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The wavelet basis

® Adiscrete wavelet basis is defined by a set {h;} of wavelet coéfficients from which
scaling (or father) and wavelet (or mother) functions are recursively defined:

J

s(x) =D [Z hjfrfs(x)] , wx) =D [Z(—l)jhmax(j)_j(fjs(x)
J

where D f(x) = V2f(2x) and T f(x) = f(x — 1) are dyadic scaling and translation
operators.

® Scaling functions behave like low-pass filters and wavelet functions like high-pass
filters.
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Daubechies wavelet family

® The Daubechies db-K wavelet family is defined as the (unique) minimal-size set {h;}
such that the first K moments of w(x) vanish.
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® They have particularly nice orthonormality properties (and, excepting K =1, no

closed-form expression!):
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Countable basis for square-integrable functions

Wavelet
Scaling functions  Wavelet functions  Wavelet functions  Wavelet functions  functions
at some scale 0 at scale 0 at scale 1 at scale 2 at scale

M
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® Wavelet functions provide “refinement” to the coarse-grained scaling function
representation:

7_{r+1 = 7_(7' @ (Wr - Wn = 7—{0 @rr.l:_ol (Wr
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Holographic principle and the wavelet transform

® The wavelet transform is an Exact
Holographic Mapping (EHM)

® Bulk and boundary representations
contain identical information:

H, = Hy &' W,

N 5 e ) Bk N The support of boundary modes widens
N %0000 . S as you decrease scale towards the center.
N, 4
A et e
N p
.............................. Boundary
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Wavelet transform (2D)




Daubechies wavelet index K

o |eft-to-right: K = {1,2,3,5}

® Top-to-bottom: Scale/resolution
r=40,1,2}

® A larger K (more vanishing
moments) results in a sparser
wavelet representation and
reduced error, resulting in a
more recognisable image (but
only to a point).
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Bosonic Hamiltonian

® Free scalar bosonic model (with periodic boundary conditions):

‘}A{b(x, t) = % (ﬁz(x, )+ (Vci)(x, t))2 + mgci)z (x, t)), I(x, t) := 0,P(x, 1)

Commutators: [dAD(x, t), d(x, t)] = [ﬁ(x, 1), II(x’, t)] =0, [CiD(x, 1), (x, t)] =id(x —x)1

® Massless phase is described by bosonic CFT, with long-range correlations:

() =~ (n(r =), AR = 3.

® Massive phase exhibits exponential decay of correlation functions for |x — y| > mg*:

e—mo|X—X’|

V8mmy|x — x’|’

® Discrete bosonic Hamiltonian:

rmy _ 1 p(ms) py(mss) (ms) z-(n) & (n s) g, (2)
™= 2 Z I, ™11, Z (D Kpne®p s Ky = —4"0 7, + mg B¢,
teZ H’EZ

Mo —mg|x—x'|
3

(B(x)D(x)) = - (M(0T(x)) —

8m|x — x'|3
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Fermionic Hamiltonian

® Free Ising model (Majorana spinor formulation) (Boyanovsky 1989):

7:(f(x,t)=%(—ilA)T(x, 1) Zayb(x, t) + mobT (x, t)Yi)(x,t)), b(x, 1) = Z‘;Ej‘c g]

Anticommutator: {bAU(x), by (x’)} =205,60(x — x")
® Massless phase correlator (continuum limit, system size X, antiperiodic boundaries):
. . 1
bo(x)by (x')) = -
< 01 (X)) =~ e =) /%)

® In a wavelet basis (showing the explicit quadratic structure):

ym) _ 1 (n)  pms)pms)  p0s) 0 ()i

an =73 Z Qez;e',a'ba’;s bf'r?as" bz,as = / dx s, (x)bs(x)

el

o,0'€{0,1}

(n) = (—1)U2nA§}2[50,0/ + moéf,[/(oj - O')

ot 0’

° At(,") are derivative overlap coefficients, rational values calculable using properties of
the wavelet family. See Beylkin 1992.
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Example: Bosonic coupling matrix K and GS
covariance matrix I'

1 500 1000 1280 , R .
1 1 1 1‘\
. . . 500 500 o
Top: Boundary Hamiltonian coupling
and covariance matrices showing
near-neighbour coupling only. 1000 1000
) ) . 1280 1280 oL I )
Bottom: Bulk Hamiltonian coupling and ! 500 10001260 T
X ] X 1 500 1000 1280 . : :
covariance matrices showing I ! R
near-neighbour coupling and coupling
across scales. Note also dominance of - -
coarse scale fields in top-left of B
covariance matrix. \ ,
1000 \ 1000 oo
1280 Mi2go b = . e
1 500 1000 1280
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Bosonic correlators (critical phase)
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Polynomial decay with exponent proportional to K
(analytic expressions: Singh and Brennen 2016)

11/24



Bosonic correlators (massive phase)
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where m = 2"""my = scale-dependent mass renormalisation!
(analytic expressions: Singh and Brennen 2016)

w
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Fermionic correlators
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Exponential decay with mass renormalisation!
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Holographic picture - critical vs massive

® Same-scale correlators in the critical ® In the massive phase, exponential decay
phase correspond to a negatively curved corresponds to Euclidean geometry (i.e.
AdS(2+1) geodesic distance in the bulk. flat space) in the bulk.

® Cross-scale correlators can be shown to ® Expected given that the massive theory

decay exponentially. is not conformal.
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Mutual information and bulk radius of curvature

® Mutual information is a useful basis-independent quantity for measuring correlations:
I(A: B) = S(pa) +S(ps) — S(pab)-

® To find the bulk radius of curvature R in the critical phases, adopt the ansatz:
1((r,0), (r, £)) = Sye 9o (0. (n0) /&

with geodesic distance d,((r,0), (r,£)) = 2RIn(f/R) and & the correlation length.
® Then for the scalar bosonic CFT, for large K, (Singh and Brennen 2016):

R(K) ~ 0.32K — 0.88/K + 0.43
® And for the critical Ising model, for large K, (Brennen, unpublished):
R(K) ~ 0.32K + 0.66

® Linear dependence on K can be linked to the Daubechies wavelets coupling modes
within a neighbourhood of 2K, or equivalently being simulable by a circuit of
nearest-neighbour gates of depth %.
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Holographic subsystem entropy (bosonic CFT)

® The subsystem entanglement entropy S(p4) of a
bosonic 1+ 1D CFT is equal to the length of the
geodesic joining the boundary points in the bulk
AdS3 slice geometry.

4]
€

c
S(pa) = 3 log

® Combined entropy S(pag) is equal to the length
of the geodesics joining the boundary points of
the two subregions.

® MI between two subregions of a bosonic

conformal field theory:

0 d/e>+vV2-1

I(4:B)= {—g log((d/e)? +2d/¢) dje<~N2-1"
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Mutual information and the entanglement wedge
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Entanglement wedge cross-section

® Geometric quantity derivable from the properties of
the relevant CFT

EW(pAB) = = 610g(1+2f/d)

4G

® Conjectured equality with the Entanglement of
Purification (Umemoto and Takayanagi 2018):

Ep(paB) = EW(PAB)

® In the context of CFT, it shares several inequalities
with the EoP:

I(A: B)/2 < Ew(pap) < min(S(pa),S(ps))
Ew(pas) < Ew(pac)) < Ew(pas) + Ew(psc)
Ew(p(aay ) = Ew(pa) + Ew(pap’)
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Entanglement of purification

Ep(paB) = minjy) oot sal 1)l 1=pasS (PAA)

® Given two subsystems A and B of an
overall pure state, minimise the joint
entropy S(p4;) over all possible pure
states |/) 4 155 With ancillary systems

A, B.
® Generalises entanglement entropy to a
total measure of correlation (classical and
system quantum) for mixed states.

® Unsurprisingly, this minimisation is
extremely difficult in the general case
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Solving for the entanglement of purification

Consider a pure state on a total system AABB described by covariance matrix:
-1
1(] K 1(D E J K D E
o _ o0 _ -
Lipis = 2 (KT L)’ Uipis = 2 (ET F) such that (KT L) = (ET F)

When |A| = |B| = 1 it can be shown that |A|, |B| > 1 provides minimal additional
accuracy for the EoP.

. 1 x S . .
Canonical form of K = (x 1) reduces the minimisation to a single physical parameter

x (a momenta-momenta correlation). (Battacharyya, Takayanagi and Umemoto 2018)

Can we identify any phase transitions when minimising over a single coarse-grained
mode in a wavelet basis, corresponding to a much larger subsystem?
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Phase transition in bosonic CFT
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Phase transitions in fermionic QFT

One witness of a quantum phase transition is a sudden drop in overlap fidelity
between ground states |¥(g)) adjacent in some parameter g.

For pure states:

F(m) = [(¥(g-)[¥(g+))]

For reduced states:

F(ps(g+)’ ps(g—)) = Tr[\/ ps(g+)ps(g—) Vps(g+) >

where g, = g+ /2, and § is small.

For the fermionic Ising model, a QPT is evident at my = 0 and the overlap fidelity can
be shown to drop from approximately 1 to

52V

872

F(mp=0)~1-

Can we see this in a coarse-grained wavelet basis state?
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Identifying quantum phase transitions
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® Yes, the phase
transition is clearly
evident.

® Suggests potential of
wavelet compression
for e.g. experimental
observations of phase
transitions

® Fast wavelet
transform in
O(Vlog(V)) in the
number of modes
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Conclusion

® Wavelets provide a natural basis for describing multi-scale properties of QFTs

® In particular, features like renormalisation are readily apparent - and the wavelet index
K allows tuning the bulk geometry in the holographic picture.

® Wavelet state compression can work - we can use reduced states coarse-grained in a
wavelet basis to identify phase transitions, and without needing to fine-tune e.g.
tensor network descriptions for the specifics of the QFT

® Future research directions:

How do excitations behave in the bulk?

How do correlations scale for thermal states?

Can we replicate the black-hole bulk geometry of Qi (2013) and relate the behaviour of
the metric to the wavelet index K?

Can we use continuous wavelets to better understand entanglement in continuous
QFTs?

Do wavelets offer any advantages when describing bandlimited QFT and/or
interacting theories (e.g. ¢%)
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