B Meson Flavour Tagging with Quantum Support Vector Machines

Maxwell West¹, Martin Sevior¹ and Muhammad Usman^{1,2}

¹School of Physics, The University of Melbourne

²Data61, CSIRO

December 11, 2022

CP violation and the Standard Model

- CP symmetry violation is necessary to explain the preponderance of matter over anti-matter, however its known sources within the standard model (SM) are insufficient to explain the magnitude of the observed asymmetry.
- ullet While there are not many known examples of CP violation, it can be seen in certain decays of B mesons.
- Belle-II and LHCb experimentally test this CP violation, and whether the SM describes it completely, or if New Physics is required...

CP violation in the $B^0 - \overline{B}{}^0$ system

• CP symmetry implies equality of the decay rates Γ of B^0 and $\overline B{}^0$ to a common CP eigenstate, however the SM predicts

$$\frac{\Gamma(\overline{B}^0 \to J/\psi K_S^0) - \Gamma(B^0 \to J/\psi K_S^0)}{\Gamma(\overline{B}^0 \to J/\psi K_S^0) + \Gamma(B^0 \to J/\psi K_S^0)} \sim \sin \delta mt \sin 2\beta$$

where β is a phase from the CKM matrix and δm is the mass difference between the two mass eigenstates.

• Need to be able to reliably distinguish B^0 from $\overline{B}{}^0$ in order to do this analysis.

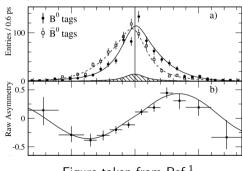
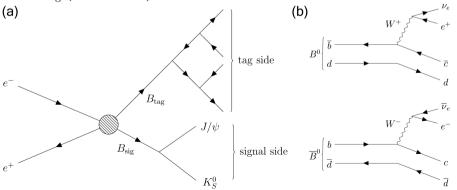


Figure taken from Ref.¹


¹B. Aubert et al. Phys. Rev. Lett. 89 201802 (2002)

B^0 flavour tagging

• At Belle-II, $B^0 - \overline{B}{}^0$ pairs are created in entangled states by e^-e^+ collisions:

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left(\left| B^0 \overline{B}{}^0 \right\rangle - \left| \overline{B}{}^0 B^0 \right\rangle \right)$$

• Flavour tagging is the process of determining the quark content of the "tag-side" meson $B_{\rm tag}$ (i.e. $\bar{b}d$ or $b\bar{d}$)

B^0 flavour tagging at Belle-II

- Currently the state-of-the-art results at Belle-II are achieved via machine learning approaches on 130 input variables.
- The performance of the classifiers are characterised by the effective tagging efficiency Q, defined as

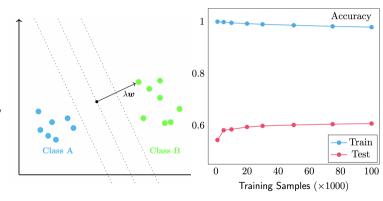
$$Q = \sum_{i=1}^{n_{\text{bins}}} \epsilon_i (1 - 2w_i)^2$$

where ϵ_i is the fraction of events in the *i*th bin, and w_i is the fraction incorrectly tagged.

• Recent results² using fast boosted decision trees and deep neural networks give

$$Q_{\rm FBDT} = 30.0\%$$

$$Q_{\rm DNN} = 28.8\%$$


²Abudinen, F., et al. *B*-flavour tagging at Belle II. arXiv:2110.00790 (2021)

Quantum Support Vector Machines

- SVMs are linear classifiers on data which has typically been mapped to a feature space, $x \mapsto \Phi(x)$.
- In a QSVM this mapping is into a quantum Hilbert space,

$$\boldsymbol{x} \mapsto |\psi(\boldsymbol{x})\rangle = \mathcal{U}(\boldsymbol{x})|0\rangle$$

 QSVMs are very powerful, and therefore prone to overfitting the training data.

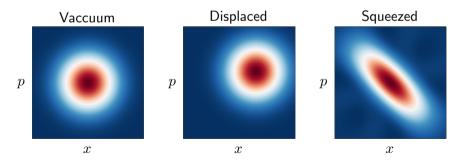
Continuous Variable Quantum Computers

 The fundamental unit of a conventional quantum computer is the qubit, a state of a two level quantum system:

$$|\psi\rangle_{\text{qubit}} = \alpha |0\rangle + \beta |1\rangle$$

 We will consider continuous variable (CV) quantum computers, the fundamental units of which are *qumodes*, quantum systems with continuous degrees of freedom:

$$|\psi\rangle_{\text{qumode}} = \int dx \; \psi(x) \, |x\rangle$$


e.g. a set of bosonic modes (harmonic oscillators).

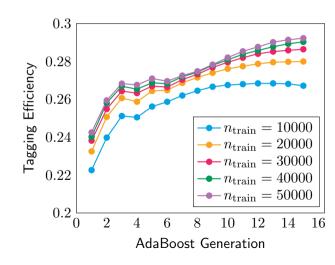
Continuous Variable Quantum Operations

• Each qumode has a representation in terms of a pair \hat{x} , \hat{p} of canonically conjugate operators formed from the creation and annihilation operators of the mode:

$$\hat{x} = \hat{a} + \hat{a}^{\dagger}, \quad \hat{p} = i \left(\hat{a}^{\dagger} - \hat{a} \right)$$

• We can visualise the effects of common CV operations (e.g. displacement, squeezing) in phase space via the Wigner functions of the qumodes:

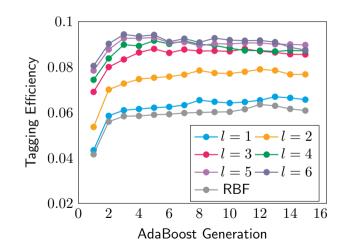
Continuous Variable Quantum Support Vector Machines


- The key component of a QSVM is the data encoding map $x \mapsto |\psi(x)\rangle$.
- We consider various mappings readily implemented³ on a CV quantum computer from displacement operations D(x) and squeezing operations S(x):

$$D(\boldsymbol{x}) = \prod_{i=0}^n D_i(\boldsymbol{x}) = \prod_{i=0}^n e^{x_i^* a_i^\dagger - x_i a_i}$$

$$S(\boldsymbol{x}) = \prod_{i=0}^n S_i(\boldsymbol{x}) = \prod_{i=0}^n e^{x_i^* a_i a_{i+1} + x_i a_i^\dagger a_{i+1}^\dagger} e^{-D_0(\boldsymbol{x})} e^{-D_1(\boldsymbol{x})} e^{-D_0(\boldsymbol{x})} e^{-D_0(\boldsymbol{x})$$

³Stavenger, T. et al, Bosonic qiskit. arXiv:2209.11153 (2022)


Continuous Variable Quantum Support Vector Machines: Results

- We construct boosted ensembles of 200 QSVMs, each of which "votes" on the flavour.
- Due to computational constraints, when using all 130 datapoints we are restricted to l=1.
- We are able to achieve results competitive with the state of the art, but when l=1 we are essentially using a classical model.

CV-QSVMs: Top 5 PCA Components

- By doing a PCA transformation we can reduce the dimensionality of the data and employ more powerful QSVMs.
- Increasing the depth l of the CV-QSVMs allows us to significantly outperform the classical RBF kernel.

Summary

- B meson flavour tagging is an important component of experiments which probe CP violation and heavy quark mixing.
- By using boosted ensembles of QSVMs we can achieve flavour tagging at level commensurate with state of the art classical algorithms.
- There is a tantalising prospect for outperforming classical methods as quantum computer hardware matures and it becomes possible to perform large-scale entangled kernels.