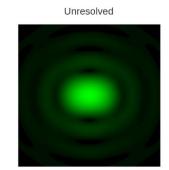
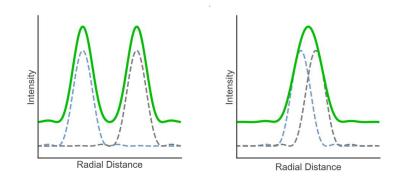
The Hanbury Brown and Twiss Experiment as a Tool for Emitter Localization

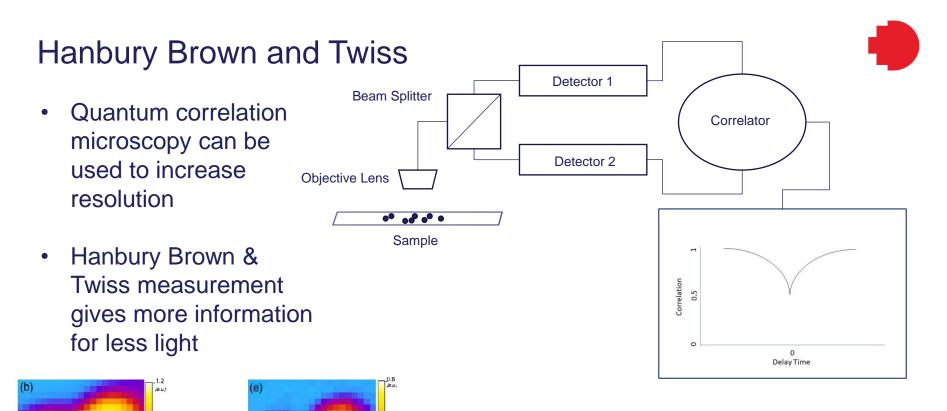
Jaret Vasquez-Lozano, Andrew Greentree, Shuo Li

RMIT – Centre of Excellence for Nanoscale BioPotonics


What's next...



Classical Diffraction Limit


- Due to the wavelike nature of light, classical microscopy has a diffraction limit
- There are new, diffraction unlimited microscopy techniques (STED, STORM, etc.)
- High resolution techniques may damage samples due to amount of light needed

Edinburgh Instruments, *The Rayleigh Criterion for Microscope Resolution*, https://www.edinst.com/de/news/the-rayleigh-criterion-for-microscope-resolution/

Monticone *et al.* (2014), Beating the Abbe Diffraction Limit in Confocal Microscopy via Nonclassical Photon Statistics, *Physical Review Letters* **113**

HBT Second Order Correlation Function

- Can be done for N emitters
- *P_i*: our point spread function (represent the intensity from emitters)
- Can also consider background

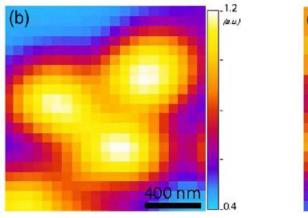
$$g_N^{(2)} = \frac{2\sum_{i=1}^{N-1}\sum_{j=i+1}^{N}P_iP_j}{\sum_{i=1}^{N}\sum_{j=1}^{N}P_iP_j}$$

Worboys *et al.* (2020), Quantum multilateration: Subdiffraction emitter pair localization via three spatially separate Hanbury Brown and Twiss measurements, *Physical Review A* **101**

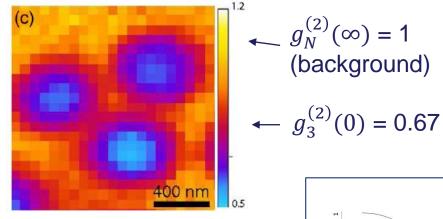
We are interested in correlation where Delay time = 0:

$$g_N^{(2)}(0)$$

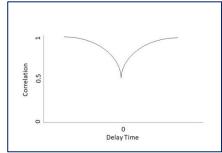
Expanded $g_N^{(2)}$ Functions (2 emitter version)


$$g_{2+bg}^{(2)}(0) = \frac{2(P_1P_2 + (P_1 + P_2)\mathcal{N}P_{bg} + \frac{(\mathcal{N}P_{bg})^2}{2})}{(P_1 + P_2)^2 + 2(P_1 + P_2)\mathcal{N}P_{bg} + (\mathcal{N}P_{bg})^2}.$$

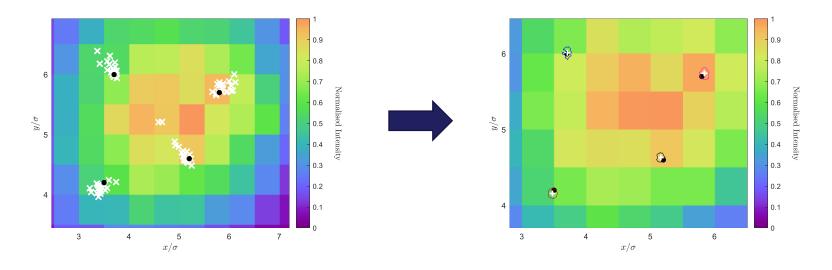
Background terms
$$g_{2+bg}^{(2)}(0) = \frac{2(c_{1,2} + (c_1 + c_2)\mathcal{N}c_{bg} + \frac{(\mathcal{N}c_{bg})^2}{2})}{(c_1 + c_2)^2 + 2(c_1 + c_2)\mathcal{N}c_{bg} + (\mathcal{N}c_{bg})^2}.$$


 $c_i = \text{poissrnd}(P_i t)$

Real measurement time dependant on brightness of emitters

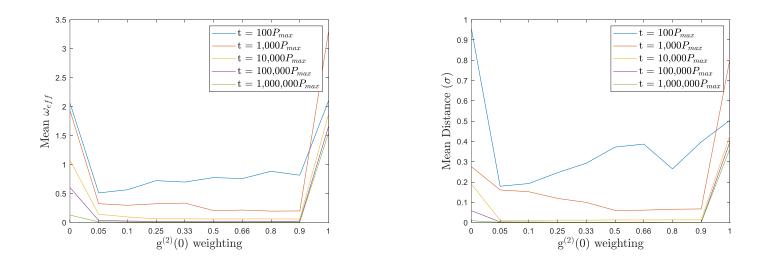

Appearance of $g_N^{(2)}(0)$

Intensity


 $g_N^{(2)}(0)$

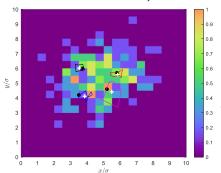
Monticone *et al.* (2014), Beating the Abbe Diffraction Limit in Confocal Microscopy via Nonclassical Photon Statistics, *Physical Review Letters* **113**

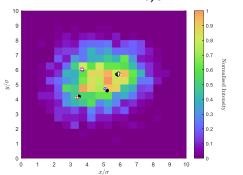
Effective Point Spread Function: ωeff


- We collect the results that are closest within an area up to the 39.5th result (i.e. standard deviation)
- We construct a polygon connecting those results

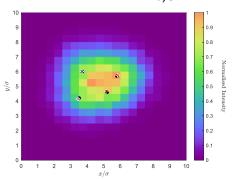
8

Residual Sum of Squares and Weighting

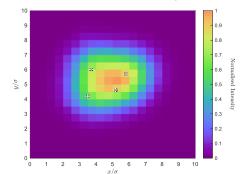

 $RSS = \alpha RSS_{Intensity} + \beta RSS_{Correlation}$

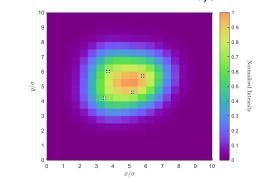


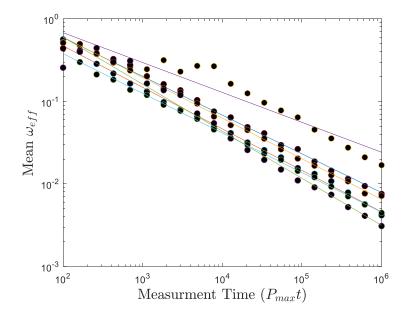
Effects of Increasing Measurement Time


 $t = 10 P_{i,0}$

 $t = 100 P_{i,0}$

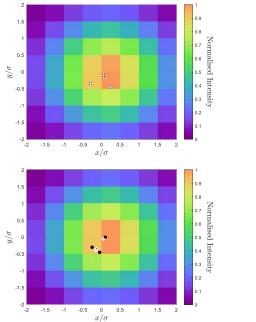


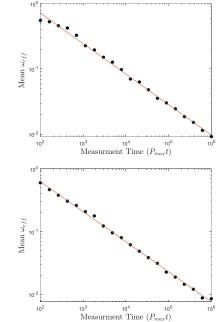

 $t = 1000 P_{i,0}$

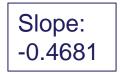

 $t = 10000 P_{i,0}$

 $t = 100000 P_{i,0}$

Time Scaling Laws

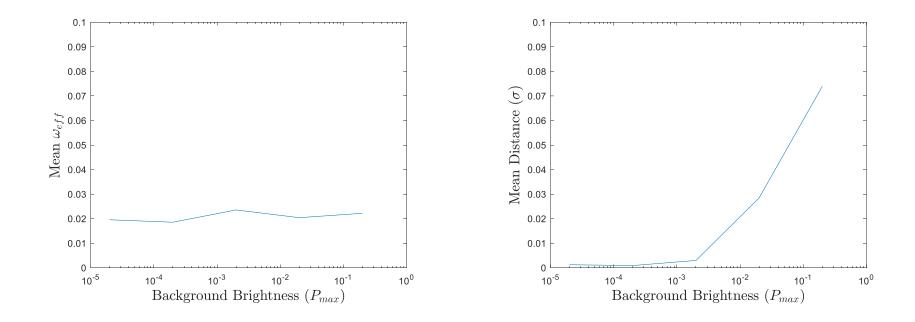

Slopes for configurations are approximately -0.5 as expected $(1/\sqrt{t})$.


$$y = x^{slope} exp^{intercept}$$



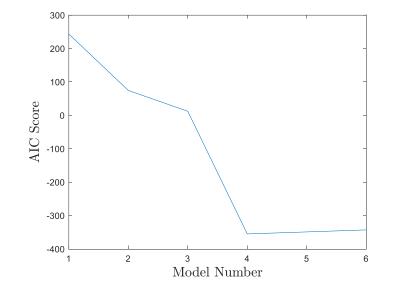

Time Scaling With Unequal Brightness and Background

• We can still expect $1/\sqrt{t}$ scaling



BG = 20%

Effects of Increasing Background Brightness



Akaike Information Criteria

 $AIC = 2k - 2ln(\hat{L})$ Penalty term Likelihood function

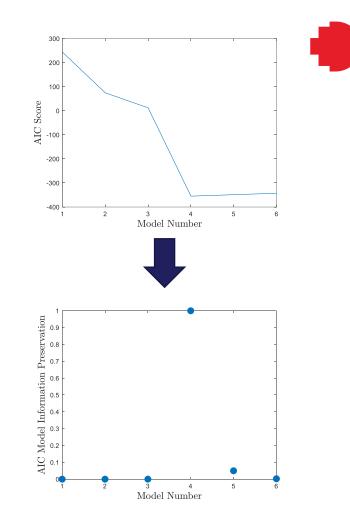
Modified to use RSS:

AIC = 2k + nln(RSS)

Akaike, H (1992), Information Theory and an Extension of the Maximum Likelihood Principle, *Breakthroughs in Statistics: Foundations and Basic Theory. Pages 610-624*

Burnham K., Anderson D., (2004), Multimodal Interference: Understanding AIC and BIC in Model Collection, *Sociological Methods & Research 2004 Vol. 33 Issue 2 Pages 261-304*

AIC scoring of configuration with 4 emitters. Model Number corresponds to number of emitters being used to fit data. Lower score corresponds to better model. Akaike Information Criteria – Part 2

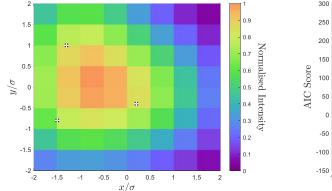

Likelihood of minimizing information loss:

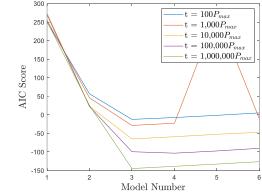
$$\exp(\frac{AIC_{min} - AIC_i}{2})$$

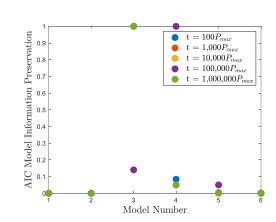
A small difference between AIC scores may seem trivial (e.g. -360 vs -350), but it is this small difference that is interpretable since AIC has large scaling constants.

(AIC 4: 1.00)

AIC 4 vs AIC 5: 0.0351 AIC 4 vs AIC 6: 0.0014


AIC for Predicting Emitter Amounts


• Could be used to help determine the number of emitters located in an ambiguous region



AIC with Ambiguous Emitter Amounts

- Ambiguous cases can still occur. May not be viable to use AIC as the only tool for emitter number estimation
- Can be caused by close emitters, far emitters and high backgrounds

Here, for some time steps, models with the incorrect number of emitters are predicted

Acknowledgments

Andrew Greentree Shuo Li Brant Gibson

Thank you to the RMIT – CNBP Team

Contact at: Jaret.vaslo@gmail.com This work was funded by the Air Force Office of Scientific Research (FA9550-20-1-0276). ADG also acknowledges funding from the Australian Research Council (CE140100003 and FT160100357).