Silicon photonics with T centre spin-photon devices

D. B. Higginbottoma,b, A. DeAbreua,b, C. Bownessa,b, L. A. Stotta,b, N. A. Brunellea,b, J. Kanaganayagama,b, M. Keshavarza,b, S. Hosseinia,b, A. Alizadeha,b, M. Ruethera,b, M. L. W. Thewalta, S. Simmonsa,b

aDepartment of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
bPhotonic Inc., Coquitlam, British Columbia V5A 1S6, Canada.

Silicon is an ideal platform for commercial quantum technologies: it unites advanced integrated photonics and microelectronics, as well as hosting record-setting long-lived spin qubits. In this talk I will present advances towards an on-chip spin-network with the T centre, a spin-photon colour centre native to silicon that emits into an advantageous optical telecommunications band. Earlier studies demonstrated that the T centre features long-coherence electron and nuclear spin qubits [1] and may be isolated singly in integrated devices for confocal microscopy [2]. Here I present the first waveguide-coupled T centre devices. First, we characterize the spin and optical performance of ensembles implanted in single-mode waveguides. The homogeneous linewidth we measure, 30(10) MHz, is an order of magnitude improvement over earlier devices [2]. Second, single centres are measured in waveguide-coupled nanophotonic cavities. Lifetime measurements indicate substantial Purcell enhancement of the optical transitions. Additional spectroscopy of ensembles in isotopically enriched 28Si illustrates how networked devices may be operated. These integrated spin-photon devices are manufactured on a commercial silicon photonic platform boasting low loss passive and active components, optical switches, high efficiency coupling to industry-standard telecom fibre, and near-unit efficiency single photon detectors. These elements may be assembled to create a completely on-chip spin-photon network that readily interfaces with optical fibres for long-range communication over the quantum internet.