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– Pulses unchanging in propagation 
even in presence of dispersion and 
nonlinearity

– Optical solitons widespread in 
optical systems:

–Ultrafast pulse generation

–Supercontinuum generation

– Frequency Combs

Solitons

Image: Redor, I. (2019), Phys. Rev. Lett. 122, 214502

Image: Marko et al.(2013) Disturbance of soliton pulse propagation 

from higher-order dispersive waveguides 
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– Kerr Nonlinearity: Leading edge – red shifted, Trailing edge –
blue shifted

– Dispersion: Phase velocity of light depends on frequency

– Anomalous Dispersion: Red light moves slower than blue light 
(occurs when 2nd order dispersion is negative)

Soliton Formation
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– Modal propagation constant β:

– Anomalous dispersion: high frequencies faster than low 
frequencies

– Inverse group velocity monotonically decreasing with frequency 

Dispersion
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– Nonlinear Schrödinger Equation:

– Analytic Solution:

Conventional Soliton

Zakharov, V.E. and Shabat, A.B. (1972) Journal of 

Experimental and Theoretical Physics, 34, 62
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Conventional vs PQS

Akhmediev N, et al. (1994) Opt. Commun. 110 540–544

Blanco-Redondo, A. et al. (2016) Nat. Commun. 7, 10427
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– 2020 PQS laser constructed 
generate soliton pulses

– Spectral pulse shaper induces  
net cavity dispersion

– Programme any dispersion 

– There exist infinite number of 
dispersion profiles with inverse 
group velocity decreasing

Programmable Dispersion Solitons

Runge, A.F.J. et al. Nat. Photonics 14, 492–497 (2020).

Runge, A.F.J. et al. Phys. Rev. Research 3, 013166, (2021).

Lourdesamy, J.P. et al. Nat. Physics 18, 59–66 (2022).
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Programmable solitons at any dispersion order?

Do they exist?

How do we study them in a systematic way?

– Searching for exact soliton solutions at any dispersion 
order

– Characterising based on their properties 
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– Search for analytic solution

– Conventional Soliton:

– Karlsson and Hook solution in 4th order:

– Predict analytic solutions of higher order of the form:

Analytic Solution: Single Term

n = highest 

dispersion order

Karlsson M., Höök A., Optics Communications 104, 

4–6, 303-307 (1994)
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– We use a known property of the 2nd derivative of the 
hyperbolic secant:

– We can match the hyperbolic secant terms at each power to 
create a set of equations

Families of Analytic Solutions

n = highest 

dispersion order

p = n/2
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– Solutions with same ⍺ and 
intensity, at highest 
dispersion orders: p=3 
(blue), p=5 (red), p=15 
(yellow), p=50 (purple)

– Time and spectral 
domains  

– We can find the 
associated dispersion 
using the linear equations

Results at different orders

Qiang, Y. L. et al. , J. Phys. A: Math. 

Theor. 55 385701. (2022)
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– Simplest generalisation: Look for two term solutions

– Consider solution of the form:

– We once again match hyperbolic secant powers

– Finding associated dispersion more challenging (use linear 
algebra)

Two Term Generalisation

Qiang, Y. L. et al. , J. Phys. A: Math. 

Theor. 55 385701. (2022)
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– Consider solutions with arbitrary number of terms:

– Equivalent process as previous solutions

– Analytic properties known

– Also apply matrix method to find associated dispersion

Multi-term Generalisation
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Programmable solitons at any dispersion order?

– A superposition of hyperbolic secants is a very specific 
ansatz 

– All these solutions all have straight tails. 

– What about oscillating tails like the PQS?

– How do we characterise these solutions?
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– In the linear limit, we can look 
at the low amplitude tails

– Tail solutions take the form:

– 𝜆 real: Exponentially decay

– 𝜆 complex: Exponential decay 
with oscillations 

Linear Tail Solutions

τ
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– 6 roots for λ in

– Smallest real root dominates

– Four solution types

– (a) No pulse-like solution

– (b) Exponential decay with 
oscillations

– (c) Exponential decay

– (d) Exponential decay

Example: 6th order case

Qiang, Y. L. et al. , Phys. Rev. A 105, 

2, (2022)
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– 3 dimensional parameter space (two cuts shown)

– All solution types represented

6th order Parameter Space

Qiang, Y. L. et al. , Phys. Rev. A 105, 

2, (2022)
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– Tail dominated by real roots

– Tail dominated by complex 
roots

– Solutions near a boundary 
between different types

Stationary Pulse-Like Solutions

Qiang, Y. L. et al. , Phys. Rev. A 105, 

2, (2022)
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– Predict families of analytic solutions at high order dispersion

– Foundation for future numerical and experimental testing at 
higher dispersion orders 

– Generation of associated dispersion terms allows us to program 
solutions experimentally 

– Current numerical methods require accurate starting points

– Unique root structure to be further explored and understood for 
multi-term solutions

Conclusions


