Dispersion Engineering for Complete Coherent Conversion

Alexander S. Solntseva, Sergey V. Batalovb,c, Nathan K. Langfordd, Andrey A. Sukhorukove

aFaculty of Science, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia
bInstitute of Metal Physics, UB RAS, Sofia Kovalevskaya str., 18, Ekaterinburg, 620108, Russia
cInstitute of Physics and Technology, Ural Federal University, Mira str. 19, Ekaterinburg, 620002, Russia
dCentre for Quantum Software and Information & School of Mathematical and Physical Sciences, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia
eARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Research School of Physics, Australian National University, Canberra, ACT 2601, Australia

Generalizing well-established concepts in spontaneous parametric down-conversion and single-photon up-conversion, coherent photon conversion (CPC) [Fig. 1(a)] provides a nonlinear module that enables deterministic multiphoton gates, high-quality heralded single- and multiphoton states free from higher-order imperfections, and robust, high-efficiency detection [1]. Initial analysis suggested that dispersion might limit the performance of CPC-based operations for broadband photons [2]. However, it remained an important open question to identify the ultimate limitations to high-efficiency CPC operations.

In this work, we show how dispersion engineering can be used to tune the photon-conversion process [3]. This addresses a key open goal in this context, which is to study the optimal conditions for achieving deterministic photon conversion both from a single photon to a pair, as well as backwards. We investigate a range of dispersion scenarios and show that one can reach 100% forward [Fig. 1(b)] and backward [Fig. 1(c)] conversion efficiency at a finite propagation length. We also show that it is possible to realise robust conversion between one and two photons, where high conversion efficiencies can be realised over a large propagation distance range [Fig. 1(d)]. These are nontrivial results due to the complex dynamics involving the one- and two-photon states across a broad optical frequency spectrum.

Fig. 1. (a) Coherent conversion of a pump photon into signal and idler photons. (b) Complete conversion of one photon into two at a finite distance for quadratic waveguide dispersion. (c) Forward and backward conversion between one- and two-photon states achieved by reversing the sign of the dispersion. (d) Robust conversion between one and two photons achieved through engineering higher-order frequency dispersion.