DEFINING AND IDENTIFYING **PRE-COLLECTIVE NUCLEI** CTROMAGNETIC **TRANSITIONS AND** MOMENTS

Spin dependent emergence of collectivity

Australian National University

The shell model

Nucleon orbits

https://people.physics.anu.edu.au/~ecs103/chart/

3

Collective structures near closed shells

N Z	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82
56	¹²⁴ Ba	¹²⁵ Βa	¹²⁶ Βa	¹²⁷ Βa	¹²⁸ Ba	¹²⁹ Βa	¹³⁰ Ba	¹³¹ Ba	¹³² Ba	¹³³ Ba	¹³⁴ Ba	¹³⁵ Ba	¹³⁶ Ba	¹³⁷ Ba	¹³⁸ Ba
	_{β+}	_{β+}	_{β+}	_{β+}	e- capture	_{β+}	_{Stable}	_{β+}	_{Stable}	e- capture	_{Stable}	_{Stable}	_{Stable}	_{Stable}	_{Stable}
55	¹²³ Cs	¹²⁴ Cs	¹²⁵ Cs	¹²⁶ Cs	¹²⁷ Cs	¹²⁸ Cs	¹²⁹ Cs	¹³⁰ Cs	¹³¹ Cs	¹³² Cs	¹³³ Cs	¹³⁴ Cs	¹³⁵ Cs	¹³⁶ Cs	¹³⁷ Cs
	_{β+}	β+	_{β+}	β+	_{β+}	β+	β+	_{β+}	e- capture	_{β+}	_{Stable}	β-	β-	β-	β-
54	¹²² Xe	¹²³ Χе	¹²⁴ Xe	¹²⁵ Χе	¹²⁶ Xe	¹²⁷ Xe	¹²⁸ Xe	¹²⁹ Xe	¹³⁰ Xe	¹³¹ Xe	¹³² Xe	¹³³ Хе	¹³⁴ Xe	¹³⁵ Хе	¹³⁶ Xe
	e- capture	_{β+}	_{Stable}	_{β+}	Stable	e- capture	_{Stable}	Stable	_{Stable}	_{Stable}	_{Stable}	_{β-}	_{Stable}	_{β-}	_{Stable}
53	¹²¹ β+	¹²² e+	¹²³ β+	¹²⁴ Ι β+	¹²⁵ e- capture	¹²⁶	127 Stable	¹²⁸ β-	¹²⁹ β-	¹³⁰	¹³¹ β-	¹³² β-	¹³³ β-	¹³⁴ β-	¹³⁵ β-
52	¹²⁰ Te _{Stable}	¹²¹ Τе _{β+}	¹²² Te _{Stable}	²³ Te Stable	¹²⁴ Te _{Stable}	¹²⁵ Te _{Stable}	¹²⁶ Te _{Stable}	¹²⁷ Te β-	¹²⁸ Te _{Stable}	¹²⁹ Τе β-	¹³⁰ Te _{Stable}	¹³¹ Te	¹³² Те _{β-}	¹³³ Τе β-	¹³⁴ Те _{β-}
51	¹¹⁹ Sb e- capture	¹²⁰ Sb β+	¹²¹ Sb _{Stable}	¹²² Sb β-	¹²³ Sb Stable	¹²⁴ Sb β-	¹²³ SD β-	β-	¹²⁷ Sb β-	¹²⁸ Sb β-	¹²⁹ Sb β-	¹³⁰ Sb β-	¹³¹ Sb β-	¹³² Sb β-	¹³³ Sb β-
50	¹¹⁸ Sn	¹¹⁹ Sn	¹²⁰ Sn	¹²¹ Sn	¹²² Sn	¹²³ Sn	¹²⁴ Sn	¹²⁵ Sn	¹²⁶ Sn	¹²⁷ Sn	¹²⁸ Sn	¹²⁹ Sn	¹³⁰ Sn	¹³¹ Sn	¹³² Sn
	_{Stable}	_{Stable}	_{Stable}	β-	_{Stable}	β-	_{Stable}	β-	β-	β-	β-	β-	β-	β-	β-

ANU RESEARCH SCHOOL OF PHYSICS | PRE-COLLECTIVE NUCLEI

7

Measurements of nuclear structure

g factors:

TABLE I: Schmidt g factors					
Orbit	l	neutrons			
		$g_s/g_s^{\rm free} = 0.7$			
$s_{1/2}$ $p_{1/2}$ $p_{3/2}$	0 1 1	-2.678 0.893 -0.893			
$d_{3/2} \\ d_{5/2}$	2 2	$0.536 \\ -0.536$			

9

Quadrupole moments

Data from N. Stone, Table of Nuclear Electric Quadrupole Moments, Tech. Rep. INDC(NDS)-0650 (2013)

CRICOS PROVIDER #00

Measurements of nuclear structure

Quadrupole moment:

 $Q = \langle I | M(E2) | I \rangle$

 $Q_0 = \int \rho (3z^2 - r^2) dV$

Transition strength:

$$B(E2) \downarrow = \frac{1}{2I_i + 1} \langle I_i | M(E2) | I_f \rangle^2$$

g factors:

TABLE I: Schmidt g factors					
Orbit	l	neutrons			
		$g_s/g_s^{\rm free} = 0.7$			
s _{1/2}	0	-2.678			
$p_{1/2}$	1	0.895			
$p_{3/2}$	1	-0.893			
$d_{3/2}$	2	0.536			
$d_{5/2}$	2	-0.536			

Transition strengths

Increasing collectivity

B(E2) measurements

Data from this work and B. Pritychenko et al. (2016), Atomic Data and Nuclear Data Tables 107, 1, and Nuclear Data Sheets

Increasing collectivity

B(E2) measurements

Data from this work and B. Pritychenko et al. (2016), Atomic Data and Nuclear Data Tables 107, 1, and Nuclear Data Sheets

Data from this work and B. Pritychenko et al. (2016), Atomic Data and Nuclear Data Tables 107, 1, and Nuclear Data Sheets

Measurements of nuclear structure

g factors Collective *g* factors: 4 proton $\approx \frac{1}{I_p + I_n}$ *ℓ*+1/2 ga) Schmidt g factor $g \approx$ \overline{A} ℓ-1/2 **Experimentally:** ℓ-1/2 neutron $g \approx 0.8 \frac{Z}{A}$ b) *ℓ*+1/2 -2 h d S р g

Forgetting single-particle structure

g factor measurements

Data from this work and Stuchbery *et al.* (2007) Phys. Rev. C **76**, 034306, Stone *et al.* (2005) Phys. Rev. Lett. **94**, 192501, Fogelberg *et al.* (1986) Nucl. Phys. A **451** 101-104, Stuchbery *et al.* (2013) Phys. Rev. C **88**, 051304, Wolf *et al.* (1976) Phys.Rev.Lett. 36, 1072

Maintains characteristics longer

g factor measurements

Data from this work and Stuchbery *et al.* (2007) Phys. Rev. C **76**, 034306, Stone *et al.* (2005) Phys. Rev. Lett. **94**, 192501, Fogelberg *et al.* (1986) Nucl. Phys. A **451** 101-104, Stuchbery *et al.* (2013) Phys. Rev. C **88**, 051304, Wolf *et al.* (1976) Phys.Rev.Lett. 36, 1072

No predicted decrease

g factor measurements

Data from this work and Stuchbery *et al.* (2007) Phys. Rev. C **76**, 034306, Stone *et al.* (2005) Phys. Rev. Lett. **94**, 192501, Fogelberg *et al.* (1986) Nucl. Phys. A **451** 101-104, Stuchbery *et al.* (2013) Phys. Rev. C **88**, 051304, Wolf *et al.* (1976) Phys.Rev.Lett. 36, 1072

Conclusions

What does it mean to be collective?

Are weakly collective nuclei becoming collective as a whole?

Can weakly collective nuclei really be called collective?

How can we model pre-collective nuclei with differing levels of collectivity?

How can we characterise the breakdown of shell structure?

THANK YOU

Contact Us

Ben Coombes Ben.Coombes@anu.edu.au

CRICOS PROVIDER #00120C

Pre-collective nuclei

Rapidly developing fragmentation

27

Pre-collective nuclei

Fragmentation

ν0⁺ x π6⁺ ■ ν2⁺ x π6⁺ ■

Pre-collective nuclei

Fragmentation less in the 6⁺ state

ANU RESEARCH SCHOOL OF PHYSICS | PRE-COLLECTIVE NUCLEI

ν0⁺ x π6⁺ ■ ν2⁺ x π6⁺ ■

Pre-collective nuclei

Fragmentation less in the 6⁺ state

Pre-collective nuclei

Deformation and triaxiality

 $\{E2 \times E2\}^0 = \frac{1}{\sqrt{5}}Q^2$ $\langle s|[E2 \times E2]^0|s\rangle = \frac{(-1)^{2s}}{\sqrt{2s+1}}\sum_r \langle s||E2||r\rangle \langle r||E2||s\rangle \begin{pmatrix} 2 & 2 & 0\\ s & s & r \end{pmatrix}$

$${[E2 \times E2]^2 \times E2}^0 = -\frac{\sqrt{2}}{35}Q^3\cos 3\delta$$

 $\langle s | [(E2 \times E2)^2 \times E2]^0 | s \rangle =$

$$(-1)^{3s+t}\sqrt{\frac{5}{2s+1}}\sum_{rt}\langle s||E2||r\rangle\langle r||E2||t\rangle\langle t||E2||s\rangle \begin{cases} 2 & 2 & 0\\ s & s & r \end{cases} \begin{cases} 2 & 2 & 2\\ t & s & r \end{cases}$$

q factor measurements

Beam

g factor measurements

Singly-magic isotope and isotones

Increased sensitivity

