Mapping the 3D structure of hadrons with lattice quantum chromodynamics

Alec Hannaford Gunn Ross Young, James Zanotti, Kadir Utku Can CSSM/QCDSF/UKQCD

Australian Institute of Physics Congress December, 2022

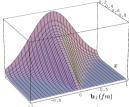
Background

Generalised parton distributions are

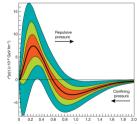
- extensions of PDFs
- related to elastic FFs and EMT

Contain a staggering amount of physical information:

- the spatial distributions of hadron constituents
- a solution to proton spin puzzle
- proton pressure distribution



Quark spatial distribution (Burkardt, 2002)



Proton pressure distribution (Burkert et al., 2018)

Outline of the problem

Background

Generalised parton distributions are

- extensions of PDFs
- related to elastic FFs and EMT

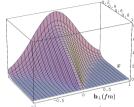
Contain a staggering amount of physical information:

- the spatial distributions of hadron constituents
- a solution to proton spin puzzle
- proton pressure distribution

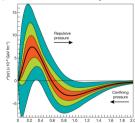
However...

- Difficult to measure experimentally
- and difficult to calculate on the lattice

In this talk: a new lattice method to calculate GPDs (Feynman-Hellmann), with strong parallels to experiment \rightarrow electron-ion collider

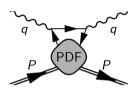


Quark spatial distribution (Burkardt, 2002)



Proton pressure distribution (Burkert et al., 2018)

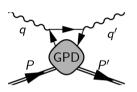
Compton amplitude



Parton distribution functions

$$\int \frac{d\lambda}{2\pi} e^{i\lambda x} \overbrace{\langle P|\bar{\psi}_q(-\lambda n/2) \not n \psi_q(\lambda n/2)|P\rangle} = q(x)$$

Compton amplitude



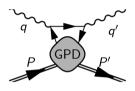
Generalised parton distributions

light-cone matrix elem
$$\int \frac{d\lambda}{2\pi} e^{i\lambda x} \underbrace{\langle P' | \bar{\psi}_q(-\lambda n/2) \not n \psi_q(\lambda n/2) | P \rangle}_{\text{H}^q(x,\xi,t) \bar{u}(P') \not n u(P)} = H^q(x,\xi,t) \bar{u}(P') \not n u(P)$$

$$+ E^q(x,\xi,t) \bar{u}(P') \frac{i\sigma^{\mu\nu} n_\mu (P'-P)_\nu}{2M} u(P).$$

$$+E^{q}(x,\xi,t)\bar{u}(P')\frac{i\sigma^{\mu\nu}n_{\mu}(P'-P)_{\nu}}{2M}u(P)$$

Compton amplitude



Generalised parton distributions

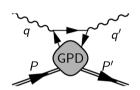
light-cone matrix elem

$$\int \frac{d\lambda}{2\pi} e^{i\lambda x} \overbrace{\langle P'|\bar{\psi}_{q}(-\lambda n/2) \not n \psi_{q}(\lambda n/2)|P\rangle} = H^{q}(x,\xi,t)\bar{u}(P') \not n u(P)$$

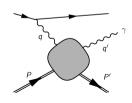
$$+ E^{q}(x,\xi,t)\bar{u}(P') \frac{i\sigma^{\mu\nu} n_{\mu}(P'-P)_{\nu}}{2M} u(P).$$

- H^q and E^q helicity-conserving and -flipping GPDs
- $H^q(x,\xi,t) \stackrel{t\to 0}{\longrightarrow} q(x)$
- $t = (P' P)^2$ gives us access to spatial structure

Compton amplitude



Deeply virtual Compton scattering



Generalised parton distributions

light-cone matrix elem

$$\int \frac{d\lambda}{2\pi} e^{i\lambda x} \overline{\langle P'|\bar{\psi}_{q}(-\lambda n/2) \not n \psi_{q}(\lambda n/2)|P\rangle} = H^{q}(x,\xi,t) \bar{u}(P') \not n u(P)$$

$$+ E^{q}(x,\xi,t) \bar{u}(P') \frac{i\sigma^{\mu\nu} n_{\mu}(P'-P)_{\nu}}{2M} u(P).$$

- H^q and E^q helicity-conserving and -flipping GPDs
- $H^q(x,\xi,t) \stackrel{t\to 0}{\longrightarrow} q(x)$
- $t = (P' P)^2$ gives us access to spatial structure

Measuring GPDs

Very difficult to get GPDs from these measurements \longrightarrow lattice QCD can be useful

3D structure from lattice QCD

Lattice QCD

Background

QCD path integral

$$\langle \mathcal{O}
angle = rac{1}{\mathcal{Z}} \int \mathcal{D} \mathsf{A}_{\mu} \mathcal{D} ar{\psi} \mathcal{D} \psi \mathcal{O} \mathsf{e}^{i \mathsf{S}_{\mathsf{QCD}}}.$$

To evaluate this numerically:

- discrete spacetime,
- 2 Wick rotatation t
 ightarrow -i au, $e^{i S_{
 m QCD}}
 ightarrow e^{-S_{
 m QCD}^E}$,
- 3 generate gauge configurations according to $e^{-S_{\rm QCD}^E}$.

3 / 9

Lattice QCD

QCD path integral

$$\langle \mathcal{O}
angle = rac{1}{\mathcal{Z}} \int \mathcal{D} \mathsf{A}_{\mu} \mathcal{D} ar{\psi} \mathcal{D} \psi \mathcal{O} \mathsf{e}^{i\mathsf{S}_{\mathsf{QCD}}}.$$

To evaluate this numerically:

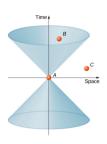
- discrete spacetime,
- 2 Wick rotatation $t o -i au, \ e^{i S_{ ext{QCD}}} o e^{-S_{ ext{QCD}}^{\it E}},$
- **3** generate gauge configurations according to $e^{-S_{\rm QCD}^E}$.

Wick rotated separation:

$$x^2 = (-i\tau)^2 - |\vec{x}|^2 = -\tau^2 - |\vec{x}|^2 < 0.$$

Separations are spacelike, but PDs require lightlike.

⇒ Can't calculate parton distributions on the lattice



QCD path integral

$$\langle \mathcal{O}
angle = rac{1}{\mathcal{Z}} \int \mathcal{D} \mathsf{A}_{\mu} \mathcal{D} ar{\psi} \mathcal{D} \psi \mathcal{O} e^{i\mathsf{S}_{\mathsf{QCD}}}.$$

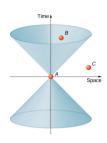
To evaluate this numerically:

- discrete spacetime,
- 2 Wick rotatation $t \to -i\tau$, $e^{iS_{\rm QCD}} \to e^{-S_{\rm QCD}^E}$,
- 3 generate gauge configurations according to $e^{-S_{\rm QCD}^E}$.

Wick rotated separation:

$$x^2 = (-i\tau)^2 - |\vec{x}|^2 = -\tau^2 - |\vec{x}|^2 < 0.$$

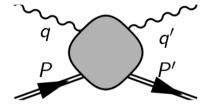
Separations are spacelike, but PDs require lightlike. ⇒ Can't calculate parton distributions on the lattice



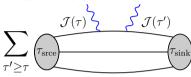
Related quantities we can calculate

- Mellin moments (traditional)
- Quasi- and pseudo-distributions (newer)
- 3 Scattering amplitude for unphysical kinematics (this talk)

Direct lattice calculation:



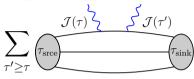
Direct lattice calculation:



To calculate

- Need a 4-pt function ⇒ large time extent
- New inversion for each (au, au')
- Expensive!

Direct lattice calculation:

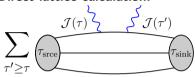


To calculate

- Need a 4-pt function ⇒ large time extent
- New inversion for each (τ, τ')
- Expensive!

Feynman-Hellmann (Utku Can's talk Tuesday: *forward* Compton amplitude) Calculate 2-pt function, with quarks immersed in two magnetic fields: $\vec{B}_1 = (0,0,\lambda_1\cos(\vec{q}_1\cdot\vec{x}))$ and $\vec{B}_2 = (0,0,\lambda_2\cos(\vec{q}_2\cdot\vec{x}))$.

Direct lattice calculation:



To calculate

- Need a 4-pt function ⇒ large time extent
- New inversion for each (τ, τ')
- Expensive!

Feynman-Hellmann (Utku Can's talk Tuesday: forward Compton amplitude)

Calculate 2-pt function, with quarks immersed in two magnetic fields:

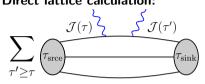
$$\vec{B}_1=(0,0,\lambda_1\cos(\vec{q}_1\cdot\vec{x}))$$
 and $\vec{B}_2=(0,0,\lambda_2\cos(\vec{q}_2\cdot\vec{x}))$.

Expand around $\lambda_1, \lambda_2 = 0$:

$$= \underbrace{\sum_{j} \lambda_{j} \sum_{\tau_{1}}} + \underbrace{\sum_{j,k} \lambda_{j} \lambda_{k} \sum_{\tau_{1} \geq \tau_{2}}} \underbrace{\int_{J_{k}(\tau_{2})}^{J_{k}(\tau_{2})} + \mathcal{O}(\lambda^{3})} + \mathcal{O}(\lambda^{3})$$

Then $\lambda_1 \lambda_2$ term has \vec{q}_1 in \vec{q}_2 out \Rightarrow isolate this to get OFCA.

Direct lattice calculation:



To calculate

- Need a 4-pt function ⇒ large time extent
- New inversion for each (τ, τ')
- Expensive!

Feynman-Hellmann (Utku Can's talk Tuesday: forward Compton amplitude)

Calculate 2-pt function, with quarks immersed in two magnetic fields:

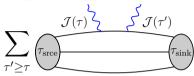
$$\vec{B}_1=(0,0,\lambda_1\cos(\vec{q}_1\cdot\vec{x}))$$
 and $\vec{B}_2=(0,0,\lambda_2\cos(\vec{q}_2\cdot\vec{x}))$.

Expand around $\lambda_1, \lambda_2 = 0$:

$$= + \sum_{j} \lambda_{j} \sum_{\tau_{1}} + \sum_{j,k} \lambda_{j} \lambda_{k} \sum_{\tau_{1} \geq \tau_{2}} \frac{\mathcal{J}_{k}(\tau_{2})}{\mathcal{J}_{j}(\tau_{1})} + \mathcal{O}(\lambda^{3})$$

Then $\lambda_1 \lambda_2$ term has \vec{q}_1 in \vec{q}_2 out \Rightarrow isolate this to get OFCA.

Direct lattice calculation:



To calculate

- Need a 4-pt function ⇒ large time extent
- New inversion for each (τ, τ')
- Expensive!

Feynman-Hellmann (Utku Can's talk Tuesday: forward Compton amplitude)

Calculate 2-pt function, with quarks immersed in two magnetic fields:

$$\vec{B}_1=(0,0,\lambda_1\cos(\vec{q}_1\cdot\vec{x}))$$
 and $\vec{B}_2=(0,0,\lambda_2\cos(\vec{q}_2\cdot\vec{x}))$.

Expand around $\lambda_1, \lambda_2 = 0$:

$$\mathcal{G}_{(\lambda,\lambda)} + \mathcal{G}_{(-\lambda,-\lambda)} - \mathcal{G}_{(-\lambda,\lambda)} - \mathcal{G}_{(\lambda,-\lambda)} \simeq \lambda^2$$

 $\mathcal{J}_{3}(\vec{q_1})^{2} \mathcal{J}_{3}(\vec{q_2})$ $+ \mathcal{O}(\lambda^{4})^{2}$

Then $\lambda_1\lambda_2$ term has \vec{q}_1 in \vec{q}_2 out \Rightarrow isolate this to get OFCA.

Lattice Compton amplitude

OFCA parameterised in terms of Compton form factors:

$$\mathcal{T}_{\mu\nu} = \frac{1}{2\bar{P}\cdot\bar{q}} \bigg[- \Big(h\cdot\bar{q} \frac{\mathcal{H}_1}{\mathcal{H}_1} + e\cdot\bar{q} \mathcal{E}_1 \Big) g_{\mu\nu} + \frac{1}{\bar{P}\cdot\bar{q}} \Big(h\cdot\bar{q} \frac{\mathcal{H}_2}{\mathcal{H}_2} + e\cdot\bar{q} \mathcal{E}_2 \Big) \bar{P}_{\mu}\bar{P}_{\nu} + \mathcal{H}_3 h_{\{\mu}\bar{P}_{\nu\}} \bigg] + \dots$$

5/9

Lattice Compton amplitude

OFCA parameterised in terms of Compton form factors:

$$T_{\mu\nu} = \frac{1}{2\bar{P} \cdot \bar{q}} \left[-\left(h \cdot \bar{q} \mathcal{H}_1 + e \cdot \bar{q} \mathcal{E}_1\right) g_{\mu\nu} + \frac{1}{\bar{P} \cdot \bar{q}} \left(h \cdot \bar{q} \mathcal{H}_2 + e \cdot \bar{q} \mathcal{E}_2\right) \bar{P}_{\mu} \bar{P}_{\nu} + \mathcal{H}_3 h_{\{\mu} \bar{P}_{\nu\}} \right] + \dots$$

To get GPDs from our lattice data inverse problem

From lattice
$$\mathcal{H}_1(\bar{\omega}, t) = 2\bar{\omega}^2 \int dx \frac{x \mathcal{H}(x, t)}{1 - (x\bar{\omega})^2}$$

Hard to solve for H(x, t)!

Lattice Compton amplitude

OFCA parameterised in terms of Compton form factors:

$$T_{\mu\nu} = \frac{1}{2\bar{P}\cdot\bar{q}} \bigg[- \Big(h\cdot\bar{q}\mathcal{H}_1 + e\cdot\bar{q}\mathcal{E}_1 \Big) g_{\mu\nu} + \frac{1}{\bar{P}\cdot\bar{q}} \Big(h\cdot\bar{q}\mathcal{H}_2 + e\cdot\bar{q}\mathcal{E}_2 \Big) \bar{P}_\mu \bar{P}_\nu + \mathcal{H}_3 h_{\{\mu} \bar{P}_{\nu\}} \bigg] + \dots$$

To get GPDs from our lattice data inverse problem

From lattice
$$\mathcal{H}_1(\bar{\omega},t) = 2\bar{\omega}^2 \int dx \frac{x \mathcal{H}(x,t)}{1-(x\bar{\omega})^2}$$

Hard to solve for H(x, t)! But we can get the Mellin moments

$$\mathcal{H}_1(\bar{\omega},t) = 2\sum_{n \text{ even}}^{\infty} \bar{\omega}^n \int dx x^{n-1} H(x,t)$$

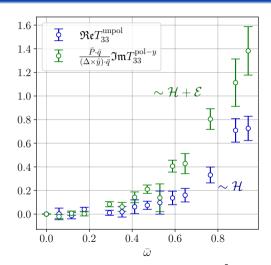
Moments defined as

$$M_n(t) = \int dx x^{n-1} H(x,t)$$

- n=1 elastic FFs, n=2 gravitational FFs, at t=0 reduce to $\langle x^{n-1} \rangle$
- Can be individually calculated on lattice (n = 3 highest so far)
- What we do is fit to power series

$$f(\bar{\omega}) = M_2 \bar{\omega}^2 + M_4 \bar{\omega}^4 + M_6 \bar{\omega}^6 + \dots$$

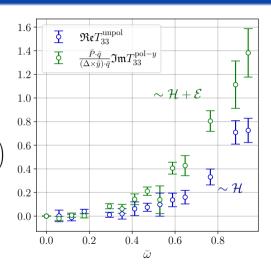
- Can calculate unpolarised Compton amplitude $(T_{\uparrow} + T_{\downarrow})/2$ or polarised $(T_{\uparrow} T_{\downarrow})/2$.
- Each is a different linear combination of \mathcal{H}_1 and \mathcal{E}_1 .



- Can calculate unpolarised Compton amplitude $(T_{\uparrow} + T_{\downarrow})/2$ or polarised $(T_{\uparrow}-T_{\downarrow})/2$.
- Each is a different linear combination of \mathcal{H}_1 and \mathcal{E}_1 .

Then, just need to solve linear equations:

$$\left(\begin{array}{c} \mathfrak{Re}\,\mathcal{T}_{33}^{\text{unpol}} \\ \mathfrak{Im}\,\mathcal{T}_{33}^{\text{pol}} \end{array} \right) = \left(\begin{array}{cc} \mathcal{N}_{\text{unpol}}^{h} & \mathcal{N}_{\text{unpol}}^{e} \\ \mathcal{N}_{\text{pol}}^{h} & \mathcal{N}_{\text{pol}}^{e} \end{array} \right) \left(\begin{array}{c} \mathcal{H}_{1} \\ \mathcal{E}_{1} \end{array} \right)$$

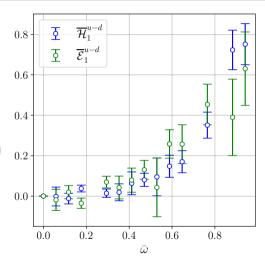


Results 900

- Can calculate unpolarised Compton amplitude $(T_{\uparrow} + T_{\perp})/2$ or polarised $(T_{\uparrow}-T_{\downarrow})/2$.
- Each is a different linear combination of \mathcal{H}_1 and \mathcal{E}_1 .

Then, just need to solve linear equations:

$$\left(\begin{array}{c} \mathfrak{Re} \, \mathcal{T}_{33}^{\text{unpol}} \\ \mathfrak{Im} \, \mathcal{T}_{33}^{\text{pol}} \end{array} \right) = \left(\begin{array}{cc} \mathit{N}_{\text{unpol}}^{\mathit{h}} & \mathit{N}_{\text{unpol}}^{\mathit{e}} \\ \mathit{N}_{\text{pol}}^{\mathit{h}} & \mathit{N}_{\text{pol}}^{\mathit{e}} \end{array} \right) \left(\begin{array}{c} \mathcal{H}_{1} \\ \mathcal{E}_{1} \end{array} \right)$$

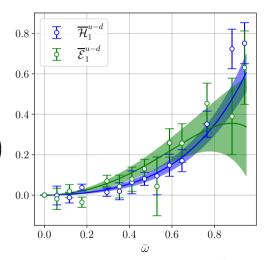


Results

- Can calculate unpolarised Compton amplitude $(T_{\uparrow} + T_{\perp})/2$ or polarised $(T_{\uparrow}-T_{\downarrow})/2$.
- Each is a different linear combination of \mathcal{H}_1 and \mathcal{E}_1 .

Then, just need to solve linear equations:

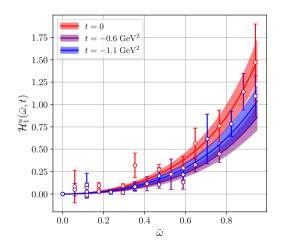
$$\left(\begin{array}{c} \mathfrak{Re}\, T_{33}^{\text{unpol}} \\ \mathfrak{Im}\, T_{33}^{\text{pol}} \end{array} \right) = \left(\begin{array}{cc} N_{\text{unpol}}^{h} & N_{\text{unpol}}^{e} \\ N_{\text{pol}}^{h} & N_{\text{pol}}^{e} \end{array} \right) \left(\begin{array}{c} \mathcal{H}_{1} \\ \mathcal{E}_{1} \end{array} \right)$$



$$\mathcal{H}_1(ar{\omega},t,ar{Q}^2)=2\sum_{n ext{ even}}^{N_{ ext{max}}}ar{\omega}^n M_n(t,ar{Q}^2)$$

For $\bar{Q}^2 \gg \Lambda_{\rm QCD}^2$, get GPD moments

$$M_n^{(H)}(t) = A_{n,0}(t), \quad M_n^{(E)}(t) = B_{n,0}(t)$$



GPD moments

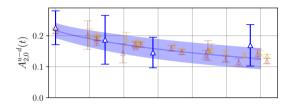
Fit to function

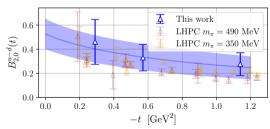
$$\mathcal{H}_1(ar{\omega},t,ar{Q}^2)=2\sum_{n ext{ even}}^{N_{ ext{max}}}ar{\omega}^n M_n(t,ar{Q}^2)$$

For $\bar{Q}^2 \gg \Lambda_{\rm OCD}^2$, get GPD moments

$$M_n^{(H)}(t) = A_{n,0}(t), \quad M_n^{(E)}(t) = B_{n,0}(t)$$

- Our leading even moment consistent with other lattice calculations
- First determination of $n > 4 \Rightarrow no$ other lattice results to compare
- Good first test—can we go further?





3D structure from lattice QCD

$$\frac{\widetilde{H}_1(\bar{\omega},t)}{\mathcal{H}_1(\bar{\omega},t)} = 2\bar{\omega}^2 \int dx \frac{x \widetilde{H(x,t)}}{1-(x\bar{\omega})^2}$$

Limited number of $\bar{\omega}$, large errors, lattice artefacts \longrightarrow hard to solve!

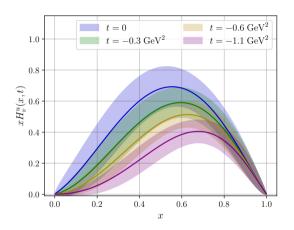
$$\widetilde{\mathcal{H}_1(\bar{\omega},t)} = 2\bar{\omega}^2 \int dx \frac{x \widetilde{H(x,t)}}{1-(x\bar{\omega})^2}$$

Limited number of $\bar{\omega}$, large errors, lattice $artefacts \longrightarrow hard to solve!$

Model GPD:

$$H(x,t) = Nx^{-\alpha-\alpha't}(1-x)^{\beta}$$

Widely used in expt. (e.g. proton pressure distribution)



3D structure from lattice QCD

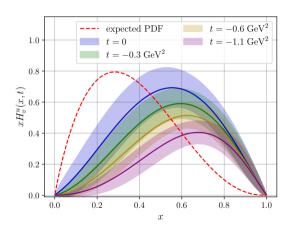
$$\overbrace{\mathcal{H}_{1}(\bar{\omega},t)}^{\text{From lattice}} = 2\bar{\omega}^{2} \int dx \frac{x \overbrace{\mathcal{H}(x,t)}^{\text{GPD}}}{1 - (x\bar{\omega})^{2}}$$

Limited number of $\bar{\omega}$, large errors, lattice $artefacts \longrightarrow hard to solve!$

Model GPD:

$$H(x,t) = Nx^{-\alpha-\alpha't}(1-x)^{\beta}$$

Widely used in expt. (e.g. proton pressure distribution)



3D structure from lattice QCD

$$\frac{\mathsf{From \ lattice}}{\mathcal{H}_1(\bar{\omega},t)} = 2\bar{\omega}^2 \int dx \frac{x \overset{\mathsf{GPD}}{\mathcal{H}(x,t)}}{1 - (x\bar{\omega})^2}$$

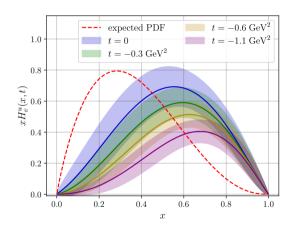
Limited number of $\bar{\omega}$, large errors, lattice artefacts \longrightarrow hard to solve!

Model GPD:

$$H(x,t) = Nx^{-\alpha-\alpha't}(1-x)^{\beta}$$

Widely used in expt. (e.g. proton pressure distribution)

Q: What went wrong? The first moment was correct...



$$\frac{\widetilde{H}_1(\bar{\omega},t)}{\mathcal{H}_1(\bar{\omega},t)} = 2\bar{\omega}^2 \int dx \frac{x \widetilde{H(x,t)}}{1-(x\bar{\omega})^2}$$

Limited number of $\bar{\omega}$, large errors, lattice artefacts \longrightarrow hard to solve!

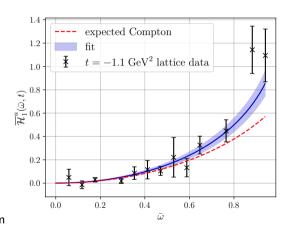
Model GPD:

$$H(x,t) = Nx^{-\alpha-\alpha't}(1-x)^{\beta}$$

Widely used in expt. (e.g. proton pressure distribution)

Q: What went wrong? The first moment was correct...

A: Higher ω vals not consistent with phenom $\longrightarrow \mathcal{O}(ap_{\mu})$ artefacts

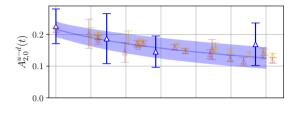


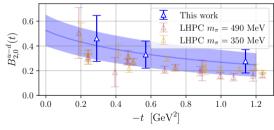
Conclusion

- New method to calculate OFCA \rightarrow **GPDs**
- Allows strong parallels with experiment
- Calculation of leading moments of \mathcal{H}_1 and \mathcal{E}_1 demonstrates viability
- Need to understand lattice artefacts at large momentum

Outlook

- Control lattice artefacts → investigation of GPD models and inversion
- Non-leading twist terms
- Subtraction function





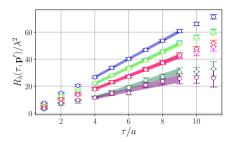
Lattice details

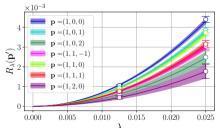
This calculation

Set	t [GeV ²]	\bar{Q}^2 [GeV 2]	N_{meas}
	0	4.86	10000
#1	-0.29	4.79	1000
#2	-0.57	4.86	1000
#3	-1.14	4.86	1000

- Lattice size: $L^3 \times T = 48^3 \times 96$
- Unphysical pion mass $m_{\pi}=420$ MeV.
- ullet For each set, calculate two couplings: $\lambda=0.0125, 0.025$
- $\beta = 5.65$, $\kappa_{I}, \kappa_{s} = 12205$

Feynman-Hellmann application





Recall:

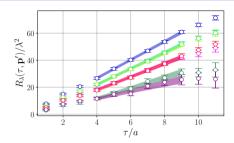
$$egin{aligned} R_{\lambda} &\equiv rac{\mathcal{G}_{(\lambda,\lambda)} + \mathcal{G}_{(-\lambda,-\lambda)} - \mathcal{G}_{(-\lambda,\lambda)} - \mathcal{G}_{(\lambda,-\lambda)}}{\mathcal{G}_{0}} \ &\simeq 2\lambda^{2} aurac{T_{33}}{E_{N}(ec{
ho})} \end{aligned}$$

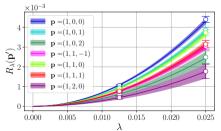
Fits

$$g(\lambda) = c\lambda^2$$

Final result is $T_{33}(\bar{\omega})$.

Feynman-Hellmann application





Recall:

$$egin{aligned} R_{\lambda} &\equiv rac{\mathcal{G}_{(\lambda,\lambda)} + \mathcal{G}_{(-\lambda,-\lambda)} - \mathcal{G}_{(-\lambda,\lambda)} - \mathcal{G}_{(\lambda,-\lambda)}}{\mathcal{G}_{0}} \ &\simeq 2\lambda^{2} aurac{T_{33}}{E_{N}(ec{
ho})} \end{aligned}$$

Fits

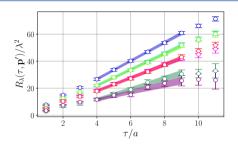
$$g(\lambda) = c\lambda^2$$

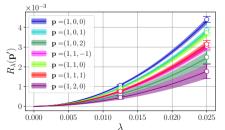
Final result is $T_{33}(\bar{\omega})$.

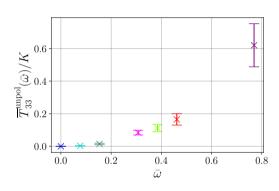
By varying the sink momentum, \vec{p} , we vary scaling variable:

$$ar{\omega}=rac{4ec{p}\cdot(ec{q}_1+ec{q}_2)}{(ec{q}_1+ec{q}_2)^2}$$

Feynman-Hellmann application







By varying the sink momentum, \vec{p} , we vary scaling variable:

$$ar{\omega}=rac{4ec{p}\cdot(ec{q}_1+ec{q}_2)}{(ec{q}_1+ec{q}_2)^2}$$