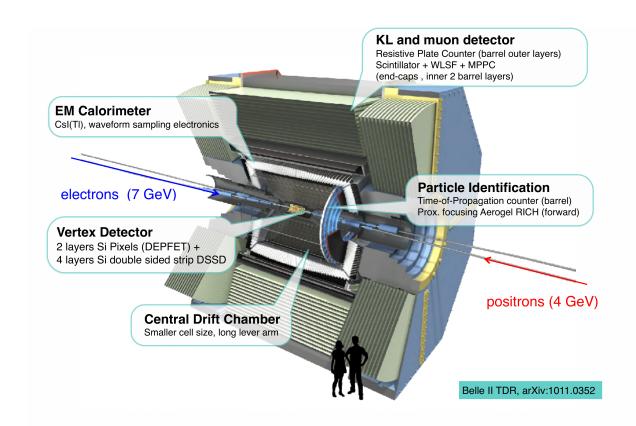


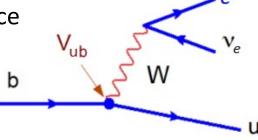
Measuring $|V_{ub}|$ at Belle II with Semileptonic $B \rightarrow \pi e^+ v_e$ Decays


Nadia Toutounji, Kevin Varvell

24th Australian Institute of Physics Congress

15.12.22

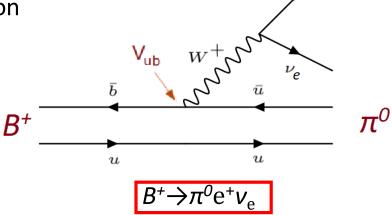
Outline

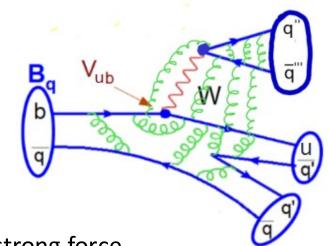

- Motivation
- Reconstruction methods for semileptonic B-decays
- Recent results on $B \rightarrow \pi e^+ v_e$
- $|V_{ub}|$ extraction
- Summary and prospects

The $b \rightarrow u$ Quark Transition and V_{ub}

 The CKM-matrix describes the coupling constants for quark transitions mediated by the weak force

e.g. $b \rightarrow u$ with coupling constant V_{ub}

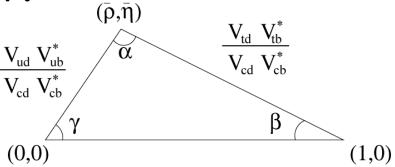



$$V_{\text{CKM}} = \begin{pmatrix} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix}$$

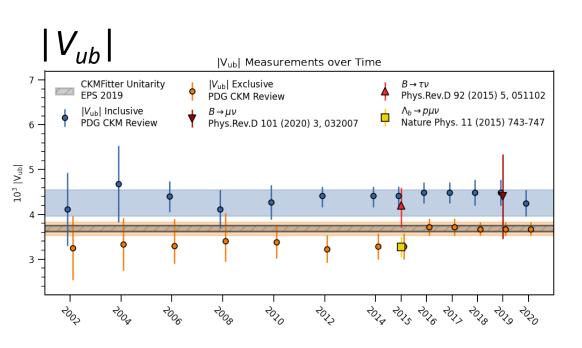
The magnitude of V_{ub} can be measured through particle

decays involving the $b \rightarrow u$ transition

e.g. $B^0 \rightarrow \pi^- e^+ v_e$ and $B^+ \rightarrow \pi^0 e^+ v_e$



In reality, particle decay is complicated by interactions between quarks via the strong force


Why Measure $|V_{ub}|$ at Belle II?

 $V_{\text{CKM}} = \begin{pmatrix} V_{\text{ud}} & V_{\text{us}} & V_{\text{ub}} \\ V_{\text{cd}} & V_{\text{cs}} & V_{\text{cb}} \\ V_{\text{td}} & V_{\text{ts}} & V_{\text{tb}} \end{pmatrix}$

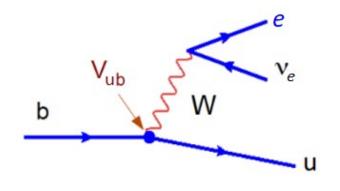
• Precision measurements of the magnitudes of CKM matrix elements are key for testing unitarity condition, particularly for $|V_{ub}|$, which forms a dominant uncertainty

$$V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$$

• Existing tension between $|V_{ub}|$ from exclusive vs. inclusive approaches of order ~3 σ

Exclusive:

A single final state e.g. $B^0 \rightarrow \pi^- e^+ v_e$


Inclusive:

All final states considered e.g. $B^0 \rightarrow X_u^- e^+ v_e$

 Projected Belle II dataset will be significant in resolving this tension and improving precision

Exclusive $|V_{ub}|$ at Belle II: $B \rightarrow \pi e^+ v_e$

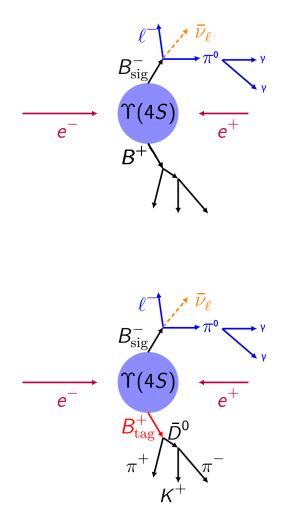
• Exclusive semileptonic decays including $B \rightarrow \pi e^+ v_e$ are golden modes for measurements of $|V_{ub}|$:

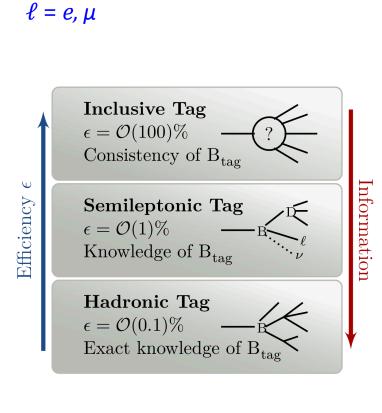
$$p_W^2 = q^2$$

$$\left| \frac{d\Gamma(B^0 \to \pi^- \mathcal{C}^+ \nu)}{dq^2} \right| = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 |p_{\pi}|^3 |f_+(q^2)|^2$$

Experiment:

Measure differential decay rate as a function of the square of the 4-momentum transfer to the leptonic system, q^2

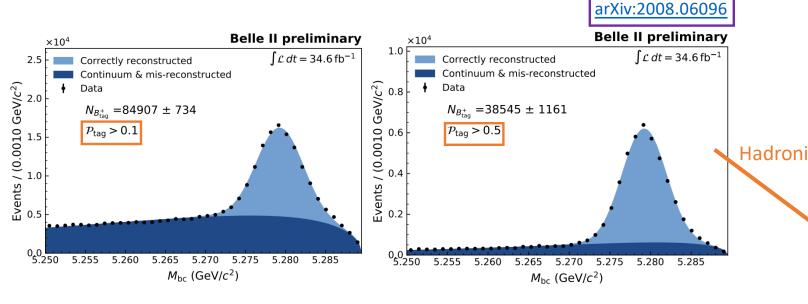



Theory:

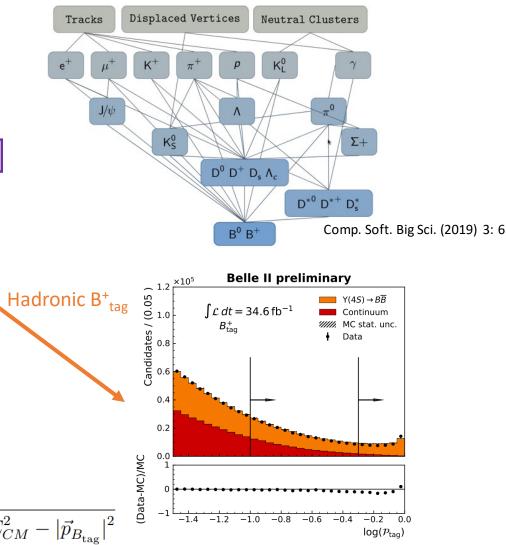
Description of the form factors including suitable parameterisation

Reconstruction Methods for Exclusive Semi-leptonic Decays at Belle II

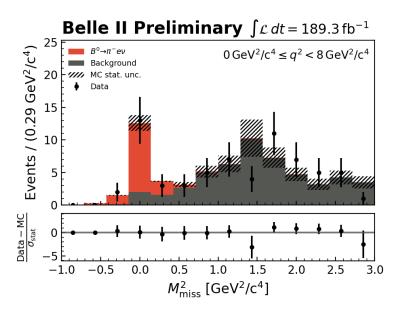
- Untagged(inclusive tagged) approaches:
 - Reconstruct signal decay of interest
 - All remaining particles in event assigned to inclusive tag
 - Highly efficient but low purity, selection optimisation key
- Tagged approaches:
 - Reconstruct both signal B decay and other B-meson in event (tag)
 - Tag can be hadronic or semi-leptonic
 - Unique advantage of hadronic tagging for semi-leptonic signal decays → missing neutrino momentum can be determined

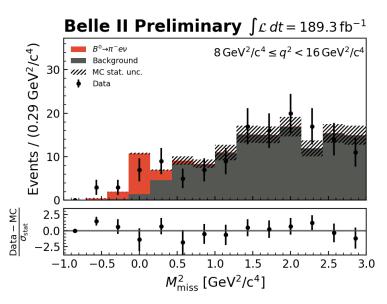


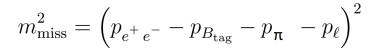
missing momentum

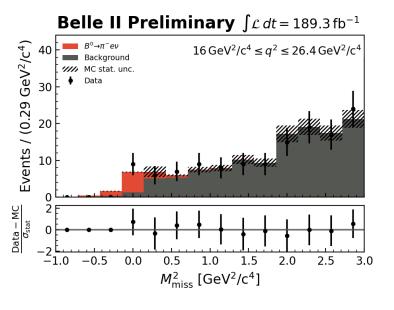

Tagged Analysis at Belle II: Full Event Interpretation

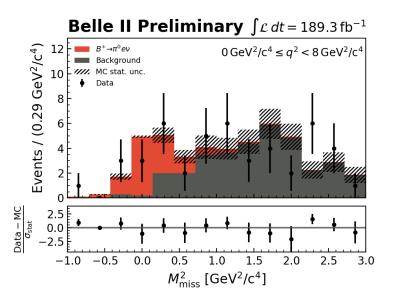
- Multi-variate analysis technique for reconstructing *B*-tags via over 4000 unique decay chains
- Includes both hadronic and semi-leptonic tagging functionality

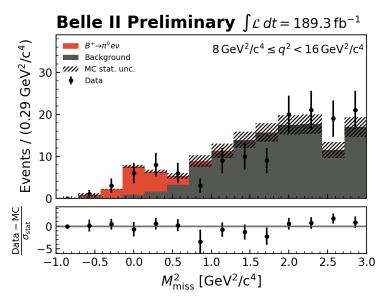

Selection on final classifier output \mathcal{P}_{tag} provides good signal-background discrimination

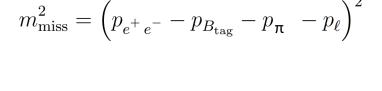

$$M_{\rm bc} = \sqrt{E_{CM}^2 - |\vec{p}_{B_{\rm tag}}|^2}$$

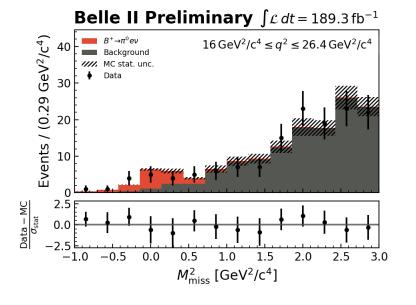

arXiv:2206.08102


- Reconstruct signal B-meson recoiling against hadronic tag from the FEI
- Selected tag must satisfy minimum threshold on FEI classifier output
- Events with tracks remaining after Υ(4S) reconstruction excluded
- Signal extraction via fitting distribution of m_{miss}^2 to templates generated from simulation (Monte Carlo) for 3 separate q^2 regions








arXiv:2206.08102

- Reconstruct signal B-meson recoiling against hadronic tag from the FEI
- Selected tag must satisfy minimum threshold on FEI classifier output
- Events with tracks remaining after Υ(4S) reconstruction excluded
- Signal extraction via fitting distribution of m_{miss}^2 to templates generated from simulation (Monte Carlo) for 3 separate q^2 regions

$$B^+ \rightarrow \pi^0 e^+ v_e$$

Nadia Toutounji: Measuring $|V_{uh}|$ at Belle II with semileptonic $B \rightarrow \pi e^+ v_e$ decays

arXiv:2206.08102

Measuring the branching fractions of

$$B \rightarrow \pi e^+ v_e$$

15.12.2022

Using unfolded signal yields in data, we calculate the partial branching fractions in each q^2 bin:

N_{sig.i}: Fitted signal yields from data f_{+0} : Ratio of BFs for $\Upsilon(4S) \to B^+ B^- / B^0 \bar{B}^0$

CF_{FEI}: FEI calibration factor

 SF_{π^0} : Scaling factor for π^0 efficiency

 $N_{B\bar{B}}$: Number of $B\bar{B}$ pairs

 ϵ_i : Signal reconstruction efficiencies

$$\Delta \mathcal{B}_{i}(B^{0} \to \pi^{-}e^{+}\nu_{e}) = \frac{N_{\mathrm{sig},i}^{\mathrm{data}}(1 + f_{+0})}{2 \times \mathrm{CF}_{\mathrm{FEI}} \times N_{B\bar{B}} \times \epsilon_{i}}, \quad \Delta \mathcal{B}_{i}(B^{+} \to \pi^{0}e^{+}\nu_{e}) = \frac{N_{\mathrm{sig},i}^{\mathrm{data}}(1 + f_{+0})}{2 \times \mathrm{CF}_{\mathrm{FEI}} \times N_{B\bar{B}} \times \mathrm{SF}_{\pi^{0}} \times f_{+0} \times \epsilon_{i}}$$

We sum these to obtain the total branching fractions:

$$\mathcal{B}_i(B^0 \to \pi^- e^+ \nu_e) = (1.43 \pm 0.27(\text{stat}) \pm 0.07(\text{syst})) \times 10^{-4}$$

 $\mathcal{B}_i(B^+ \to \pi^0 e^+ \nu_e) = (8.33 \pm 1.67(\text{stat}) \pm 0.55(\text{syst})) \times 10^{-5}$

World averages:

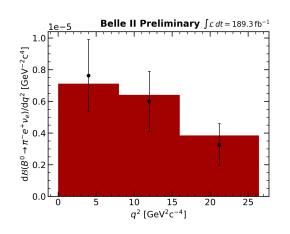
$$(1.50 \pm 0.06) \times 10^{-4}$$

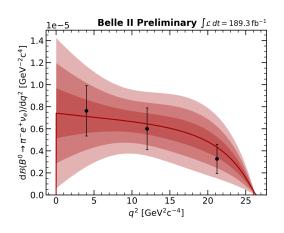
 $(7.80 \pm 0.27) \times 10^{-5}$

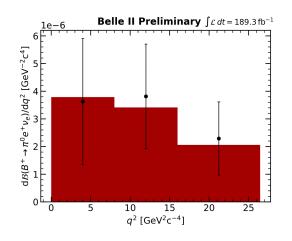
$$(7.80 \pm 0.27) \times 10^{-5}$$

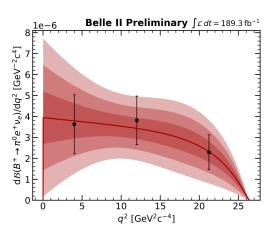
Extracting $|V_{ub}|$

- Use a set of predictions for the partial branching fractions based on lattice quantum chromodynamics (LQCD) – (Fermilab, MILC collaborations)
- Use Bourrely, Caprini, and Lellouch (BCL) parameterisation for the form factors:

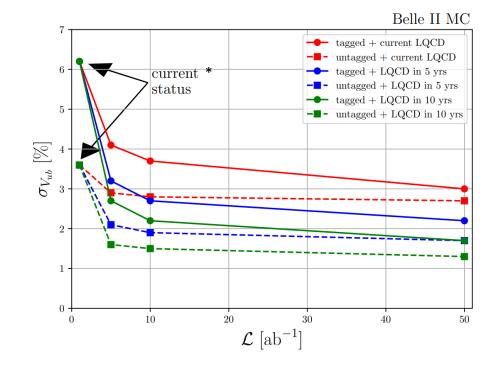

Phys. Rev. D 79, 013008


$$f_{+}(q^{2}) = \frac{1}{1 - q^{2}/m_{B^{*}}^{2}} \sum_{k=0}^{K-1} b_{k} \left[z^{k} - (-1)^{k-K} \frac{k}{K} z^{K} \right]$$


Perform simultaneous χ² fit to the LQCD predictions (red histograms), and both sets of measured partial branching fractions (data points)


$$|V_{ub}| = (3.88 \pm 0.45) \times 10^{-3}$$

$$\frac{d\Gamma(B^0 \to \pi^- \ell^+ \nu)}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 |p_{\pi}|^3 |f_+(q^2)|^2$$



Prospects for $|V_{ub}|$ with Exclusive Semi-leptonic Decays

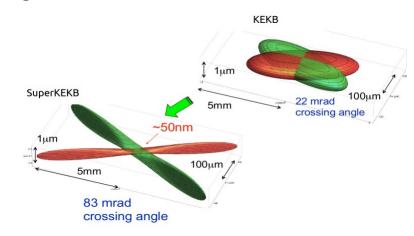
arXiv:1808.10567

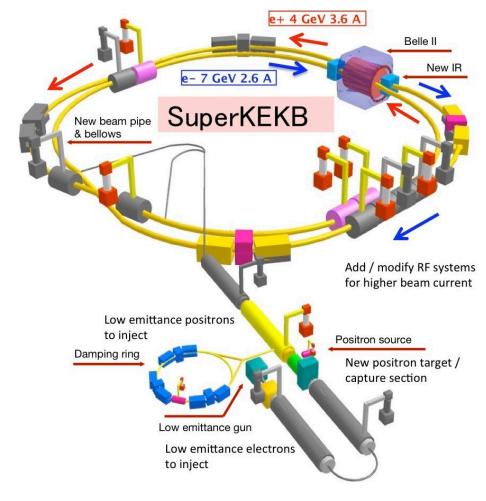
- This analysis: \approx 12% precision on $|V_{ub}|$ using hadronic tagged approach
- Current world average at ≈6% precision
- Belle II simulation: Potential to reduce this to ≈2% with full expected Belle II dataset, alongside projected reductions in lattice QCD errors
- Lowest projected error via untagged approach, at ≈ 1.5%

^{* &#}x27;current status' on plot refers to 1 ab-1

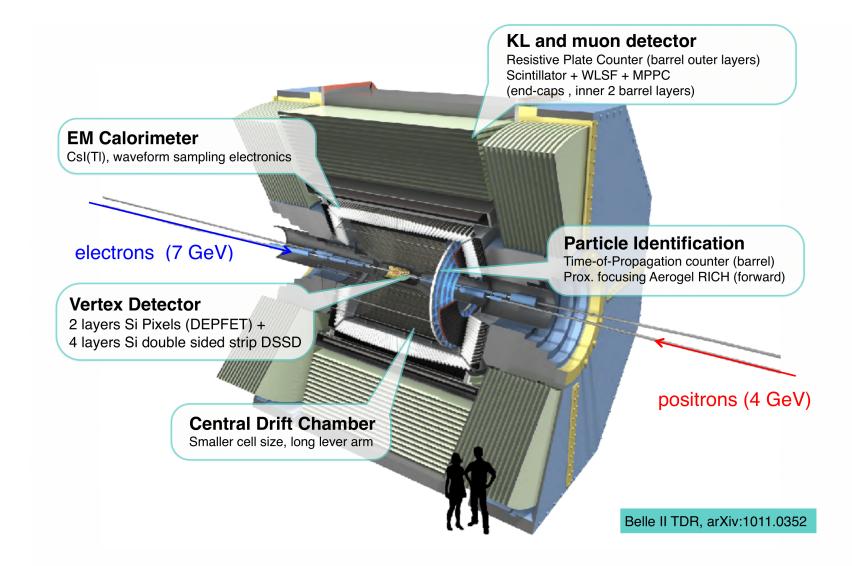
Summary

- First Belle II measurement of $|V_{ub}|$ from $B \rightarrow \pi e^+ v_e$ decays using a hadronic tagged approach
- Signal extracted from m_{miss}^2 distribution, with partial branching fractions evaluated in three bins of q^2
- With large projected dataset and improved detector, Belle II aims to increase precision of this
 measurement and resolve tension between inclusive and exclusive results
- Currently updating results with larger dataset (nearly double the current size), including decays involving muons

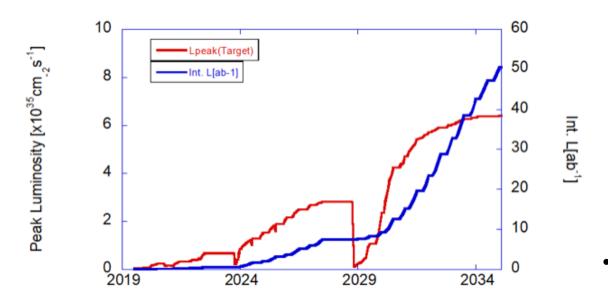


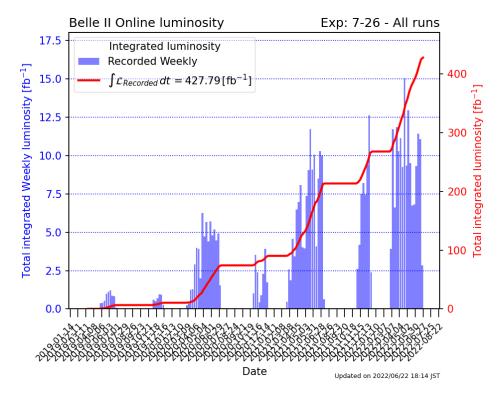

The Belle II Collaboration

Back-up


SuperKEKB

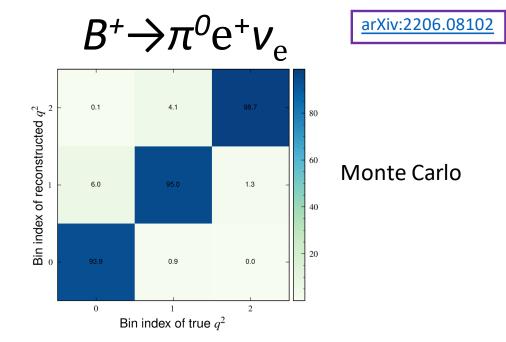
- e^+e^- collider with $\sqrt{s} = 10.58$ GeV, the Y(4S) resonance
- Peak luminosity of 3.1 x 10³⁴/cm²/sec reached in June of this year – new world record!
 - ~50% increase from KEKB record luminosity
- Record luminosity largely due to new nanobeam scheme and doubling of beam currents

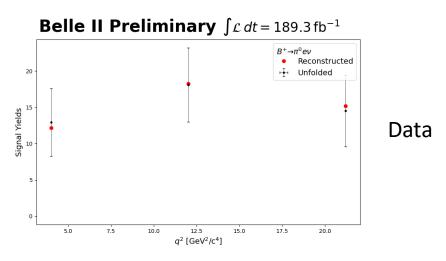



The Belle II Detector

Belle II Data-taking: Status and Outlook

Collected over 420 fb⁻¹ of data before first long shutdown

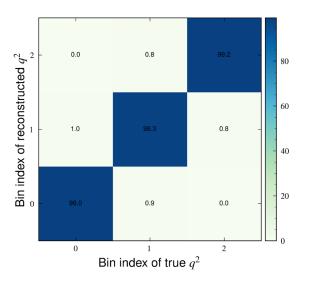



Long-term: 50 ab⁻¹ (50 x Belle dataset) by mid 2030s

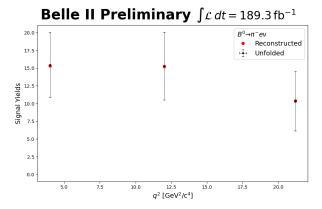
q^2 Unfolding

- Due to detector resolution effects, some events may be reconstructed in a different q^2 bin than they belong
- We can use Monte Carlo (MC) to investigate the extent to which this occurs as we have access to the underlying truth of the event

- Derive a set of corrections using MC to correct the measured signal yields in each q^2 bin – 'unfold' the q^2 distribution
- Effect of unfolding is minimal at low statistics


q² Unfolding

- Due to detector resolution effects, some events may be reconstructed in a different q^2 bin than they belong
- We can use Monte Carlo (MC) to investigate the extent to which this occurs as we have access to the underlying truth of the event


- Derive a set of corrections using MC to correct the measured signal yields in each q^2 bin – 'unfold' the q^2 distribution
- Effect of unfolding is minimal at low statistics

arXiv:2206.08102

Monte Carlo

Data

Partial Branching Fractions

q^2 bin	Signal efficiency	Unfolded signal yield	$\Delta \mathcal{B}$
		$B^0 \to \pi^- e^+ \nu_e$	
$0 \le q^2 < 8 \text{ GeV}^2$	$(0.189 \pm 0.002)\%$	15.5 ± 4.6	$(0.61 \pm 0.18(\text{stat}) \pm 0.03(\text{syst})) \times 10^{-4}$
$8 \le q^2 < 16 \text{ GeV}^2$	$(0.239 \pm 0.003)\%$	15.3 ± 4.8	$(0.48\pm0.15({\rm stat})\pm0.02({\rm syst}))\times\!10^{-4}$
$16 \le q^2 \le 26.4 \text{ GeV}^2$	$(0.229 \pm 0.003)\%$	10.3 ± 4.2	$(0.34 \pm 0.14 ({\rm stat}) \pm 0.02 ({\rm syst})) \times \! 10^{-4}$
Sum	_	41.1 ± 7.8	$(1.43 \pm 0.27 ({\rm stat}) \pm 0.07 ({\rm syst})) \times \! 10^{-4}$
Fit over full q^2 range	$(0.217 \pm 0.002)\%$	42.0 ± 7.9	$(1.45 \pm 0.27 ({\rm stat}) \pm 0.07 ({\rm syst})) \times 10^{-4}$
World average [2]	_	_	$(1.50 \pm 0.06) \times 10^{-4}$

q^2 bin	Signal efficiency	Unfolded signal yield	$\Delta \mathcal{B}$
		$B^+ \to \pi^0 e^+ \nu_e$	
$0 \le q^2 < 8 \text{ GeV}^2$	$(0.329 \pm 0.004)\%$	12.9 ± 4.7	$(2.90 \pm 1.12(\text{stat}) \pm 0.19(\text{syst})) \times 10^{-5}$
$8 \le q^2 < 16 \text{ GeV}^2$	$(0.439 \pm 0.005)\%$	18.1 ± 5.1	$(3.05 \pm 0.91(\text{stat}) \pm 0.20(\text{syst})) \times 10^{-5}$
$16 \le q^2 \le 26.4 \text{ GeV}^2$	$(0.451 \pm 0.006)\%$	14.5 ± 4.9	$(2.38 \pm 0.85(\text{stat}) \pm 0.16(\text{syst})) \times 10^{-5}$
Sum	_	45.5 ± 8.5	$(8.33 \pm 1.67(\text{stat}) \pm 0.55(\text{syst})) \times 10^{-5}$
Fit over full q^2 range	$(0.402 \pm 0.003)\%$	43.9 ± 8.3	$(8.06 \pm 1.62(\text{stat}) \pm 0.53(\text{syst})) \times 10^{-5}$
World average [2]	_	_	$(7.80 \pm 0.27) \times 10^{-5}$

Systematics

Source	% of				% of		
		$\mathcal{B}(B^0 o \pi^-)$	$e^+\nu_e)$	$\mathcal{B}(B^+\to\pi^0e^+\nu_e)$			
q^2 bin index	1	2	3	1	2	3	
$N_{Bar{B}}$				2.9			
f_{+0}				1.2			
FEI calibration		3.2			3.1		
Tracking		0.6		0.3			
π^0 efficiency		_		4.8			
Signal efficiency ϵ	1.3	1.2	1.4	1.3	1.2	1.3	
Electron ID	1.0	0.4	0.4	1.0	0.5	0.5	
Pion ID	0.4	0.4	0.4		_		
Total	4.8	4.7	4.8	6.7	6.7	6.7	
Stat. uncertainty	29.5	31.3	41.2	38.6	29.8	35.7	