

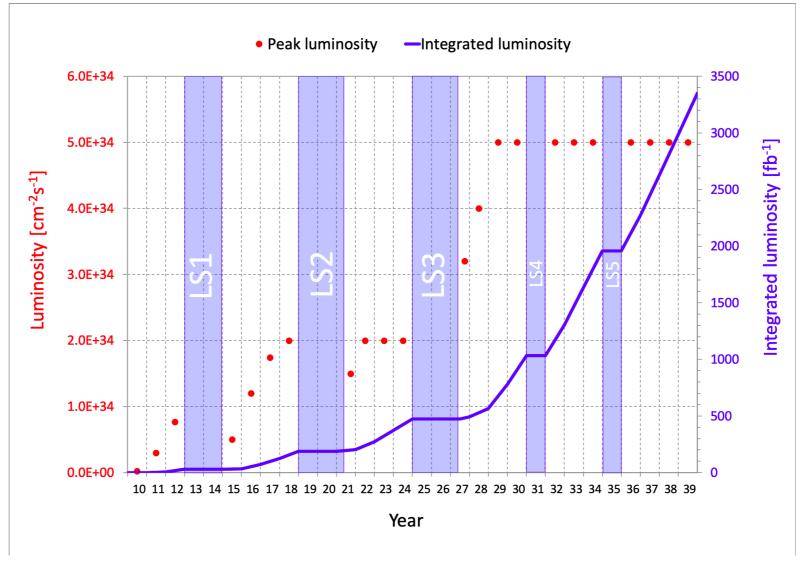


(Maximising the discovery potential of the Large Hadron Collider)

Prof Martin White

What do I mean by "LHC"?

- I mean ATLAS and CMS for the purposes of this talk
- LHCb is rather interesting, but that's a talk for another day...

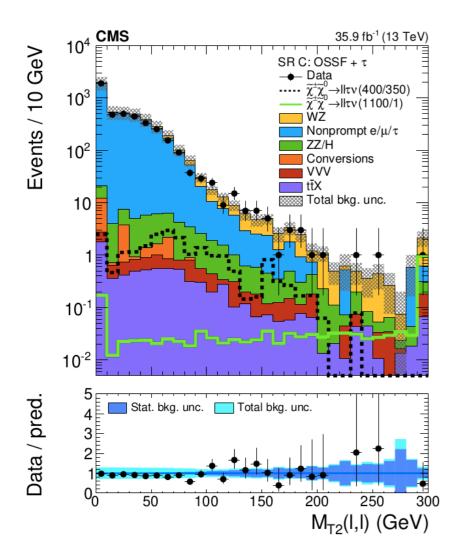


The (abridged) LHC story so far

- Lots of ATLAS and CMS precision measurements (e.g. Higgs discovery, masses, cross-sections, differential cross-sections, branching fractions)
- Loads of direct searches for new particles
- No evidence for beyond-Standard Model physics

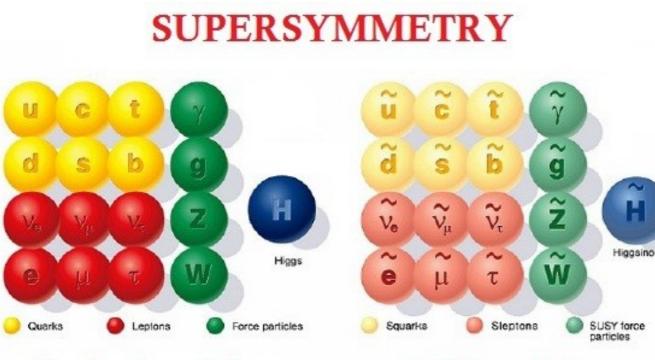
What does this mean?

Solution 1: wait longer!


Solution 2: Get smarter

- LHC detector output (after reconstruction) consists of:
 - four vectors of jets, leptons and photons (plus particle identification)
 - tagging of *b* jets ~ 70% of the time
 - tagging of τ leptons ~ 40 % of the time
 - missing transverse energy
 - EXTRA: evidence for exotic objects (long-lived sparticles?)

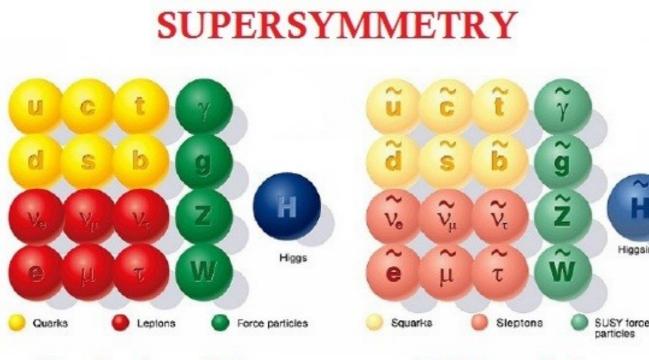
The whole game of experimental searches is to use only this information to discover new particles, then measure the particle properties in case of discovery



How particle searches are typically done

- Pick a particular signal hypothesis
- Find variables (functions of 4 vectors) that look different for the signal and backgrounds
- Look in regions of the data where background is expected to be low

Let's take an example: SUSY



Standard particles

SUSY particles

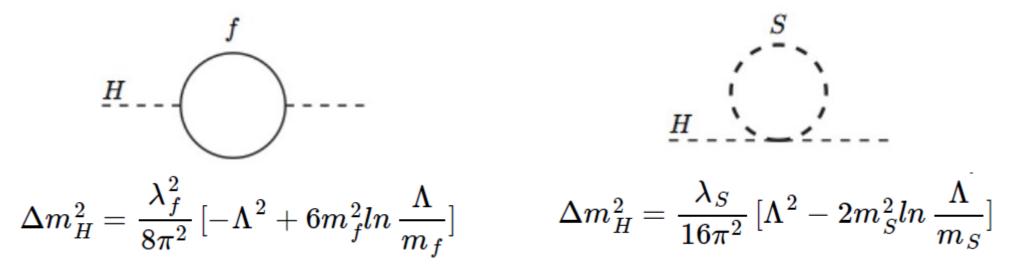
- Solves various theoretical challenges to the Standard Model
- Provides a natural DM candidate
- Has been used to motivate LHC physics analyses for decades now due to complex phenomenology

Supersymmetry breaking

Standard particles

SUSY particles

H


Higgsino

• Exact SUSY would require identical SM & SUSY partner masses \rightarrow SUSY is broken

• Breaking mechanism is *a priori* unknown

 Minimal SUSY breaking Lagrangian has 105 free parameters

Supersymmetry and the hierarchy problem

- Kindergarten: need SUSY to cancel off radiative corrections
- High school: need rather large radiative corrections to get up to a Higgs mass of 125 GeV in the MSSM → squarks are <u>heavy</u>

Impact of ATLAS and CMS results

Eur. Phys. J. C manuscript No. (will be inserted by the editor)

CoEPP-MN-18-7

Combined collider constraints on neutralinos and charginos

The GAMBIT Collaboration: Peter Athron^{1,2}, Csaba Balázs^{1,2}, Andy Bucklev³, Jonathan M. Cornell⁴, Matthias Danninger⁵, Ben Farmer⁶, Andrew Fowlie^{1,2,9}, Tomás E. Gonzalo¹⁰, Julia Harz¹¹, Paul Jackson^{2,12}, Rose Kudzman-Blais⁵, Anders Kvellestad^{6,10,a}, Gregory D. Martinez¹³, Andreas Petridis^{2,12}, Are Raklev¹⁰, Christopher Rogan¹⁴, Pat Scott⁶, Abhishek Sharma^{2,12}, Martin White^{2,12,b}, Yang Zhang^{1,2}

¹School of Physics and Astronomy, Monash University, Melbourne, VIC 3800, Australia

- ²Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale
- ∞ ³School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK _
- ⁴Department of Physics, McGill University, 3600 rue University, Montréal, Québec H3A 2T8, Canada
- ⁵Department of Physics, University of British Columbia, Vancouver BC, Canada
- \sim ⁶Department of Physics, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ, UK
- ⁷Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm, Sweden
- ⁸Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
- ⁹Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing, Jiangsu 210023, China
- ¹⁰Department of Physics, University of Oslo, N-0316 Oslo, Norway
- ¹¹LPTHE-CNRS-UPMC, Boîte 126, T13-14 4e étage, 4 place Jussieu 75252 Paris CEDEX 05, France
 - ¹²Department of Physics, University of Adelaide, Adelaide, SA 5005, Australia
- ep-ph] ¹³Physics and Astronomy Department, University of California, Los Angeles, CA 90095, USA
 - ¹⁴Department of Physics and Astronomy, Malott Hall, University of Kansas, Lawrence, Kansas 66045, USA
 - Received: date / Accepted: date

Abstract Searches for supersymmetric electroweakinos have entered a crucial phase, as the integrated luminosity of the Large Hadron Collider is now high enough to compensate for their weak production cross-sections. Working in a framework where the neutralinos and charginos 5 Č are the only light sparticles in the Minimal Supersym-0 metric Standard Model, we use GAMBIT to perform a

relic density can be obtained through the Higgs-funnel and Z-funnel mechanisms, even assuming that all other sparticles are decoupled. All samples, GAMBIT input files and best-fit models from this study are available on Zenodo.

Contents

GAMBIT: The Global And Modular BSM Inference Tool

gambit.hepforge.org github.com/GambitBSM

GAM

EPJC 77 (2017) 784

arXiv:1705.07908

- Extensive model database, beyond SUSY
- Fast definition of new datasets, theories
- Extensive observable/data libraries
- Plug&play scanning/physics/likelihood packages
- Various statistical options (frequentist /Bayesian)
- Fast LHC likelihood calculator
- Massively parallel
- Fully open-source

Members of: ATLAS, Belle-II, CLiC, CMS, CTA, Fermi-LAT, DARWIN, IceCube, LHCb, SHiP, XENON

Authors of: BubbleProfiler, Capt'n General, Contur, DarkAges, DarkSUSY, DDCalc, DirectDM, Diver, EasyScanHEP, ExoCLASS, FlexibleSUSY, gamLike, GM2Calc, HEPLike, IsaTools, MARTY, nuLike, PhaseTracer, PolyChord, Rivet, SOFTSUSY, Superlso, SUSY-AI, xsec, Vevacious, WIMPSim

Recent collaborators: P Athron, C Balázs, A Beniwal, S Bloor, T Bringmann, A Buckley, J-E Camargo-Molina, C Chang, M Chrzaszcz, J Conrad, J Cornell, M Danninger, J Edsjö, T Emken, A Fowlie, T Gonzalo, W Handley, J Harz, S Hoof, F Kahlhoefer, A Kvellestad, P Jackson, D Jacob, C Lin, N Mahmoudi, G Martinez, MT Prim, A Raklev, C Rogan, R Ruiz, P Scott, N Serra, P Stöcker, W. Su, A Vincent, C Weniger, M White, Y Zhang, ++

70+ participants in many experiments and numerous major theory codes

Included constraints

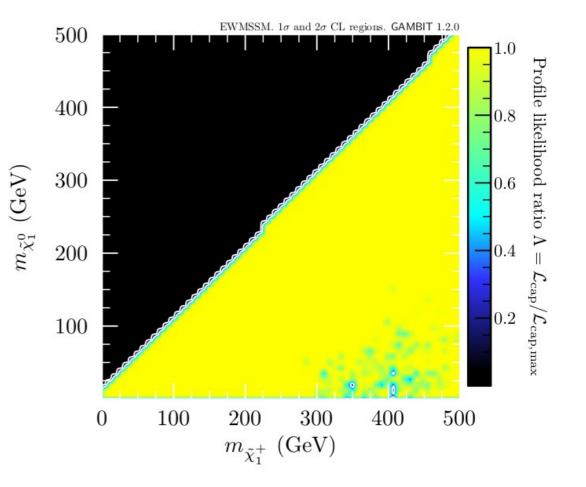
· Z and Higgs invisible decays

 $\Gamma(Z \to \text{inv.}) = 499.0 \pm 1.5 \,\text{MeV}$ BF $(h \to \text{inv.}) \le 0.19$

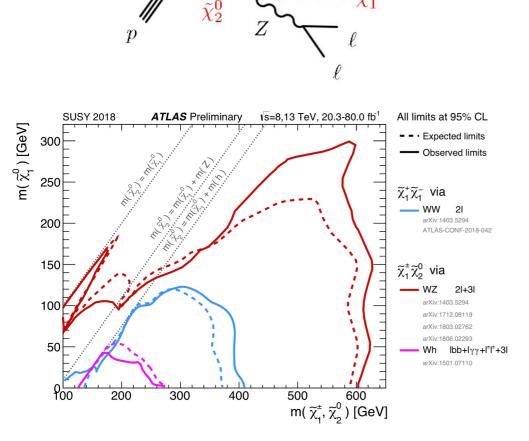
LEP cross-section limits

Production	Signature	Experiment
$ \begin{array}{c} \tilde{\chi}_{i}^{0} \tilde{\chi}_{1}^{0} \\ (i=2,3,4) \\ \tilde{\chi}_{i}^{+} \tilde{\chi}_{i}^{-} \\ (i=1,2) \end{array} $	$\begin{split} \tilde{\chi}^0_i &\to q\bar{q}\tilde{\chi}^0_1 \\ \tilde{\chi}^0_i &\to \ell\bar{\ell}\tilde{\chi}^0_1 \\ \tilde{\chi}^+_i \tilde{\chi}^i &\to q\bar{q}'q\bar{q}'\tilde{\chi}^0_1\tilde{\chi}^0_1 \\ \tilde{\chi}^+_i \tilde{\chi}^i &\to q\bar{q}'\ell\nu\tilde{\chi}^0_1\tilde{\chi}^0_1 \\ \tilde{\chi}^+_i \tilde{\chi}^i &\to \ell\nu\ell\nu\tilde{\chi}^0_1\tilde{\chi}^0_1 \end{split}$	OPAL [53] L3 [98] OPAL [53] OPAL [53] OPAL [53], L3 [98]
	$\chi_i \ \chi_i \to \iota \nu \iota \nu \chi_1 \chi_1$ ISR γ + missing energy	OPAL [33], L3 [98] OPAL [99]

•	LHC searc	hes for	EW	SUSY
---	-----------	---------	----	------


Likelihood label	Source
ATLAS_4b	ATLAS Higgsino search [104]
ATLAS_4lep	ATLAS 4ℓ search [105]
ATLAS_MultiLep_2lep_0jet	ATLAS multilepton EW search [100]
ATLAS_MultiLep_2lep_jet	ATLAS multilepton EW search [100]
ATLAS_MultiLep_3lep	ATLAS multilepton EW search [100]
ATLAS_RJ_2lep_2jet	ATLAS recursive jigsaw EW search [101]
ATLAS_RJ_3lep	ATLAS recursive jigsaw EW search [101]
CMS_1lep_2b	CMS Wh search [106]
CMS_2lep_soft	CMS 2 soft opposite-charge lepton search [109]
CMS_20Slep	CMS 2 opposite-charge lepton search [110]
CMS_MultiLep_2SSlep	CMS multilepton EW search [111]
CMS_MultiLep_3lep	CMS multilepton EW search [111]

Source: Anders Kvellestad


LHC searches for SUSY dark matter

 In a test of exclusion power, we find *no* general constraint on the MSSM EW sector from the LHC!

arXiv: 1809.02097

How can SUSY evade LHC searches?

W

 $\tilde{\chi}_1^{\pm}$

V

p

Ideas for improvement

1) Define more inclusive models for optimisation

2) Use unsupervised machine learning

3) Map the topology of LHC events using network analysis

Ideas for improvement

1) Define more inclusive models for optimisation

- 2) Use unsupervised machine learning
- 3) Map the topology of LHC events using network analysis

Why is optimisation necessary?

Better models for optimisation

ADP-20-29/T1139

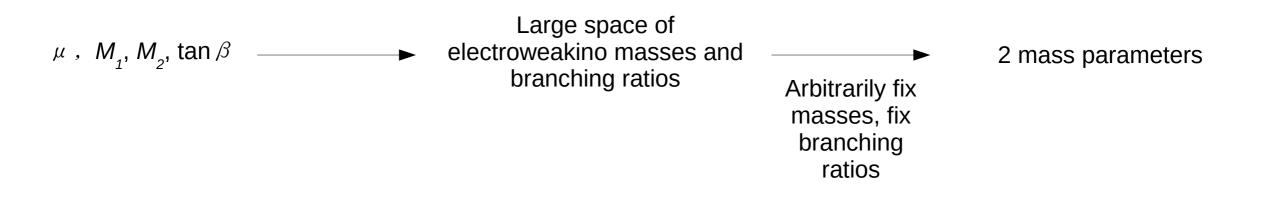
Simple, but not simplified: A new approach for optimising supersymmetry searches at the Large Hadron Collider

Melissa van Beekveld,^a Philip Grace,^b Anders Kvellestad,^c Adam Leinweber,^b and Martin White^b

^a Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, 20 Parks Road, Oxford OX1 3PU, UK

^bARC Centre of Excellence for Dark Matter Particle Physics, University of Adelaide, North Terrace, SA 5005

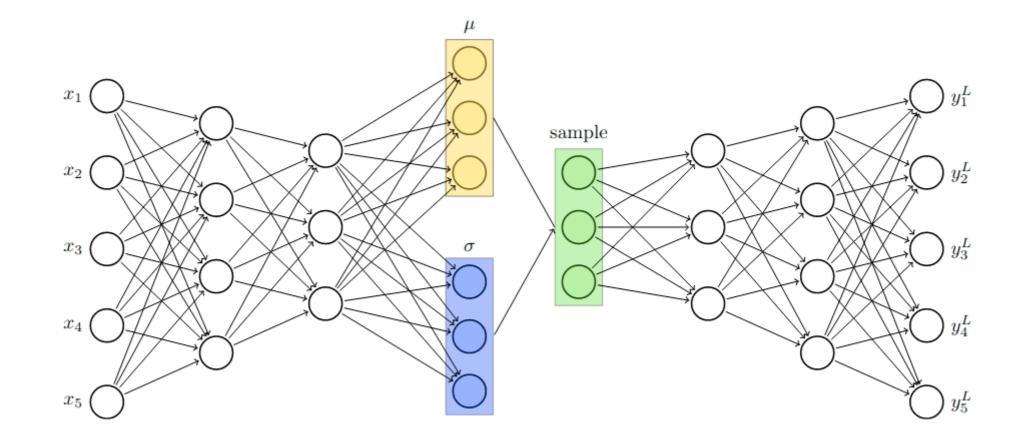
^cDepartment of Physics, University of Oslo, N-0316 Oslo

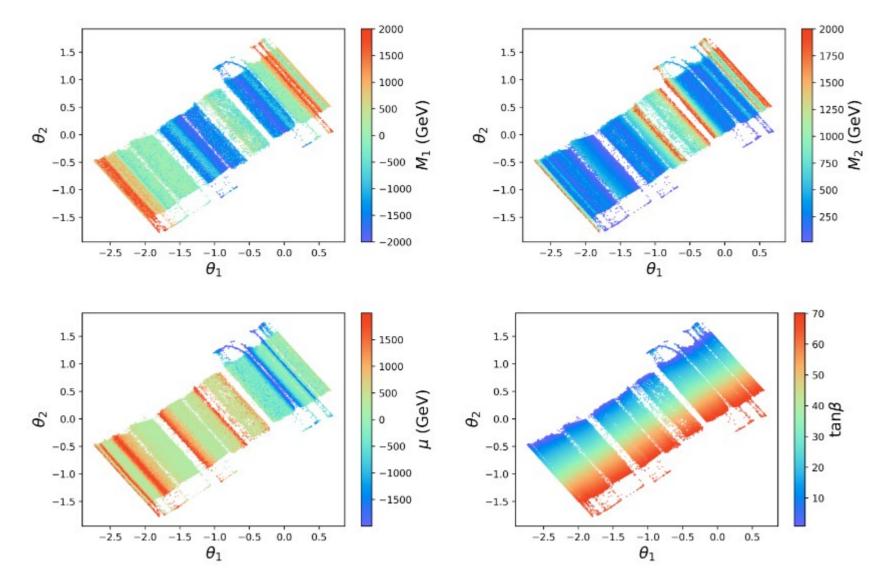

E-mail: melissa.vanbeekveld@physics.ox.ac.uk,

adam.leinweber@adelaide.edu.au, martin.white@adelaide.edu.au

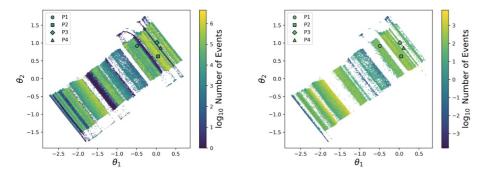
ABSTRACT: Searches for supersymmetry at the Large Hadron Collider are frequently optimised on simplified models. After assuming particular sparticle production and decay processes, analyses are optimised by tuning event selections on benchmark models generated in 2D planes of parameters, with all other parameters held fixed. Motivated by recent evidence that this removes sensitivity to a large volume of viable SUSY models, we propose an alternative approach based on dimensional reduction of global fit results. Starting from the results of a global fit of the 4D electroweak minimimal supersymmetric model performed by the GAMBIT collaboration, we show how to define a 2D plane by using a variational autoencoder to map points in the original 4D parameter space to a 2D latent space. This allows for easy visualisation of the 4D global fit results, which generates insights into what we may be missing at the LHC. Furthermore, the invertible nature of the map to the 2D plane allows experimentalists to choose and simulate benchmark models in a 2D plane (as they could for a simplified model) whilst still accessing the full range of phenomenology of the 4D model. We provide a demonstration of how our visualisation and benchmark model simulation process works, and develop an analysis that is able to exclude four benchmark models not excluded by the ATLAS and CMS collaborations in the set of results used for the global fit.

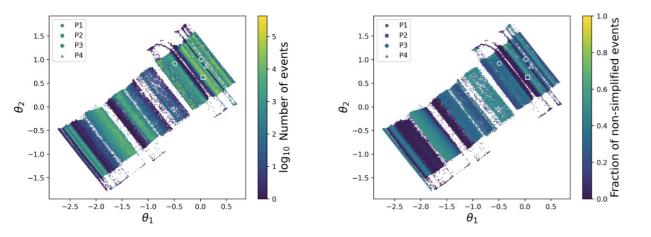
What is a simplified model?


- A SUSY simplified model is typically a 2D parameter set with other relevant SUSY parameters held fixed (most common use: use sparticle masses and branching ratios)
- It is thus related to the original SUSY parameters via dimensional reduction
- In the case of the EWMSSM this is particularly weird:


What if we just did the dimensional reduction better?

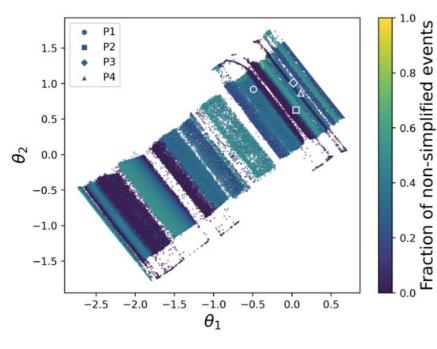
- We have a set of GAMBIT results that gives us points in the original 4D SUSY space that are not excluded (at some chosen confidence level)
- Can define an invertible, topology-preserving map to a 2D plane *directly* from those results
- We then get a 2D plane which is *simple* but not *simplified*


One possible choice: a variational autoencoder


GAMBIT results in 2D

Visualising phenomenology in 2D

Figure 5: Left: latent-space representations of points with the number of $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ events at 36 fb⁻¹ as a colour map. Right: latent-space representations of points with the upper bound on the number of 3-lepton events from $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ production at 36 fb⁻¹ as a colour map.


Figure 6: The number (left) and proportion (right) of non-simplified events at 36 fb⁻¹ in the $\theta_1 - \theta_2$ plane.

- Have a new way to visualise global fit results
- Can look at number of events in a given final state (e.g. 3 leptons)
- Can also look for points that least resemble the simplified model assumptions used for optimisation
- e.g. put this on the z axis:

$$\frac{\sum_{i} \sigma_{i} - (\sigma_{\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{\pm}} + \sigma_{\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp}} + \sigma_{\tilde{\chi}_{2}^{0} \tilde{\chi}_{1}^{\pm}} + \sigma_{\tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}})}{\sum_{i} \sigma_{i}}$$

Finding benchmark points

- Can select benchmark points for optimisation
- The invertible nature of the map from 4D→2D means that one can recover the full 4D SUSY parameter set and generate events for LHC studies
- We have chosen 4 benchmark points that are unsimplified-model like

As expected, the simplified model process $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ has a markedly smaller cross section than other processes, including those with more complex decay chains.

Optimising on these points works!

- Have found an analysis that would exclude all four points with a single signal region
- Demonstrates again that optimisation matters at the LHC → generalising the input assumptions leads to better outcomes

Variable	Requirement	Process ID	N_{sig}	N_{bkg}	Z_{bi}
$n_{ m lep}$	= 3	P1	207	187	3.8
$n_{b-\mathrm{jet}}$	= 0	$\mathbf{P2}$	140	187	2.7
E_T^{miss} [GeV]	> 90	P3	227	187	4.2
$m_T \; [\text{GeV}]$	> 20	$\mathbf{P4}$	218	188	4.0
H_T [Gev]	< 125				

Summary

- We are at a crucial stage in the history of the LHC
- Evidence suggests that straightforward discoveries would have flown under the radar of current particle searches
- Have presented a new approach for optimising LHC analyses that shows promising results

Practical Collider Physics **Andy Buckley Christopher White Martin White** 间 IOP | ebooks