Exploring higher order dispersion: Families
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Solitons

— Pulses unchanging in propagation
even in presence of dispersion and
nonlinearity

— Optical solitons widespread in
optical systems:

— Ultrafast pulse generation
— Supercontinuum generation

—Frequency Combs
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Image: Redor, I. (2019), Phys. Rev. Lett. 122, 214502
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Soliton Formation

— Kerr Nonlinearity: Leading edge — red shifted, Trailing edge —
blue shifted

— Dispersion: Phase velocity of light depends on frequency

— Anomalous Dispersion: Red light moves slower than blue light
(occurs when 2nd order dispersion is negative)
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Dispersion
dp 1 d23

— Modal propagation constant B: 8 =3, + 15\ @ —wo) + 55 (w - wp)?...

— Anomalous dispersion: high frequencies faster than low
frequencies

— Inverse group velocity monotonically decreasing with frequency
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Conventional Soliton
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Conventional vs PQS
Conventional

Pure Exponential Decay
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Pure Quartic Soliton
Exponential Decay with Oscillations
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Programmable Dispersion Solitons

— 2020 PQ)S laser constructed
generate soliton pulses

— Spectral pulse shaper induces
net cavity dispersion

— Programme any dispersion

— There exist infinite number of
dispersion profiles with inverse
group velocity decreasing
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Programmable solitons at any dispersion order?

Do they exist?
How do we study them in a systematic way?

— Searching for exact soliton solutions at any dispersion
order
— Characterising based on their properties
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Analytic Solution: Single Term

— Search for analytic solution

— Conventional Soliton:
) = A sech(ar)

— Karlsson and Hook solution in 4™ order:
Y = A sech?(ar)

— Predict analytic solutions of higher order of the form:

W = A sech™?(ar) n = highest

dispersion order

Karlsson M., H68k A., Optics Communi ications 104,
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Families of Analytic Solutions

— We use a known property of the 2" derivative of the
hyperbolic secant:  g2gech7(7)

7z = rsech” (1) — r(r + 1)sech”*2(7).

— We can match the hyperbolic secant terms at each power to
create a set of equations

Power of Hyperbolic Secant terms n = highest
generated by terms in the general NLS dispersion order
Function /P\ o~ = n/2
20d derivative / p \ / p+ 2\ p=n
4 derivative | [ p | |[ p+2 || p+4\
n'" derivative \ P / \p+2/ \p+4/ /p-l—n\
Nonlinear o/ \ 3p )
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Results at different orders

— Solutions with same o and
intensity, at highest
dispersion orders: p=3
(blue), p=5 (red), p=15
(yellow), p=50 (purple)

— Time and spectral
domains

— We can find the

associated dispersion
using the linear equations
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Two Term Generalisation

— Simplest generalisation: Look for two term solutions

— Consider solution of the form:

u = A, sech’ *(at) + A, sech” (aT)

— We once again match hyperbolic secant powers

— Finding associated dispersion more challenging (use linear

algebra)
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Multi-term Generalisation
— Consider solutions with arbitrary number of terms:

u = A; sech’"(ar) + Ay sech? "**(ar) + ... + A, sech?(ar)

— Equivalent process as previous solutions
— Analytic properties known

— Also apply matrix method to find associated dispersion
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Programmable solitons at any dispersion order?

— A superposition of hyperbolic secants is a very specific
ansatz

— All these solutions all have straight tails.
— What about oscillating tails like the PQS?

— How do we characterise these solutions?
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Linear Tail Solutions

— In the linear limit, we can look
at the low amplitude tails

— Tail solutions take the form:
AT

U ==c
— A real: Exponentially decay \

— A complex: Exponential decay @ ~
with oscillations
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Example: 6™ order case

4
— 6 roots for A in u = e _, (@) (b)
— Smallest real root dominates go ]
— Four solution types g, :
— (a) No pulse-like solution 4 ’
4
— (b) Exponential decay with =, © @
oscillations S L T+ 4 &
— (c) Exponential decay "Z‘?-z T S -
— (d) Exponential decay e

Real (A) Real (\)
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6™ order Parameter Space

— 3 dimensional parameter space (two cuts shown)

— All solution types represented
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Stationary Pulse-Like Solutions
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Conclusions

— Predict families of analytic solutions at high order dispersion

— Foundation for future numerical and experimental testing at
higher dispersion orders

— Generation of associated dispersion terms allows us to program
solutions experimentally

— Current numerical methods require accurate starting points

— Unique root structure to be further explored and understood for
multi-term solutions
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