NUCLEAR LANDSCAPE EXPLORED

WITH ELECTRIC MONOPOLE,

 EO TRANSITIONSElectric monopole, EO transitions are unique to nuclei; they are not observed in any other manifestations of matter.

Tibor Kibédi

Department of Nuclear Physics and Accelerator Applications
Australian
National
University
Research School of Physics, Australian National university

Electron spectroscopy and nuclei

We study nuclei by observing energy changes, notably by:
Changes in particle energies - inelastic scattering of a monoenergetic beam by a target
Emitted energies of radiations from radioactive decay or a reaction

Electron spectroscopy and nuclei

We study nuclei by observing energy changes, notably by:
\square Changes in particle energies - inelastic scattering of a monoenergetic beam by a target
Emitted energies of radiations from radioactive decay or a reaction
γ-rays $-\gamma$-ray spectroscopy
Talks by AJ Mitchell (MO), Martha Reece (TUE),
Andrew Stuchbery (FRI) and Ben Coombes FRI)

Electron spectroscopy and nuclei

We study nuclei by observing energy changes, notably by:
\square Changes in particle energies - inelastic scattering of a monoenergetic beam by a target
Emitted energies of radiations from radioactive decay or a reaction
γ-rays $-\gamma$-ray spectroscopy

Conversion electrons - ICE spectroscopy

Electron spectroscopy and nuclei

We study nuclei by observing energy changes, notably by:
Changes in particle energies - inelastic scattering of a monoenergetic beam by a target
Emitted energies of radiations from radioactive decay or a reaction
γ-rays $-\gamma$-ray spectroscopy

Electron spectroscopy and nuclei

We study nuclei by observing energy changes, notably by:
Changes in particle energies - inelastic scattering of a monoenergetic beam by a target
Emitted energies of radiations from radioactive decay or a reaction
γ-rays $-\gamma$-ray spectroscopy
$\begin{gathered}\text { electron } \\ \text { conversion }\end{gathered} \quad \gamma$-ray $\quad e^{-}-e^{+}$pair Conversion electrons - ICE spectroscopy

Relative ICE \& IPF emission probabilities $\sim Z, E_{\gamma}$
Conversion coefficient』
Transition multipolarity
(electric or magnetic character \& multipole order)

Electron spectroscopy and nuclei

We study nuclei by observing energy changes, notably by:
Changes in particle energies - inelastic scattering of a monoenergetic beam by a target
Emitted energies of radiations from radioactive decay or a reaction

electron
conversion
(ICE)

γ-ray

Nuclear states of spin-0

One quarter of all nuclei (even-even) possess ground states with spin-0

Nuclear states of spin-0

One quarter of all nuclei (even-even)

 possess ground states with spin-0Spin-0 excited states occur widely, where nuclei can have different shapes (deformation) - shape coexistence

Shape coexistence:
\square from an exotic rarity (1980')
\square via a perception that is a phenomenon which exhibits "islands of occurrence" (1990')

Nuclear states of spin-0

One quarter of all nuclei (even-even)

 possess ground states with spin-0 Spin-0 excited states occur widely, where nuclei can have different shapes (deformation) - shape coexistenceShape coexistence:
\square from an exotic rarity (1980')
\square via a perception that is a phenomenon which exhibits "islands of occurrence" (1990')

- to the current position in which it seems to occur in all nuclei $(Z \geq 8)$

EO transitions - ideal probes of shape coexistence

 Only EO transitions allowed between spin-0 states

EO transitions - ideal probes of shape coexistence

Only EO transitions allowed between spin-0 states

EO transitions in nuclei do not have an intrinsic origin:
\square Monopole moments do not define rotation

- Monopole vibrations only exist at high energy ($\sim 15 \mathrm{MeV}$, nuclear matter is incompressible)
\square Low energy EO transitions in nuclei originate from quantum mechanical mixing

EO transitions - ideal probes of shape coexistence

Only EO transitions allowed between spin-0 states

E0 transitions in nuclei do not have an intrinsic
origin:
\square Monopole moments do not define rotation
\square Monopole vibrations only exist at high energy ($\sim 15 \mathrm{MeV}$, nuclear matter is incompressible)
EO transitions in nuclei originate from quantum mechanical mixing
Mixing origin of EO strengths
\square Strength generated by difference in meansquare radii of unmixed configurations

- Strength depends on mixing amplitudes

D Different deformations in nuclei = different mean-square charge radii

EO transition strengths: a model-independent description

 Monopole strength parameter$$
\rho_{i f}=\frac{\left\langle f\left[\Sigma_{j} e_{j} r_{j}^{2}\right] i\right\rangle}{e R^{2}} \equiv \frac{\langle f| m(E 0)|i\rangle}{e R^{2}} \equiv \frac{M_{i f}(E 0)}{e R^{2}}
$$

Monopole strength from mixing of states with different $\left\langle r^{2}\right\rangle$

$$
|i\rangle=\alpha|1\rangle+\beta|2\rangle, \quad|f\rangle=-\beta|1\rangle+\alpha|2\rangle
$$

$$
M_{i f}(E 0)=\alpha \beta\{\langle 2| m(E 0)|2\rangle-\langle 1| m(E 0)|1\rangle\}+\left(\alpha^{2}-\beta^{2}\right)\langle 1| m(E 0)|2\rangle
$$

$$
\begin{gathered}
M_{i f}(E 0) \approx \alpha \beta \Delta\left\langle r^{2}\right\rangle \\
\left.\Delta\left\langle r^{2}\right\rangle \equiv-|1| \sum_{j} e_{j} r_{j}^{2}\left|1+|2| \sum_{j} e_{j} r_{j}^{2}\right| 2 \mid\right)
\end{gathered}
$$

From David G Jenkins and John L Wood, Nuclear Data: A Primer, IOP, Bristol, UK, 2021

Observing EO transitions

\square Must be conversion electron (ICE) or electron-positron pair formation (IPF)
\square Source/target and electron detector mast be in high vacuum
\square-ray emission more probable; need magnetic separation
\square High resolution; thin targets

Observing EO transitions

- Must be conversion electron (ICE) or electron-positron pair formation (IPF)
\square Source/target and electron detector mast be in high vacuum
γ-ray emission more probable; need magnetic separation
- High resolution: thin targets

Progress in Particle and Nuclear Physics 123 (2022) 103930

Contents lists available at ScienceDirect
Progress in Particle and Nuclear Physics
journal homepage: www.elsevier.com/locate/ppnp
T. Kibédi ${ }^{\text {a,* }}$, A.B. Garnsworthy ${ }^{\text {b }}$,J.L. Wood ${ }^{\text {c }}$

Characterizing EO transitions

- Monopole strength parameter

$$
\rho_{i f}=\frac{M_{i f}(E 0)}{e R^{2}}=\frac{1}{\tau(E 0) \times \Omega(E 0)}
$$

- γ-ray spectroscopy, branching ratios, conversion coefficients, E2/M1 mixing ratios for M1+E2+EO transitions between $\mathrm{J}>0$ states $\left(2^{+}-2^{+}\right)$
- Lifetime measurements

ANU HIAF: Has the flexibility to measure conversion electrons, e+epairs, γ-rays and lifetimes

Observing EO transitions

T. Eriksen, PhD, ANU (2018)
hpGe for γ-rays

T. Kibédi, et al., NIM A294 (1990) 223
T. Eriksen, et al., Phys. Rev. C 102 (2020) 024320
J.T.H. Dowie, et al., Phys. Lett B 811 (2021) 135855
E. Ideguchi, et al., Phys. Lett. 128 (2022) 252501

The Hoyle state

There are few nuclei that have captured the imagination more than carbon-12

Carbon production, the triple- α and the ${ }^{12} \mathrm{C}(\mathrm{a}, \gamma)^{16} \mathrm{O}$ reactions are the key to synthesis of all elements (except hydrogen and helium)

The production of the Hoyle state
There are few nuclei that have captured the imagination more than carbon-12.

Carbon production, the triple- α and the ${ }^{12} C(a, \gamma)^{16} O$ reactions are key to synthesis of all elements (except hydrogen and helium)

The gateway through which that synthesis proceeds is dominated by the presence of the second excited state at $7.65 \mathrm{MeV}, \mathrm{J}^{\pi}=0^{+}$in ${ }^{12} \mathrm{C}$; the Hoyle state.

The decay of the Hoyle state

There are few nuclei that have captured the imagination
 more than carbon-12.

Carbon production, the triple- α and the ${ }^{12} C(a, \gamma)^{16} O$ reactions are key to synthesis of all elements (except hydrogen and helium)

The gateway through which that synthesis proceeds is dominated by the presence of the second excited state at $7.65 \mathrm{MeV}, \mathrm{J}^{\pi}=0^{+}$in ${ }^{12} \mathrm{C}$; the Hoyle state.

What we know about the radiative width of the Hoyle state (2014)
There are few nuclei that have captured the imagination

The triple- α reaction rate:

$$
r_{3 \alpha} \sim \Gamma_{\mathrm{rad}}
$$

$\Gamma_{\text {rad }}=0.0037(4) \mathrm{eV} ; \Gamma=9.3 \mathrm{eV}$
1:2500 chance to make stable carbon!
more than carbon-12.

Carbon production, the triple- α and the ${ }^{12} C(a, \gamma)^{16} O$ reactions the key to synthesis of all elements (except hydrogen and helium)

The gateway through which that synthesis proceeds is dominated by the presence of the second excited state at $7.65 \mathrm{MeV}, \mathrm{J}^{\pi}=0^{+}$in ${ }^{12} \mathrm{C}$; the Hoyle state.

Challenge: Can the accuracy improved?

$$
\begin{aligned}
& \quad \Gamma_{\text {rad }}=\left[\frac{\Gamma_{\text {rad }}}{\Gamma}\right] \times\left[\frac{\Gamma}{\Gamma_{\pi}(E 0)}\right] \times\left[\Gamma_{\pi}(E 0)\right] \\
& \Gamma_{\pi}(\mathrm{EO}) / \Gamma=6.7(6) \times 10^{-6} \\
& \Gamma_{\mathrm{rad}} / \Gamma=4.19(11) \times 10^{-4} \\
& \Gamma_{\pi}(\mathrm{E} 0)=62(2) \mu \mathrm{eV}
\end{aligned}
$$

$\Gamma_{\pi}(\mathrm{EO}) / \Gamma$ - Super-e (ANU)

$\square{ }^{12} C\left(p, p^{`}\right) @ 10.5 \mathrm{MeV}, \sim 1 \mu \mathrm{~A}, 1-2 \mathrm{mg} / \mathrm{cm}^{2}$ nat C

$$
\frac{\Gamma_{\pi}^{E 0}}{\Gamma}=\frac{N_{\pi}^{E 0}}{N_{\pi}^{E 2}} \times \frac{N_{p}(4.44)}{N_{p}(7.65)} \times \frac{\epsilon_{\pi}^{E 2}}{\epsilon_{\pi}^{E 0}} \times \frac{\alpha_{\pi}}{1+\alpha_{\pi}} 14 \% \text { UP }
$$

4.44 MeV E2 to normalise proton to e+e-pair ratio
\square e+e-pair efficiency, ε_{π} from Monte Carlo

$$
\Gamma_{r a d}=\left[\frac{\Gamma_{r a d}}{\Gamma}\right] \times\left[\frac{\Gamma}{\Gamma_{\pi}(E 0)}\right] \times\left[\Gamma_{\pi}(E 0)\right]
$$

PHYSICAL REVIEW C 102, 024320 (2020)

Improved precision on the experimental $\boldsymbol{E 0}$ decay branching ratio of the Hoyle state
T. K. Eriksen, ${ }^{1, *}$, T. Kibédie, ${ }^{1,+}$ M. W. Reed, ${ }^{1}$ A. E. Stuchbery, ${ }^{1}$ K. J. Cook, ${ }^{1,2}$ A. Akber, ${ }^{1}$ B. Alshahrani, ${ }^{1,+5}$ A. A. Avaa, ${ }^{3,}$

Recommended decay properties of the Hoyle state (2022)

$$
\Gamma_{r a d}=\left[\frac{\Gamma_{r a d}}{\Gamma}\right] \times\left[\frac{\Gamma}{\Gamma_{\pi}(E 0)}\right] \times\left[\Gamma_{\pi}(E 0)\right]
$$

Property	 Fynbo (2014)	Present study	Change
$\Gamma_{\text {rad }} / \Gamma\left[\times 10^{-4}\right]$	$4.19(11)$	$6.2(6)$	$+50(16) \%$
$\Gamma \pi(\mathrm{E} 0) / \Gamma\left[\times 10^{-6}\right]$	$6.7(6)$	$7.6(4)$	$+14(12) \%$
$\Gamma \pi(\mathrm{E} 0)$ $[\mu \mathrm{eV}]$	$6.23(20)$	adopted	N / A
Radiative width $[\mathrm{eV}]$	$0.0037(4)$	$0.0052(6)$	$+38(22) \%$
Total width $[\mathrm{eV}]$	$9.3(9)$	$8.2(5)$	$-10(11) \%$

New Radiative width - impact on nuclear astrophysics

$\square{ }^{12} \mathrm{C}(\alpha, g)^{16} \mathrm{O}$ rate: down by 15% (DeBoer, et al., Rev. Mod. Phys. 89 2017) 035007
The reliability of nucleosynthesis predictions depends on the quality of the stellar models and the nuclear reaction input parameters

- Triple alpha rate: up by 38% (Kibédi, et al., PRL, 125 (2020) 182701
- Woosley \& Heger, APJ 912 (2021) L31, "The Pair-instability Mass Gap for Black Holes": Using this large value of 3 a and a reduced value for ${ }^{12} \mathrm{C}(\alpha, \gamma)^{16} \mathrm{O}$ may lead to difficulties in stellar nucleosynthesis that have yet to be fully explored; Increased 3a rate considered as the upper error limit
- First results that the increased 3α rate could not be ruled out:

Farag, et al., APJ 937(2022) 112 (Black Hole Mass Spectrum);
Romano, Astron AstroPhys. Rev. 30 (2022) 7 (CNO nucleosynthesis)

Summary \& Outlook

$\square{ }^{12} C: \Gamma_{\text {rad }}$ is determined from 3 independent measurements

$$
\Gamma_{r a d}=\left[\frac{\Gamma_{r a d}}{\Gamma}\right] \times\left[\frac{\boldsymbol{\Gamma}}{\Gamma_{\pi}(\mathbf{E 0})}\right] \times\left[\Gamma_{\pi}(E 0)\right]
$$

G. Cardella, et al., PRC 104, 064315 (2021) CHIMERA 1192 Si-CsI(TI) telescopes

$$
\Gamma_{\mathrm{rad}} / \Gamma=1.8(6) \times 10^{-3}
$$

Can $\Gamma_{\text {rad }}$ improved from pair conversion

$$
\left.\left.\Gamma_{\text {rad }}=\frac{\Gamma_{\pi}(E 2)}{\Gamma_{\pi}(E 0)}\right] \times\left(1+\frac{1}{\left[\alpha_{\pi}(E 2)\right]}\right)+1\right) \times\left[\Gamma_{\pi}(E 0)\right]
$$

Super-e: background need to be reduced! (α, α) could be a better reaction?

Shape coexistence in the double-closed shell nuclei

- Shape coexistence:
${ }^{40} \mathrm{Ca}: 36,38,40 \mathrm{Ar},{ }^{42,44} \mathrm{Ca},{ }^{44} \mathrm{Ti}$; possible around $\mathrm{N}=28: 52,54,56 \mathrm{Fe},{ }^{50,52} \mathrm{Cr},{ }^{50} \mathrm{Ti}($?)
- Superdeformation: ${ }^{40} \mathrm{Ca},{ }^{58,60} \mathrm{Ni}, 60 \mathrm{Zn}$
- Limited number of nucleons - relatively small model space in SM, and other models

Figure from K. Heyde \& J.L. Wood
D. Rudolph et al., PRL 823763 (1999)

EO transitions in ${ }^{40} \mathrm{Ca}$

with Eiji Ideguchi (Osaka)

EO transitions in ${ }^{40} \mathrm{Ca}$

with Eiji Ideguchi (Osaka)

M. Ulrickson, et al., PRC15 (1977) 186

Two $4 E$-E scintillator telescopes
FWHM~20 keV
with Eiji Ideguchi (Osaka)

Monopole strength parameter

$$
\rho_{i f}=\frac{M_{i f}(E 0)}{e R^{2}}=\frac{1}{\tau(E 0) \times \Omega(E 0)}
$$

	$10^{3} \rho^{2}$
$\mathrm{O}_{2} \rightarrow \mathrm{O}_{1}$	$25.9(16)$
$\mathrm{O}_{3} \rightarrow \mathrm{O}_{1}$	$2.3(5)$
$\mathrm{O}_{3} \rightarrow \mathrm{O}_{2}$	<45

Calculated $\Omega(E O)$ electronic factors from
J. Dowie, ADNDT 131 (2020) 101283

Super
deformation
EO transitions in ${ }^{40} \mathrm{Ca}$
with Eiji Ideguchi (Osaka)

Monopole strength parameter

$$
\rho_{i f}=\frac{M_{i f}(E 0)}{e R^{2}}=\frac{1}{\tau(E 0) \times \Omega(E 0)}
$$

.02(21) ps

$2.16(6630 \mathrm{nsI}$

	$10^{3} \rho^{2}$
$0_{2} \rightarrow 0_{1}$	$25.9(16)$
$0_{3} \rightarrow 0_{1}$	$2.3(5)$
$0_{3} \rightarrow 0_{2}$	<45

E. Ideguchi et al.,

Spherical PR 87222501 (2001)

Strong EO expected from SD to spherical GS
Smallest value in A<60 system!

```
Large Scale Shell Model calculations \({ }^{40} \mathrm{Ca}\)
```


Spherical Ground State

Large Scale Shell Model calculations ${ }^{40} \mathrm{Ca}$

PHYSICAL REVIEW LETTERS 128, 252501 (2022)

Normal-
Deformed

Deformation

- Main configurations: gs: spherical, $\mathrm{O}_{2}: 4 \mathrm{p} 4 \mathrm{~h}, \mathrm{O}_{3}: 8 \mathrm{p} 8 \mathrm{~h}$
- ${ }^{16} \mathrm{O}$ core, full $s d+f_{7 / 2}+p_{3 / 2}$ space
- Significant configuration mixing between 0^{+}states
\square Good agreement between experiment and prediction

Summary \& Outlook

$\square{ }^{40} \mathrm{Ca}$: Do we understand the relation of EO` s and shape coexistence?

- Z=N=20 double magic nucleus
- Alpha conjugate nucleus: ${ }^{40} \mathrm{Ca}=10 \times{ }^{4} \mathrm{He}$
- Accessible for Large Scale SM
- Is it an isolated case?

We want to understand how nuclear shape of a reasonable simple protonneutron quantum system is evolving
Essential experimental and theoretical tools are available to do it!
Potential candidate Si isotopes:

- Deformed \& superdeformed 0^{+}candidates, no EO observed,
- Alpha conjugate nucleus: ${ }^{28} \mathrm{Si}=7 \times{ }^{4} \mathrm{He}$
- Sudden changes in nuclear structure across Si isotopes

Collaborators (ANU)	Collaborators (Oslo)	Collaborators (Georgia Tech)	Students
A.E. Stuchbery	M. Guttormsen	J.L. Wood	T.K. Eriksen
M.W. Reed	A. Görgen	Collaborators (TRIUMF)	B. Alshahrani
S.S. Hota	S. Siem	A.B. Garnsworthy	J.T.H. Dowie
G.J. Lane	A.C. Larsen	L.J. Evitts	A.Akber
A.J. Mitchell	F. Giacoppo	M. Moukaddam	L.T. Bezzina
T.G. Tornyi	A.I. Morales Lopez	J. Smallcombe	J. Buete
K.J. Cook	E. Sahin		B.J. Coombes
M. Dasgupta	G.M. Tveten	Collaborators (Osak	M.S.M. Gerathy
D.J. Hinde	F.L. Bello Garrote	E. Ideguchi	T.J. Graj
E.C. Simpson	L.C. Campo	T.H. Hoang	B.Q. Lee
A.C. Berriman	M. Klintefjord	Collaborators (iThemba)	B.P. McCormick
K. Bannerjee	S. Maharramova	P. Jones	T. Palazzo
L. Bignell	H-T. Nyhus	A.A. Avaa	N. Palalani
I.P. Carter	T. Renstrom		M. Ripper
T. Tanaka	W. Paulsen		B.M.A. Swinton-Bland M.O. de Vries
	ANU Major ARC Discovery	Grans 2011 2986, DP170101673	ANU technical staff T. Tunningley
* Australian			A. Cooper C. Gudu
- National			J. Heighway
\approx University			A. Muirhead
			D. Tsifakis

