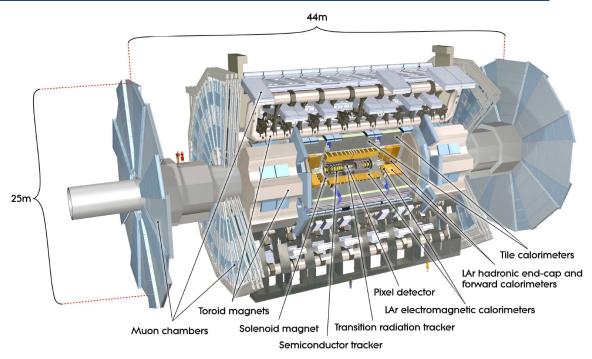


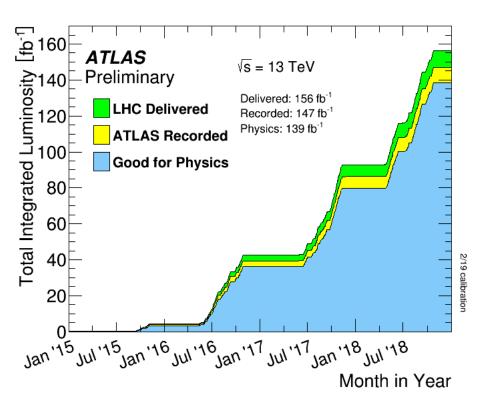
Latest Results from the ATLAS Experiment at the CERN Large Hadron Collider


Paul Jackson (University of Adelaide)

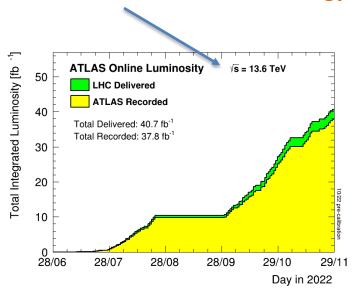
December 14th, 2022

The ATLAS detector

- Solenoidal magnetic field (2T) in the central region – momentum measurement
- Energy meas. down to ~1° to the beamline


- High resolution silicon detectors
- Granular EM and Had calorimetry
- Independent muon spectrometer
- Good coverage permits reconstruction of missing transverse momentum through object reconstruction

LHC data

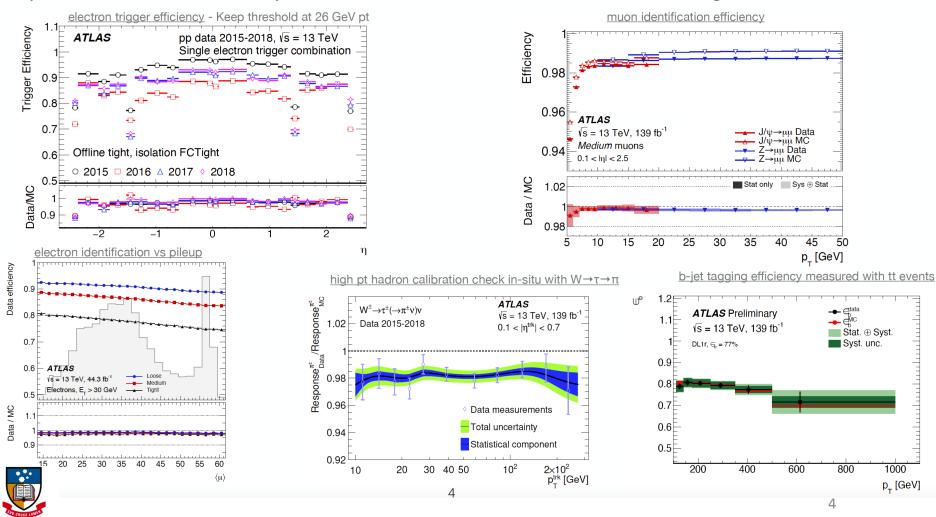


Extremely successful Run 2 (2015 – 2018)

Dataset is a goldmine for physics, containing large samples of every known particle in the Universe!

Run 3 with increased energy

Many thanks to the LHC team for the excellent data they provided to us in Run 1 and Run 2 and for their commitment in view of Run 3.



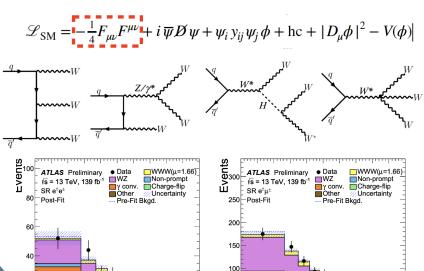
Detector Performance

of ADFI AIDF

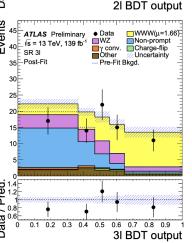
Results from Run 2 only possible thanks to excellent understanding of detector performance, and development of reconstruction and identification algorithms

WWW Production

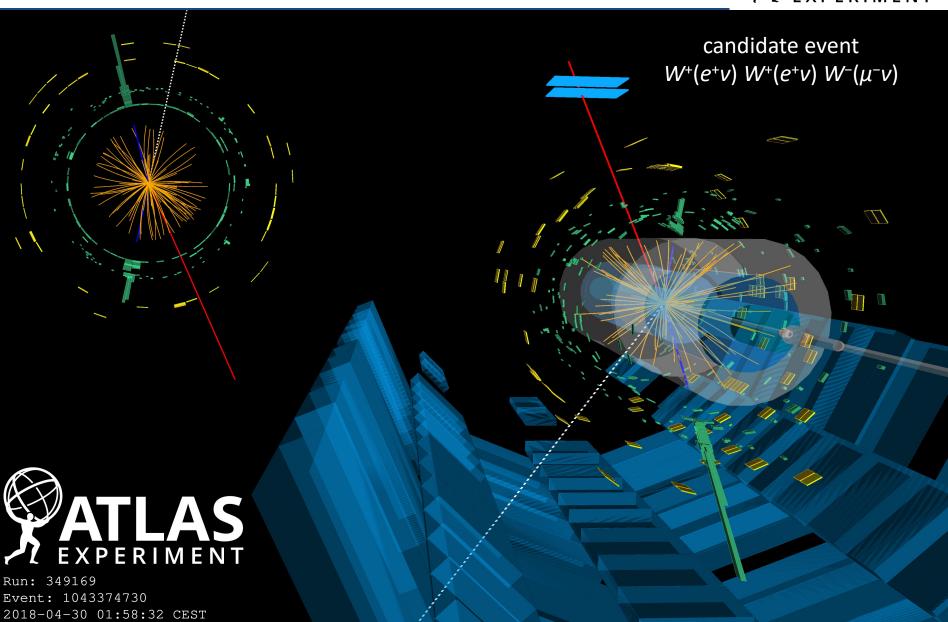
- Rare process providing access to W/Z self-interactions
 -> cubic and quartic couplings
- Channels: $W^{\pm}W^{\pm}W^{\mp} \to \ell^{\pm}\nu \; \ell^{\pm}\nu \; qq'$ with $\ell=e,\mu$ $\to \ell^{\pm}\nu \; \ell^{\pm}\nu \; \ell^{\mp}\nu$
- Main bkg: $WZ \to \ell \nu \ell \ell$ estimated w/ control regions
- Signal extracted w/ BDTs for 2ℓ and 3ℓ channels
- First *WWW* observation with significance of $8.2 \sigma (5.4 \sigma)$ obs (exp)


$$\sigma(pp \to W^{\pm}W^{\pm}W^{\mp}) = 850 \pm 100 \text{ (stat) } \pm 80 \text{ (syst) fb}$$

signal strength: 1.66 ± 0.28


SM for WWW + WH : $511 \pm 42 \,\text{fb}$ at NLO QCD

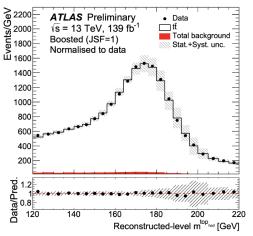
ATLAS CONF 2021-039

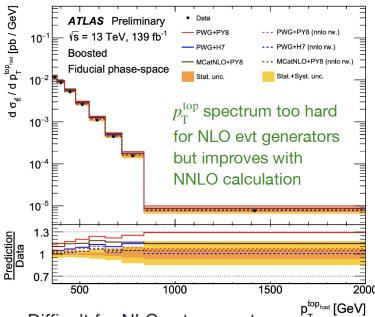


WWW Production

Top

top-quark production


• Run 2: ~1.2 x 108 tt produced

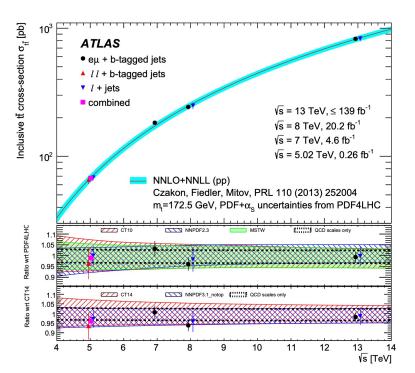

$$\mathcal{L}_{SM} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + i\,\overline{\psi}\mathcal{D}\psi + \psi_i\,y_{ij}\psi_j\phi + hc + |D_\mu\phi|^2 - V(\phi)$$

- Test SM at high $p_{\mathrm{T}}^{\mathrm{top}}$, where deviations expected from BSM, measure both $t\bar{t}$ system and radiation
 - SM predictions at NNLO QCD + NLO EW
- I+jets channel: $t\bar{t} \to Wb \ Wb \to \ell \nu b \ qq'b$
 - ∘ Reconstruct hadronic top as reclustered R=1.0 anti-kt jet w/ p_T > 355 GeV, $|\eta|$ <2.0, and mass ∈ 120-220 GeV
 - Reduce jet energy scale uncertainties by using mass

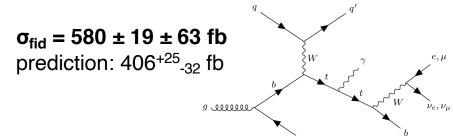
of reconstructed hadronic top

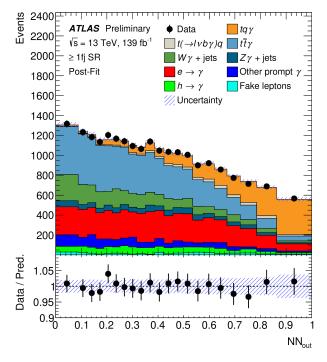
- -> jet energy scale factor
- -> ~30% reduction in $\sigma_{\mathrm{syst}}^{\mathrm{tot}}$
- Differential cross sections provided for 16 variables (8 for the first time for boosted top guarks)

- Difficult for NLO evt generators to model additional radiation
- \circ Constraints placed on EFT operators \mathcal{O}_{tG} and $\mathcal{O}_{tq}^{(8)}$



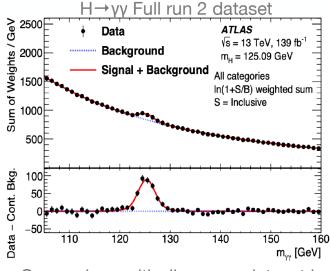
top-quark measurements



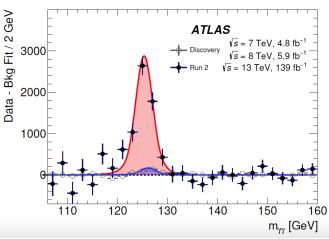

Top pair production cross-section @ 5 TeV 260 pb⁻¹ dataset recorded in run 2 Dilepton and lepton+jets final states

 $\sigma(tt)$ = 67.5±0.9 (stat) ±2.3 (syst) ±1.1 (lumi) ±0.2 (beam) pb 4% accuracy (prediction 68.2 ± 4.8 ^{+1.9}-2.3 pb)

Single top + photon observation

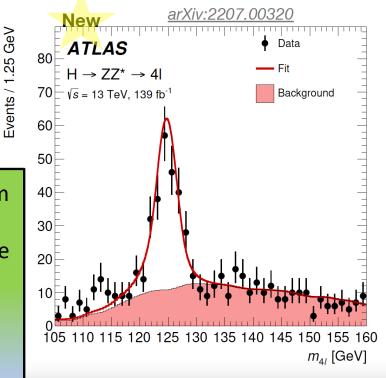

- + evidence of single top s-channel production at 13 TeV
- + charge asymmetry in ttbar+photon events
- + several searches probing all possible top FCNC couplings

Higgs



Higgs boson measurements

Comparison with discovery dataset in 2012

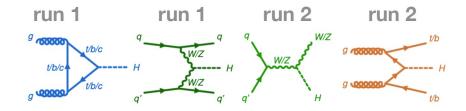

10 years on from the Higgs
Discovery we are in an era of precision Higgs physics

Precise mass measurement using H→4I

Event-by-event resolution, DNN for S/B separation, precise muon and electron momentum calibration

$mH = 124.94 \pm 0.17 \text{(stat.)} \pm 0.03 \text{(syst.)} \text{GeV}$

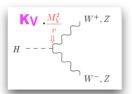
(combined with run 1 data)

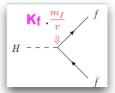


Higgs boson coupling measurements

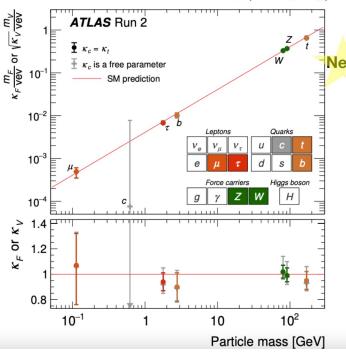


Total cross-section / Standard Model prediction


 μ = 1.05 ± 0.06 = 1.05 ± 0.03 (stat.) ± 0.03 (exp.) ± 0.04 (sig. th.) ± 0.02 (bkg. th.). (benefits also from reduced theory uncertainty)



Measurements per production mode * decay channel:

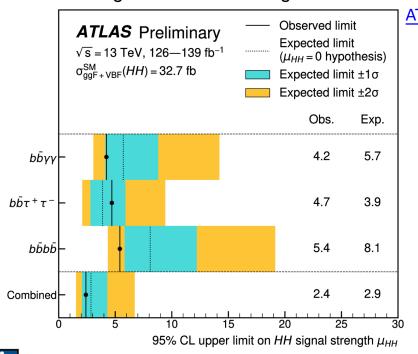


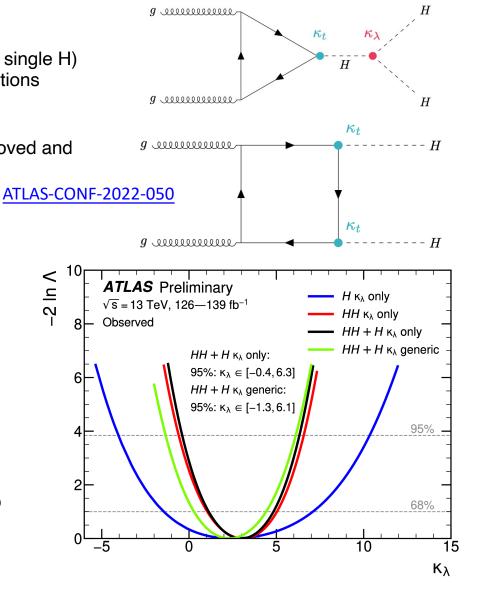
Coupling modifier interpretation

$$\sigma(i \to H \to f) = \sigma_i B_f = \frac{\sigma_i(\kappa) \Gamma_f(\kappa)}{\Gamma_H(\kappa, B_{\text{inv.}}, B_{\text{u.}})}$$

Searching for di-Higgs production

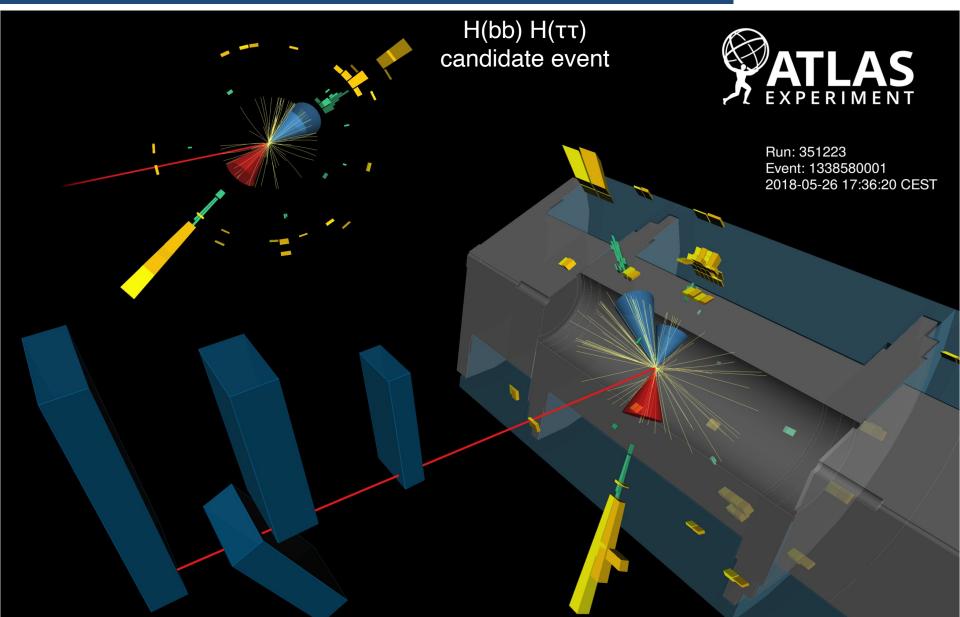
2 In A


- Probe Higgs self-interaction and Higgs potential
- Main challenges

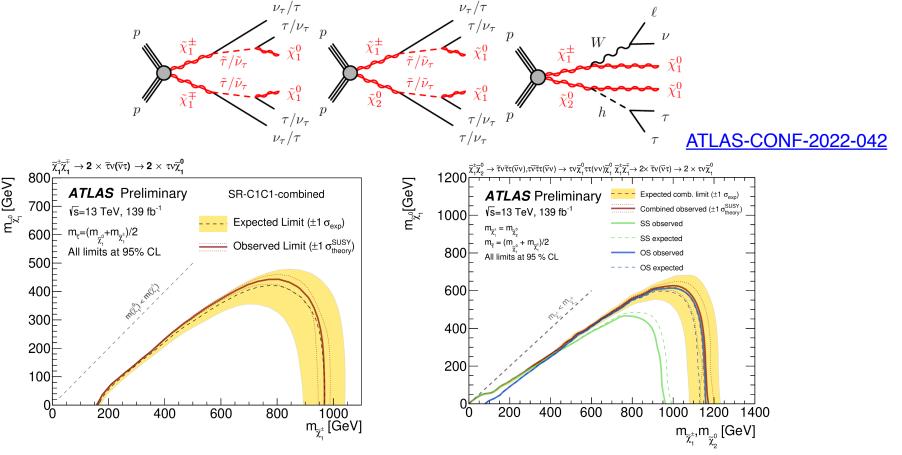

of ADFI AIDF

- Very small cross-section 32.7 fb (<1/1000 of single H)
- Negative interference between main contributions
- Compromise between statistics and S/B:

 $(H\rightarrow bb).(H\rightarrow yy \text{ or } \tau\tau \text{ or } bb)$


 Sensitivity with full run 2 data set significantly improved and run 3 should bring us close to claiming evidence

Di-Higgs production

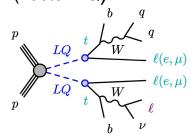

SEARCHES

SUSY searches

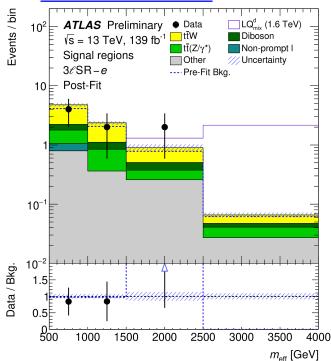
Electroweak SUSY production is challenging: smaller cross sections. Helped by new techniques, and combinations, and full Run 2 datasets.

ATLAS: Gaugino pair prod. \rightarrow final state taus. Into compressed region. Light staus: interesting for μ g-2 & mW anomalies, and dark matter.

Searches for Heavy Resonances


Many searches reaching few TeV sensitivity in mass

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits ATLAS Preliminary Status: July 2022 $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$ Jets† $\mathsf{E}_{\mathbf{T}}^{\mathsf{miss}} \int \mathcal{L} \, \mathsf{dt}[\mathsf{fb}^{-1}]$ Limit Model Reference ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ 11.2 TeV n = 2 36.7 1707.04147 ADD QBH ADD BH multijet 1910.08447 n = 6, $M_D = 3$ TeV, rot BH ≥3í 1512.02586 $k/\overline{M}_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 1.0$ $k/\overline{M}_{Pl} = 1.0$ RS1 $G_{KK} \rightarrow \gamma \gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ multi-channel 1 e, μ 36.1 139 1808.02380 2j/1J Bulk RS $G_{KK} \rightarrow WV$ 2004.14636 ≥1 b, ≥1J/2j Yes 1804.10823 2UED / RPP ≥2 b, ≥3 j Yes Tier (1,1), $\mathcal{B}(A^{(1,1)} \to tt) = 1$ 1803.09678 $1e, \mu$ 2 e. u 139 1903 06248 2 τ 36.1 139 139 139 Leptophobic $Z' \rightarrow bb$ 1805 00200 Leptophobic $Z' \rightarrow tt$ ≥1 b, ≥2 J 2005.05138 6.0 TeV 1906.05609 ATLAS-CONF-2021-025 SSM $W' \rightarrow \tau v$ 1 τ 139 139 139 139 SSM $W' \rightarrow tb$ HVT $W' \rightarrow WZ \rightarrow \ell \nu qq$ model B ≥1 b, ≥1 J ATLAS-CONF-2021-043 $g_V = 3$ 2004.14636 HVT $W' \rightarrow WZ \rightarrow \ell \nu \ell' \ell'$ model C 3 e, μ 2 j (VBF) $g_V c_H = 1, g_f = 0$ ATLAS-CONF-2022-005 $HVT W' \rightarrow WH \rightarrow \ell \nu bb \mod B$ 1 e. µ 1-2 b. 1-0 i W' mass $g_V = 3$ $g_V = 3$ 2207.00230 $Z' \rightarrow ZH \rightarrow \ell\ell/\nu\nu bb \text{ model B } 0,2 \text{ e, } \mu$ 139 $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$ LRSM $W_P \rightarrow \mu N_P$ 2μ 1904.12679 1703.09127 Clllqq 139 2006.12946 1.8 TeV 2.0 TeV 2.57 TeV Clambs 139 2105 13847 ≥1 e,µ 36.1 Axial-vector med. (Dirac DM) 2.1 TeV $g_q=0.25, g_\chi=1, m(\chi)=1 \text{ GeV}$ 2102.10874 $0e, \mu, \tau, \gamma$ Pseudo-scalar med. (Dirac DM) 376 GeV 2102.10874 Vector med. Z'-2HDM (Dirac DM) 2 b 139 3.1 TeV $\tan \beta = 1$, $g_z = 0.8$, m(y) = 100 GeV 2108.13391 Pseudo-scalar med. 2HDM+a $\tan \beta = 1$, $g_{\gamma} = 1$, $m(\chi) = 10$ GeV ATLAS-CONF-2021-036 2006.05872 ≥2 j ≥2 j Scalar LQ 2nd gen Scalar LQ 3rd gen 139 139 2006.05872 $\mathcal{B}(LQ_3^o \rightarrow b\tau) = 1$ 2108.07665 Scalar LQ 3rd gen Scalar LQ 3rd gen Scalar LQ 3rd gen $0 e, \mu \ge 2 j, \ge 2 b$ $\ge 2 e, \mu, \ge 1 \tau \ge 1 j, \ge 1 b$ $\mathcal{B}(LQ_3^o \rightarrow tv) = 1$ $\mathcal{B}(LQ_3^d \rightarrow tr) = 1$ $\mathcal{B}(LQ_3^d \rightarrow bv) = 1$ 2004 14060 139 2101.11582 $0 \ e, \mu, \ge 1 \ \tau \ 0 - 2 \ j, 2 \ b$ 2101.12527 Vector LQ 3rd gen $\mathcal{B}(LQ_3^V \to br) = 0.5$, Y-M coupl. 2108.07665 VLQ $TT \rightarrow Zt + X$ VLQ $BB \rightarrow Wt/Zb + X$ $2e/2\mu/\ge 3e, \mu \ge 1$ b, ≥ 1 j SU(2) doublet ATLAS-CONF-2021-024 SU(2) doublet 1808.02343 multi-channel VLQ $T_{5/3}T_{5/3}|T_{5/3} \rightarrow Wt +$ VLQ $T \rightarrow Ht/Zt$ 2(SS)/≥3 e,μ ≥1 b, ≥1 j 1.64 TeV 1.8 TeV $\mathcal{B}(T_{5/3} \to Wt) = 1$, $c(T_{5/3}Wt) =$ 1807 11883 ≥1 b, ≥3 i 139 SU(2) singlet, $\kappa_T = 0.5$ ATLAS-CONF-2021-040 1 e, µ $VLQ Y \rightarrow Wb$ ≥1 b, ≥1 j $\mathcal{B}(Y \to Wb)=1$, $c_R(Wb)=1$ 1812.07343 0 e.µ ≥2b. ≥1i, ≥1J SU(2) doublet, $\kappa_B = 0.3$ ATLAS-CONF-2021-018 VLQ $B \rightarrow Hb$ 139 139 SU(2) doublet ≥1 i multi-channel Excited quark $q^* \rightarrow qg$ 2 j 1 j 1 b, 1 j 139 only u^* and d^* , $\Lambda = m(q^*)$ 1910.08447 Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ 1γ 36.7 139 only u^* and d^* , $\Lambda = m(q^*$ 1709.10440 1910.0447 Excited lepton v 3 e. u. T 20.3 1411.2921 139 2202 02039 Type III Seesaw ≥2 j 2 i 910 GeV LRSM Majorana v $m(W_R) = 4.1 \text{ TeV}, g_L = g_R$ 1809.11105 2 u 36.1 2.3,4 e, μ (SS) various Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ 139 DY production 2101.11961 Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ 2.3.4 e.u (SS) 139 DY production ATI AS-CONF-2022-010 Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles 20.3 DY production, $\mathcal{B}(H^{\pm\pm} \rightarrow \ell \tau) = 1$ 3 e, µ, τ ATI AS-CONE-2022-034 139 DY production, |a| = 5e 10-Mass scale [TeV]

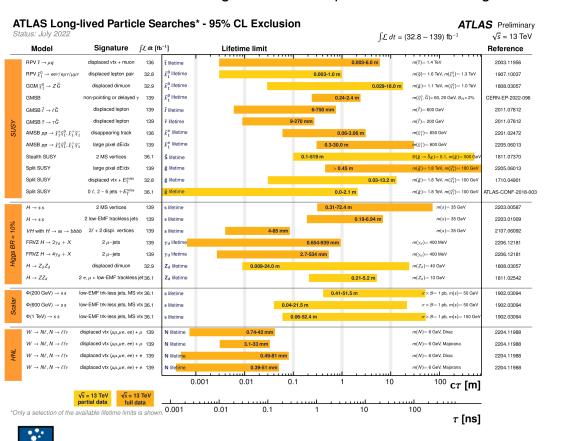

[†]Small-radius (large-radius) jets are denoted by the letter j (J)

Leptoquark pair production, LQ \rightarrow te or t μ mass reach \sim 1.6 TeV (scalar LQ), \sim 2 TeV (vector LQ)

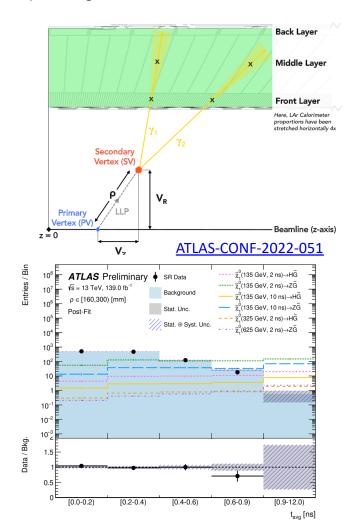
ATLAS-CONF-2022-052

^{*}Only a selection of the available mass limits on new states or phenomena is shown

Searches for Long-lived particles

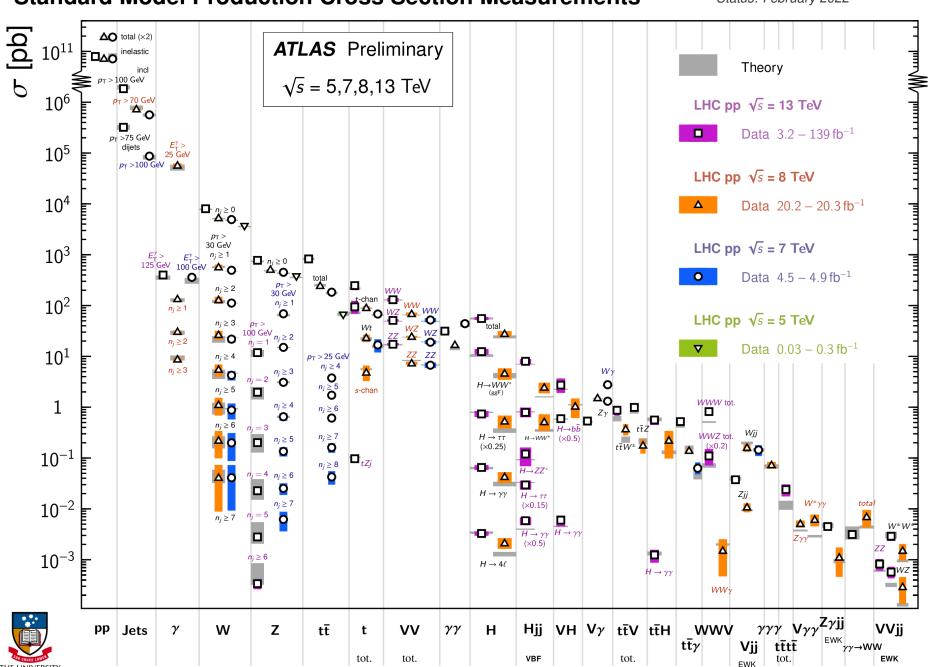


Large program to search for long-lived particles exploiting a comprehensive set signatures:


displaced vertices in inner tracking detector

of ADFLAIDF

- lepton not consistent with originating from pp vertex
- · decay in the calorimeter or muon spectrometer
- dE/dx measurement for charged metastable particles + multi charge


Search for H or Z produced far from interaction point, exploiting shower pointing and time measurements

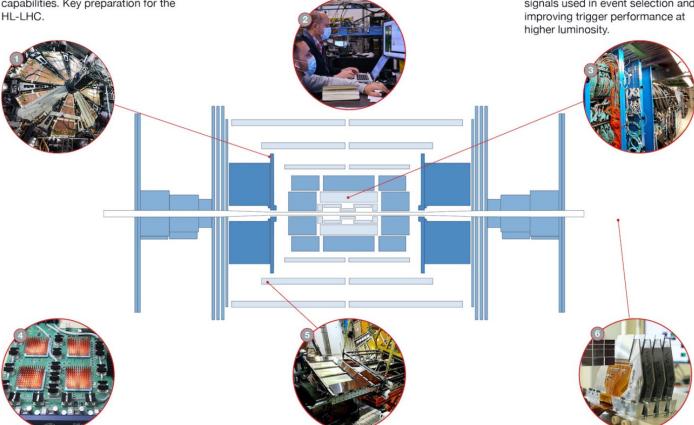
Standard Model Production Cross Section Measurements

of ADFI AIDF

Status: February 2022

ATLAS for Run3

MUON NEW SMALL WHEELS (NSW)


Installed new muon detectors with precision tracking and muon selection capabilities. Key preparation for the HL-LHC.

NEW READOUT SYSTEM FOR THE NSWs

The NSW system includes two million micromega readout channels and 350 000 small strip thin-gap chambers (sTGC) electronic readout channels.

LIQUID ARGON **CALORIMETER**

New electronics boards installed. increasing the granularity of signals used in event selection and

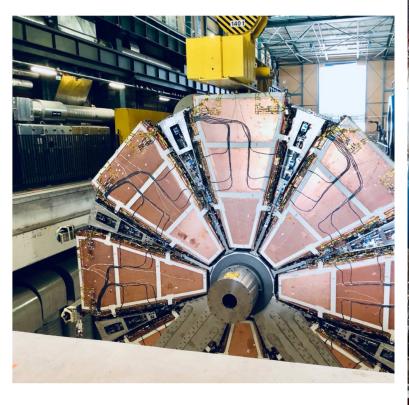
TRIGGER AND DATA **ACQUISITION SYSTEM (TDAQ)**

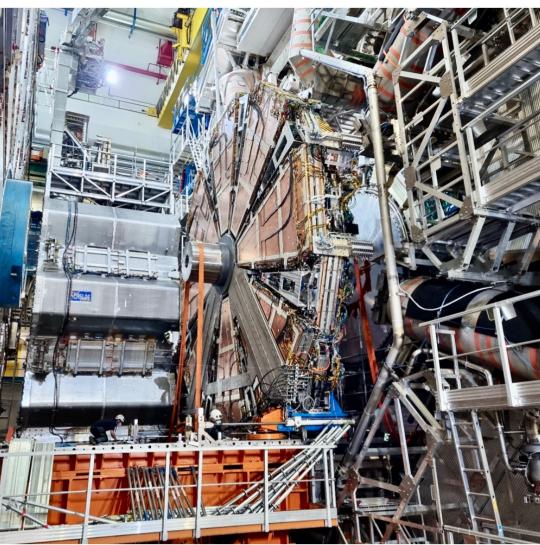
Upgraded hardware and software allowing the trigger to spot a wider range of collision events while maintaining the same acceptance rate.

NEW MUON CHAMBERS IN THE CENTRE **OF ATLAS**

Installed small monitored drift tube (sMDT) detectors alongside a new generation of resistive plate chamber (RPC) detectors, extending the trigger coverage in preparation for the HL-LHC.

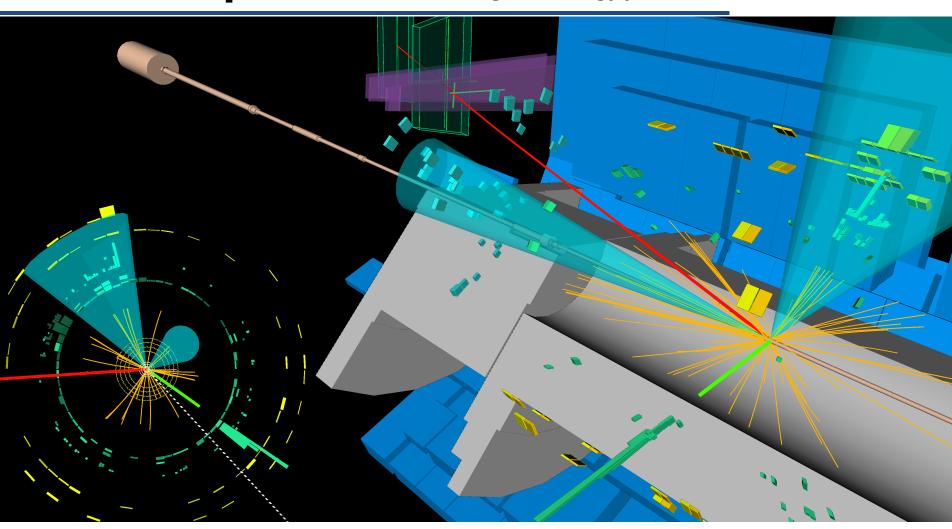
ATLAS FORWARD PROTON (AFP)


Re-designed AFP time-of-flight detector, allowing insertion into the LHC beamline with a new "out-ofvacuum" solution.



New Small Wheel

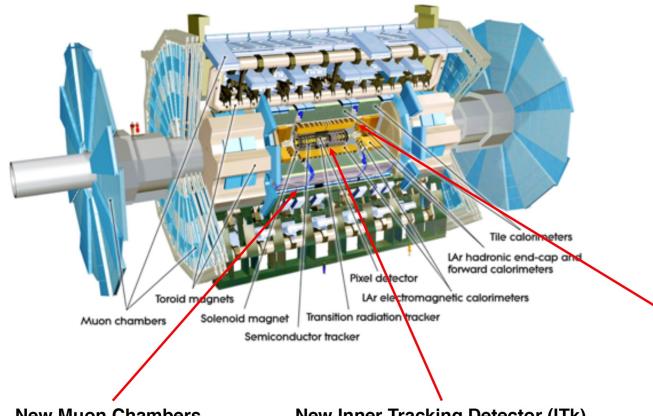
For Muon triggering and measurement



NSW being positioned

Run 3 top

An image of the production of pairs of **the most massive fundamental particle in nature** produced in the **highest energy particle collisions ever** made!



Top quark pair-production candidate, recorded on July 18th, 2022: This event contains, 1 muon candidate (red line), 1 electron candidate (green line and deposit), 2 b-tagged jet candidates (cyan cones).

ATLAS Phase-II Upgrade for HL-LHC

New Muon Chambers

New Inner Tracking Detector (ITk)

Inner barrel region with new RPC and sMDT detectors

All silicon, up to $|\eta| = 4$

Detailed scope described in 7 TDRs approved by the CERN Research Board in 2017, 2018, 2020

Upgraded Trigger and Data Acquisition system

Level-0 Trigger at 1 MHz Improved High-Level Trigger (150 kHz full-scan tracking)

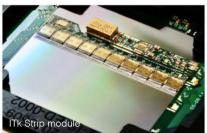
Electronics Upgrades

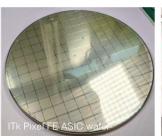
LAr Calorimeter Tile Calorimeter Muon system

High Granularity Timing Detector (HGTD)

Forward region (2.4 < $|\eta|$ < 4.0) Low-Gain Avalanche Detectors (LGAD) with 30 ps track resolution

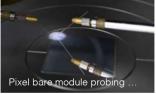
Additional small upgrades


Luminosity detectors (1% precision goal) **HL-ZDC**



The Future is Now!!!

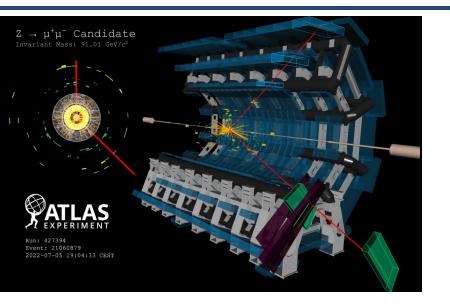


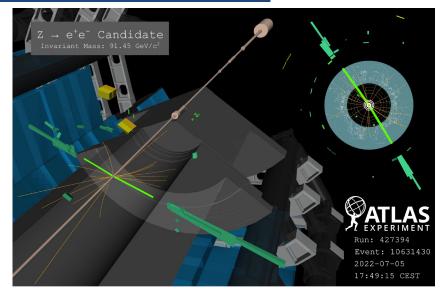


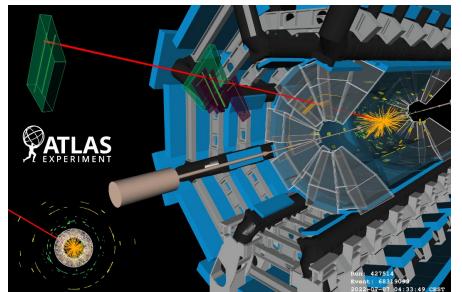
Summary

- An enormous body of work in recent times from ATLAS
- Results presented herein touch on just a few final states
- Run 3 has commenced and we have our first taste of 13.6 TeV!
- Ready for the next big discovery ©

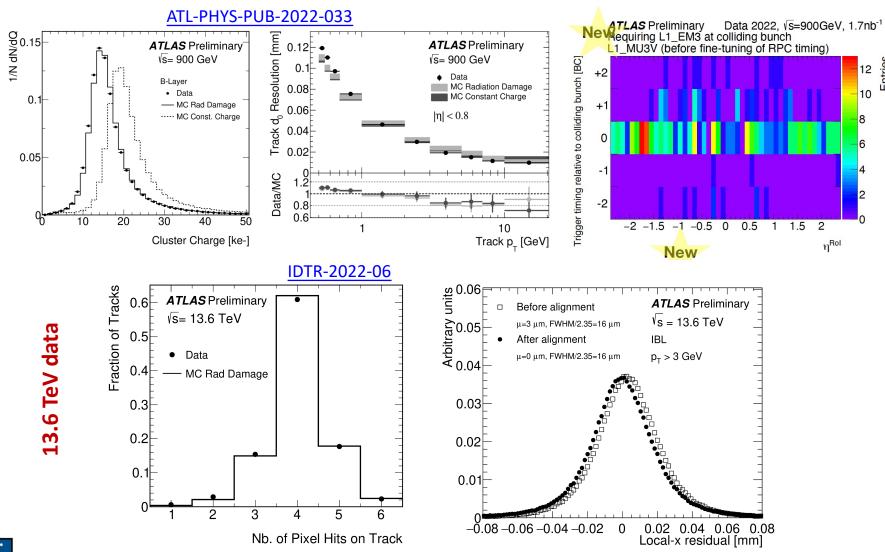
- All ATLAS Physics Analysis Public Results appear at
 - https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ResultswithData2018
- ATLAS Physics Briefings at
 - https://atlas.cern/updates/briefing




Backup

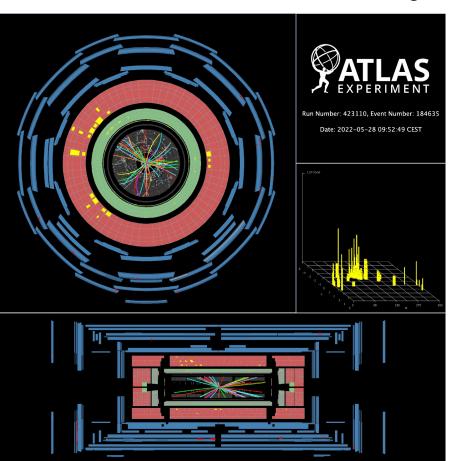


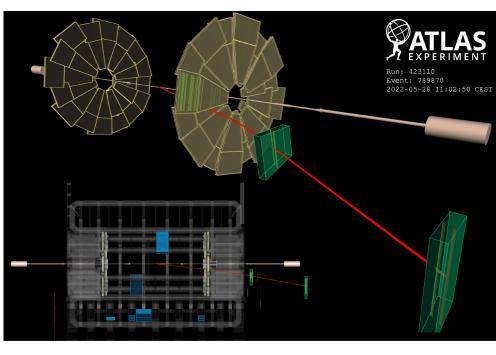
13.6 TeV pp collision data – Run3


started July 5th

900 GeV data

First look at detector performance with 2022 collision data

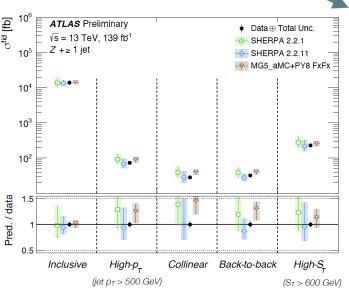


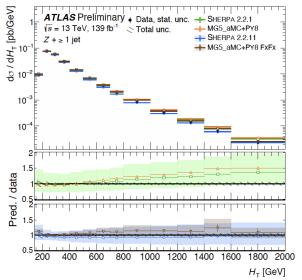


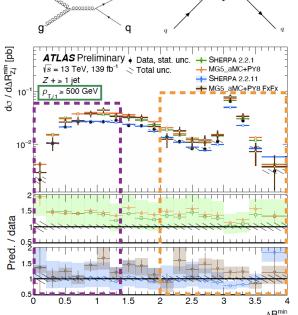
900 GeV pp collision data

recorded in May during stable-beam periods provided by the LHC during its commissioning

Z-boson + jets production


 g \swarrow back-to-back z


• Run 2: ~8 x 109 Z bosons produced


$$\mathcal{L}_{\text{SM}} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + i\,\overline{\psi}\mathcal{D}\psi + \psi_i\,y_{ij}\psi_j\phi + \text{hc} + |D_\mu\phi|^2 - V(\phi)$$

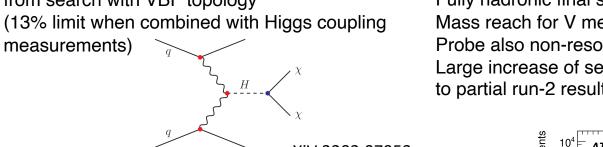
- Test SM in events w/ $Z(\rightarrow ee, \mu\mu)$ and \geq 1 jet with $p_{\rm T} > 100$ GeV
 - SM predictions w/ event generators up to NLO QCD + NLO EW
 - Measure cross section in more extreme phase space:

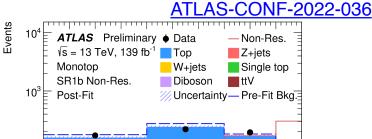
collinear vs. back-to-back jet emission, high jet p_T or high sum p_T

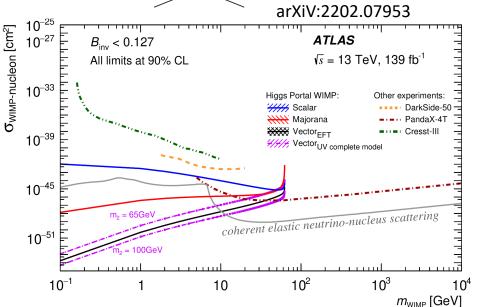
 Latest SHERPA 2.2.11 and MG5_aMC + Py8 (FxFx) provide improved modeling esp. in collinear region and at high p_T

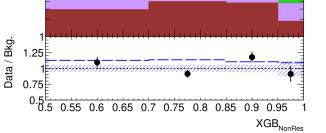
Searches motivated by Dark Matter

Search for H→ **Dark matter (invisible)**

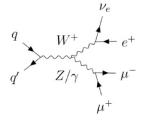

Searches for mono-top production


BR(H \to invisible) < 14.5% (obs) (10.3% exp.) from search with VBF topology

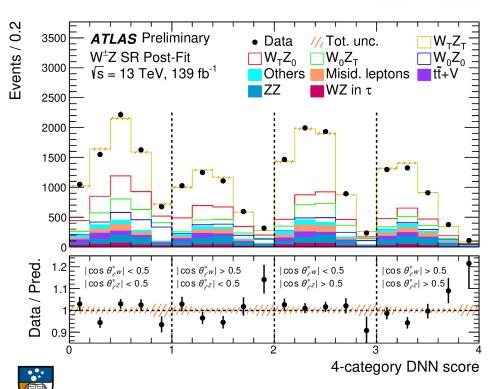

Part of wide mono-X searches (X=SM particles) + MET Fully hadronic final state Mass reach for V mediator ~ 2.5 TeV Probe also non-resonant model Large increase of sensitivity compared to partial run-2 result


 10^{2}

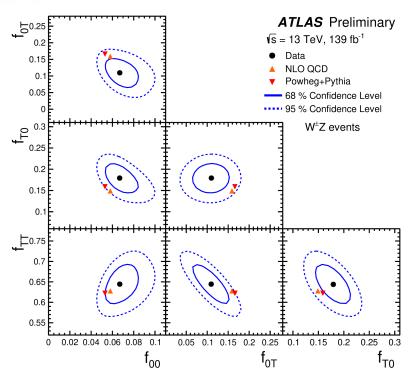
10



Precision studies of rare SM processes: polarization in WZ production



Study W and Z polarisation in WZ events reconstructed in 3I+v decay mode Joint measurement of W and Z polarisation fraction, using deep neural network

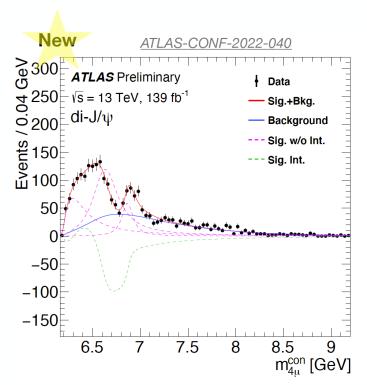


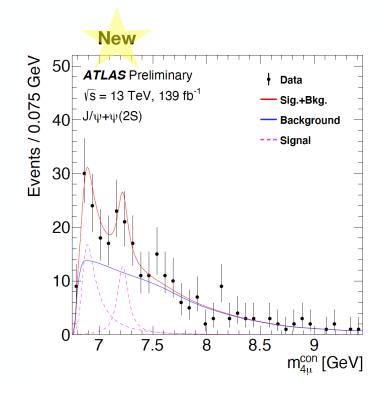
First observation of simultaneous production of longitudinally polarised W and Z bosons with 7.1 o

$$f_{00} = 0.067 \pm 0.010$$

of ADFI AIDF

Observation of di-Charmonium excess in the 4-muon final state



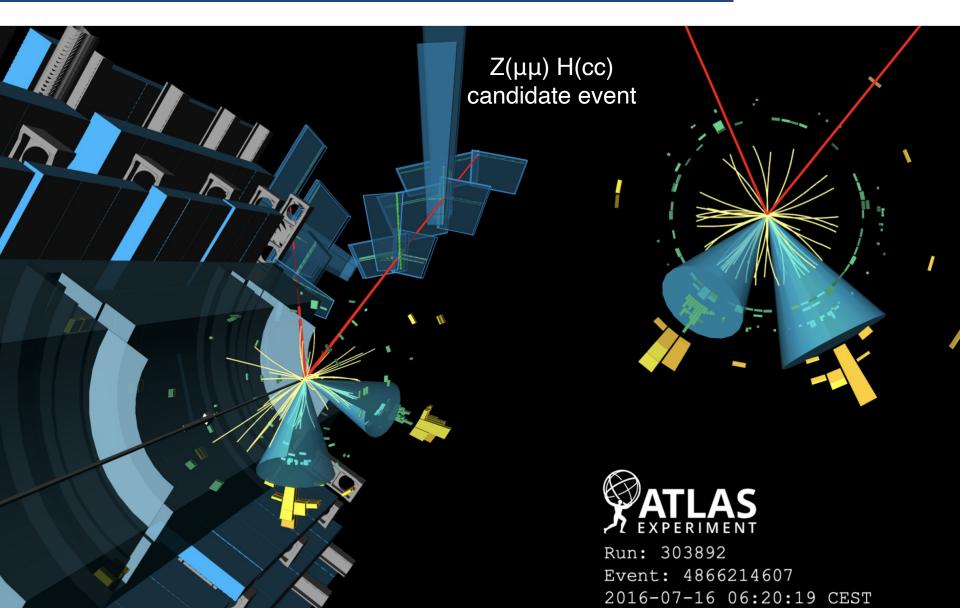

Motivated by Tetraquark

$$T_{cc\bar{c}\bar{c}} \to J/\psi \ J/\psi \to 4\mu$$

 $T_{cc\bar{c}\bar{c}} \to J/\psi \ \psi(2S) \to 4\mu$

Background from single parton and double parton scattering

See large structures near threshold as well as narrow resonance at 6.9 GeV, confirming LHCb observation



Higgs to 2nd generation

Higgs to 2nd generation quarks

W/Z

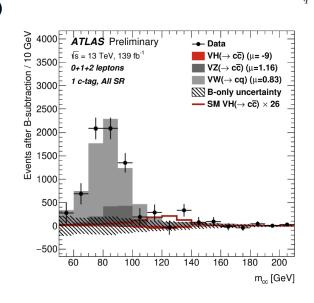
- Test of Yukawa interactions w/ 2nd generation fermions: evidence for leptons only
- $\mathcal{L}_{SM} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + i\,\overline{\psi}\mathcal{D}\psi + \psi_i\,y_{ij}\psi_j\phi + hc + |D_\mu\phi|^2 V(\phi)$

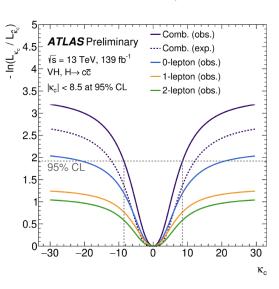
VH

W/Z

- Search for H-> cc in associated $V(\ell\ell,\ell\nu,\nu\nu)H$ production
- · Dedicated charm tagging
- Results:

 $VW(\rightarrow cq)$ with $3.8 \sigma (4.6 \sigma)$ obs (exp)


 $VZ(\rightarrow cc)$ with $2.6 \sigma (2.2 \sigma)$ obs (exp)


$$VH(\rightarrow cc) < 26 (31) \sigma_{\rm SM} \text{ obs (exp)}$$

Charm Yukawa modifier

$$|\kappa_c| < 8.5 \, (12.4) \, \text{obs (exp)}$$

first direct constraint

Higgs Couplings to τ leptons

(Stat., Syst.)

+0.31 -0.23

ATLAS Preliminary $H \rightarrow \tau \tau$ $\sqrt{s} = 13 \text{ TeV}$, 139 fb⁻¹

1.53 +1.56

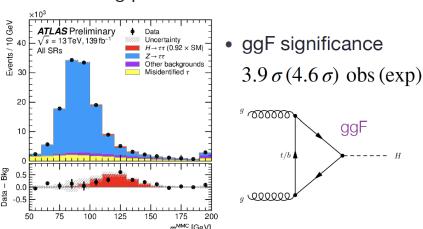
0.95 ^{+0.59}_{-0.57}

0.95 ^{+0.34}_{-0.27}

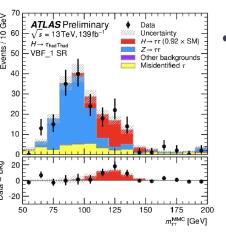
• Run 2: ~8 x 106 Higgs bosons produced

 $\mathcal{L}_{SM} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + i\,\overline{\psi}\mathcal{D}\psi + \psi_i\,y_{ij}\psi_j\phi + hc + |D_\mu\phi|^2 - V(\phi)$

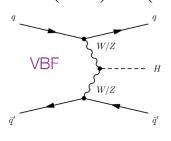
Total ─ Stat.


(all had.) ttH

VΗ

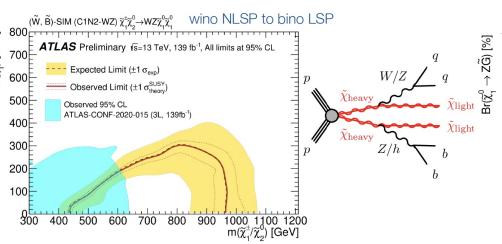

ggF

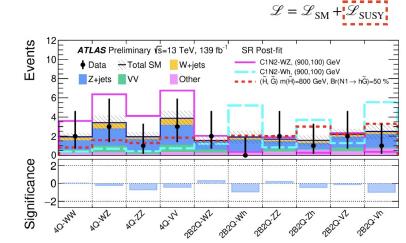
VBF

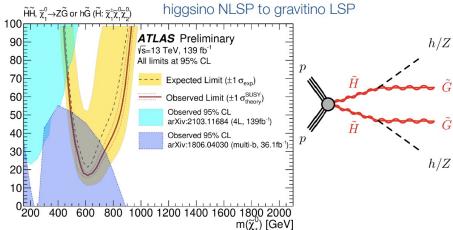

- $\mathcal{B}(H \to \tau\tau) = 6.3 \%$ —> test Yukawa interactions with leptons
- Expt. challenge: 2-4 neutrinos in final state, poor mass resolution
- Multiple BDTs used to suppress $Z \to \tau \tau$ and $t\bar{t}$ background, and categorize event purity for each production mechanism
- Dominant $Z \to \tau \tau$ background from MC, controlled with $Z \to \ell \ell$ data via kinematic embedding procedure

factor of 2.5 improvement over 36 fb⁻¹ analysis in both stat and syst uncert.

Comb. 0.92 $^{+0.13}_{-0.12}$ $(^{+0.07}_{-0.07}$ $^{+0.12}_{-0.10}$) $(\sigma \times B)^{meas}$ / $(\sigma \times B)^{sm}$ • VBF significance $5.3 \ \sigma \ (6.2 \ \sigma)$ obs (exp)






SUSY Electroweak

- **Electroweakinos** with mass ~0.1—1 TeV well motivated:
 - Neutralino LSP as dark matter, naturalness problem, muon g-2 anomaly
- Target mass splitting between NLSP and LSP > 400 GeV
- First SUSY EW search with fully hadronic final state using large-R jets tagged as W/Z or H jets
- Strongest limits at high electroweakino mass

