresponds to the case where the
total system is a pure state, while the right one to the thermal
state. It is geometrically clear that we have S(⇢A)+S(⇢B) 
2EW (⇢AB) + S(⇢AB). To see this, e.g. in the right picture
for a thermal state, we find EW (⇢AB) = A(⌃AB), S(⇢A,B) =
A(�A,B), S(⇢AB) = A(�A1) + A(�A2) + A(�B1) + A(�B2) +
A(�BH), where we set 4GN = 1. The bound follows from the

inequality A(�A)  A(�A1) + A(�A2) + A(⌃min
AB ) + A(�

(A)
BH)

and a similar one for B. Note that �
(A)
BH [ �

(B)
BH is the black

hole horizon.
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FIG. 3. The proof of the strong superadditivity (18). It is
obvious that the area of ⌃min

AÃBB̃
is larger than the sum of area

of ⌃min
AB and ⌃min

ÃB̃
. ⌃min

AB and ⌃min
ÃB̃

are depicted by the thick

surfaces. ⌃min
AÃBB̃

is depicted as the dotted surface.

the following polygamy inequality in our gravity duals:

EW (⇢AB) + EW (⇢AC) � EW (⇢A(BC)), (17)

which can be easily derived geometrically. Also this ac-
tually follows from (13) and (15).

Finally, we can show the following inequality, which is
properly called strong superadditivity:

EW (⇢(AÃ)(BB̃)) � EW (⇢AB) + EW (⇢ÃB̃), (18)

as is obvious from Fig.3. More generally, we can de-
rive this inequality from (11) and (12) as we sketch in
appendix B. In particular, the equality holds when the
state is product ⇢(AÃ)(BB̃) = ⇢AB ⌦ ⇢ÃB̃ .

5. COMPUTATIONS OF EW IN PURE ADS3

For example, as one of the simplest examples, we con-
sider the AdS3/CFT2 setup and take the Poincaré co-
ordinate. This corresponds to a vacuum state in a two
dimensional holographic CFT on R2. The time slice is

described by the metric ds2 = dx2+dz2

z2 , where we set the
AdS radius to be one. We choose the subsystem A and
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Entanglement of purification

A B

Ā B̄
pure state

total

system

𝐸𝑝 (𝜌𝐴𝐵) = min |𝜓 ⟩𝐴𝐴̄𝐵𝐵̄ ;Tr𝐴̄𝐵̄ [ |𝜓 ⟩⟨𝜓 | ]=𝜌𝐴𝐵
𝑆 (𝜌𝐴𝐴)

• Given two subsystems 𝐴 and 𝐵 of an
overall pure state, minimise the joint
entropy 𝑆 (𝜌𝐴𝐴) over all possible pure
states |𝜓 ⟩𝐴𝐴𝐵𝐵̄ with ancillary systems
𝐴, 𝐵.

• Generalises entanglement entropy to a
measure of correlation (classical and
quantum) for mixed states.

• Unsurprisingly, this minimisation is
extremely difficult in the general case
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Solving for the entanglement of purification

• Consider a pure state on a total system 𝐴𝐴𝐵𝐵 described by covariance matrix:

ΓΠΠ
𝐴𝐵𝐴𝐵̄

=
1
2

(
𝐽 𝐾

𝐾𝑇 𝐿

)
, ΓΦΦ

𝐴𝐵𝐴𝐵̄
=

1
2

(
𝐷 𝐸

𝐸𝑇 𝐹

)
such that

(
𝐽 𝐾

𝐾𝑇 𝐿

)−1

=

(
𝐷 𝐸

𝐸𝑇 𝐹

)
• When |𝐴| = |𝐵 | = 1 it can be shown that

��𝐴��, ��𝐵�� > 1 provides minimal additional
accuracy for the EoP.

• Canonical form of 𝐾 =

(
1 𝑥

𝑥 1

)
reduces the minimisation to a single physical parameter

𝑥 (a momenta-momenta correlation). (Battacharyya, Takayanagi and Umemoto 2018)

• Can we identify any phase transitions when minimising over a single coarse-grained
mode in a wavelet basis, corresponding to a much larger subsystem?
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Phase transition in bosonic CFT
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Peak in 𝑥 at 𝑑/ℓ = 2 indicative
of a quantum phase transition
in the neighbourhood of the
geodesic crossing!
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Phase transitions in fermionic QFT
• One witness of a quantum phase transition is a sudden drop in overlap fidelity
between ground states |Ψ(𝑔)⟩ adjacent in some parameter 𝑔.

• For pure states:
𝐹 (𝑚) = |⟨Ψ(𝑔−) |Ψ(𝑔+)⟩|

• For reduced states:

𝐹 (𝜌𝑠 (𝑔+), 𝜌𝑠 (𝑔−)) = Tr
[√︃√︁

𝜌𝑠 (𝑔+)𝜌𝑠 (𝑔−)
√︁
𝜌𝑠 (𝑔+)

]
,

where 𝑔± = 𝑔 ± 𝛿/2, and 𝛿 is small.
• For the fermionic Ising model, a QPT is evident at𝑚0 = 0 and the overlap fidelity can
be shown to drop from approximately 1 to

𝐹 (𝑚0 = 0) ≈ 1 − 𝛿2𝑉 2

8𝜋2

• Can we see this in a coarse-grained wavelet basis state?
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Identifying quantum phase transitions
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• Yes, the phase
transition is clearly
evident.

• Suggests potential of
wavelet compression
for e.g. experimental
observations of phase
transitions

• Fast wavelet
transform in
O(𝑉 log(𝑉 )) in the
number of modes
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Conclusion

• Wavelets provide a natural basis for describing multi-scale properties of QFTs
• In particular, features like renormalisation are readily apparent - and the wavelet index
K allows tuning the bulk geometry in the holographic picture.

• Wavelet state compression can work - we can use reduced states coarse-grained in a
wavelet basis to identify phase transitions, and without needing to fine-tune e.g.
tensor network descriptions for the specifics of the QFT

• Future research directions:
• How do excitations behave in the bulk?
• How do correlations scale for thermal states?
• Can we replicate the black-hole bulk geometry of Qi (2013) and relate the behaviour of

the metric to the wavelet index K?
• Can we use continuous wavelets to better understand entanglement in continuous

QFTs?
• Do wavelets offer any advantages when describing bandlimited QFT and/or

interacting theories (e.g. 𝜙4)
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