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Generalizing well-established concepts in spontaneous parametric down-conversion and single-photon up-

conversion, coherent photon conversion (CPC) [Fig. 1(a)] provides a nonlinear module that enables 

deterministic multiphoton gates, high-quality heralded single- and multiphoton states free from higher-order 

imperfections, and robust, high-efficiency detection [1]. Initial analysis suggested that dispersion might limit 

the performance of CPC-based operations for broadband photons [2]. However, it remained an important open 

question to identify the ultimate limitations to high-efficiency CPC operations. 

In this work, we show how dispersion engineering can be used to tune the photon-conversion process 

[3]. This addresses a key open goal in this context, which is to study the optimal conditions for achieving 

deterministic photon conversion both from a single photon to a pair, as well as backwards. We investigate a 

range of dispersion scenarios and show that one can reach 100% forward [Fig. 1 (b)] and backward [Fig. 1 

(c)] conversion efficiency at a finite propagation length. We also show that it is possible to realise robust 

conversion between one and two photons, where high conversion efficiencies can be realised over a large 

propagation distance range [Fig. 1 (d)]. These are nontrivial results due to the complex dynamics involving 

the one- and two-photon states across a broad optical frequency spectrum. 

 

          
Fig. 1. (a) Coherent conversion of a pump photon into signal and idler photons. (b) Complete conversion of one photon into two 

at a finite distance for quadratic waveguide dispersion. (c) Forward and backward conversion between one- and two-photon states 

achieved by reversing the sign of the dispersion. (d) Robust conversion between one and two photons achieved through engineering 

higher-order frequency dispersion. 
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