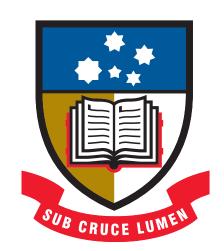
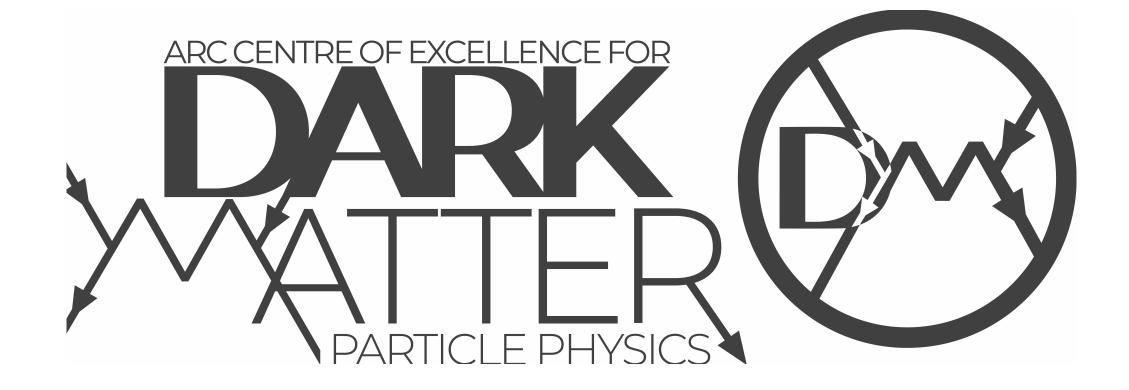
Scattering amplitudes of massive spin-2 Kaluza-Klein particles in Extra Dimensions

Phys.Rev.D 101 (2020) 7, 075013 Phys.Rev.D 100 (2019) 11, 115033 Phys.Rev.D 101 (2020) 5, 055013 Phys. Rev. D 103, 095024 PRD XXX



DIPAN SENGUPTA

With R. Sekhar Chivukula (UCSD), Dennis Foren (UCSD), Kirtimaan A. Mohan (MSU) and Elizabeth H. Simmons (UCSD)



Perturbative Quantum Field Theories describe a physical system until some high energy scale

For renormalizable theories in d space-time dimensions, the scale is determined by the fundamental couplings of the theory

EFT action in d dimensions

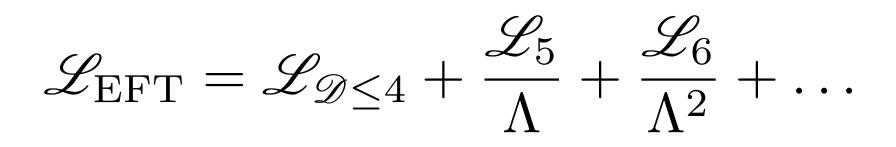
$$S = \int d^{\mathsf{d}} x \, \mathscr{L}(x) \qquad [\mathscr{L}(x)] = \mathsf{d} \qquad \mathscr{L}(x) = \sum_{i} c_{i} \, O_{i}(x)$$
$$S = \int d^{\mathsf{d}} x \, \frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi \qquad S = \int d^{\mathsf{d}} x \, \bar{\psi} \, i \not \partial \, \psi$$
$$[\phi] = \frac{1}{2} (\mathsf{d} - 2) \qquad [\psi] = \frac{1}{2} (\mathsf{d} - 1)$$

EFT Expansion

$$\mathscr{L}_{\rm EFT} = \sum_{\mathscr{D} \ge 0, i} \frac{c_i^{(\mathscr{D})} O_i^{(\mathscr{D})}}{\Lambda^{\mathscr{D} - d}} = \sum_{\mathscr{D} \ge 0} \frac{\mathscr{L}_{\mathscr{D}}}{\Lambda^{\mathscr{D} - d}}$$

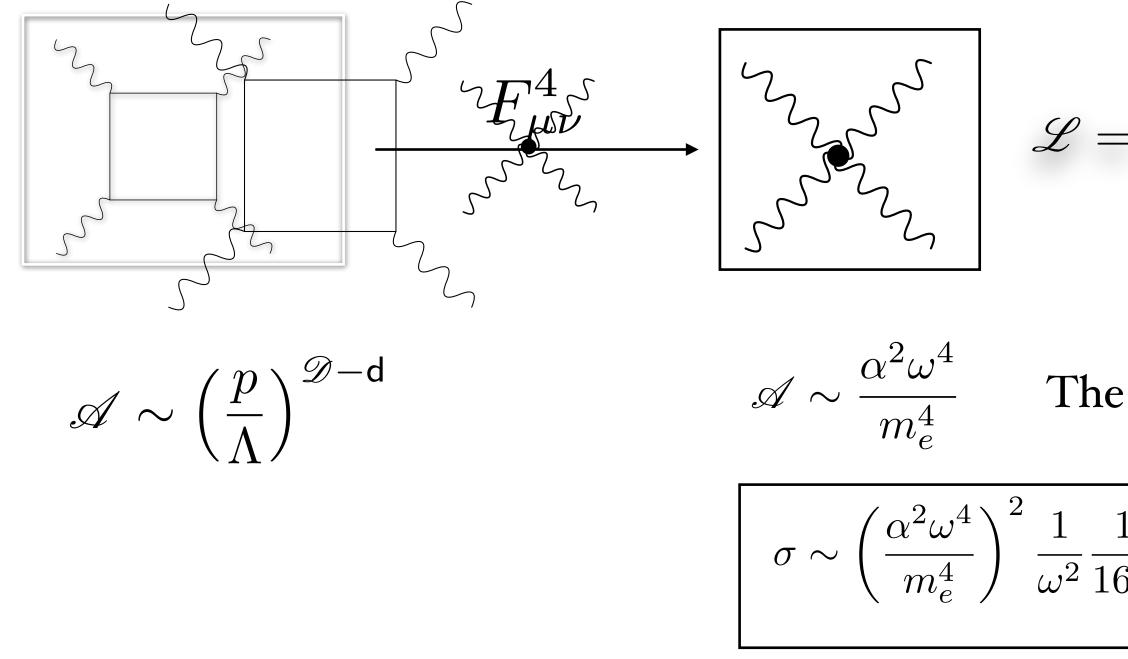
The validity of a Quantum Field Theory

Operator expansion with coefficients



How do we understand the validity of an EFT?

Through Scattering Amplitudes



What if I did not know about gauge invariance in nature?

$$\mathscr{L} = c \, \alpha^2 (A_\mu A^\mu)^2$$

$$\sigma\sim lpha^4/(16\pi\omega^2)$$
 The

The validity of a Quantum Field Theory

$$= -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{\alpha^2}{m_e^4} \left[c_1 \left(F_{\mu\nu}F^{\mu\nu} \right)^2 + c_2 \left(F_{\mu\nu}\tilde{F}^{\mu\nu} \right)^2 \right] + \dots$$

The mass of the electron determines the validity of this EFT

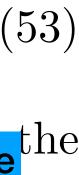
$$\frac{1}{6\pi} \sim \frac{\alpha^4 \omega^6}{16\pi m_e^8}$$

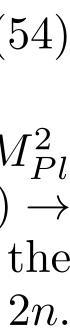
ratio $10^{48}!$

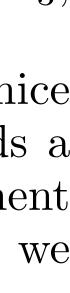
• •

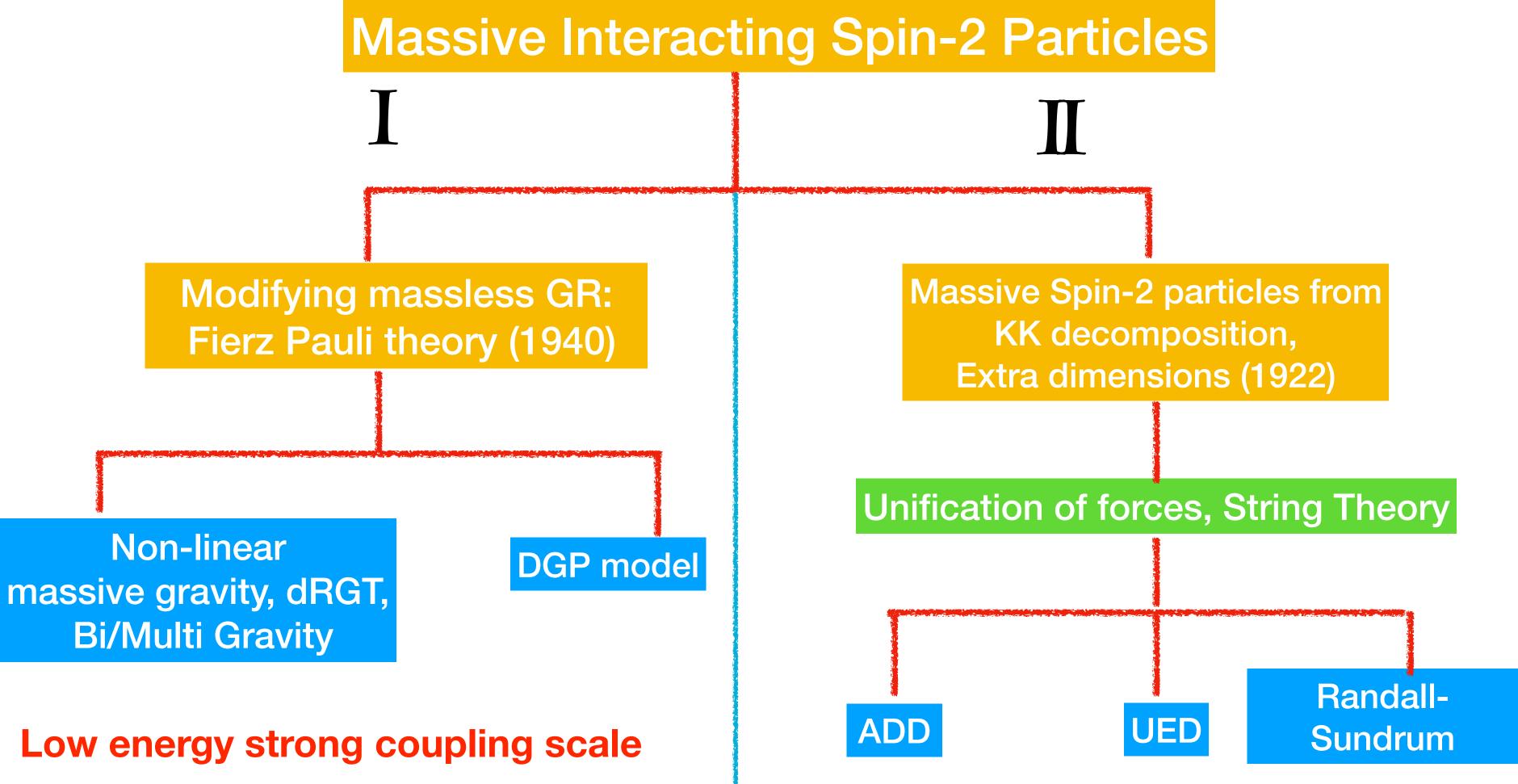
torusistication is the leaver that the property of the state of the s $\text{in the set of the$ of freedom Sim he underlying 5D the 56 r Any catendation scattering satisfies and satisfies 10^{-1} A spin-2 particle 10^{-1} where we ex-

Tams will encounter a high energy growthe and the set of the station therefore appears at the set of the set o $-256\pi r_{c}$ Lot fined mini the underlying 5D theory and vertex sections state ing state and statistics -1all bits in the particular present is concernent of the **Charles of the Concernent** is conserved, and vanishes all bits in the two intervention of the **Charles of the Charles of t**









arXiv: 1105.3735 (Hinterbichler) arXiv: 1401.4173 (De-Rham)

Invitation: Massive Spin-2 particles and where to find them

- **EFT** scale determined by underlying 5D theory
- Compactified on a flat torus : 5D Planck scale
- AdS : Curvature determines emergent scale

Massive Spin-2 particles, Fierz-Pauli Theory and beyond

Massless GR :

$$S_G = \int d^4x \sqrt{g}R$$

Diffeomorphism/Gauge Invariance/Co-ordinate Invariance :

D.O.F counting in d dimensions for the massless graviton

Fierz-Pauli theory : 1940

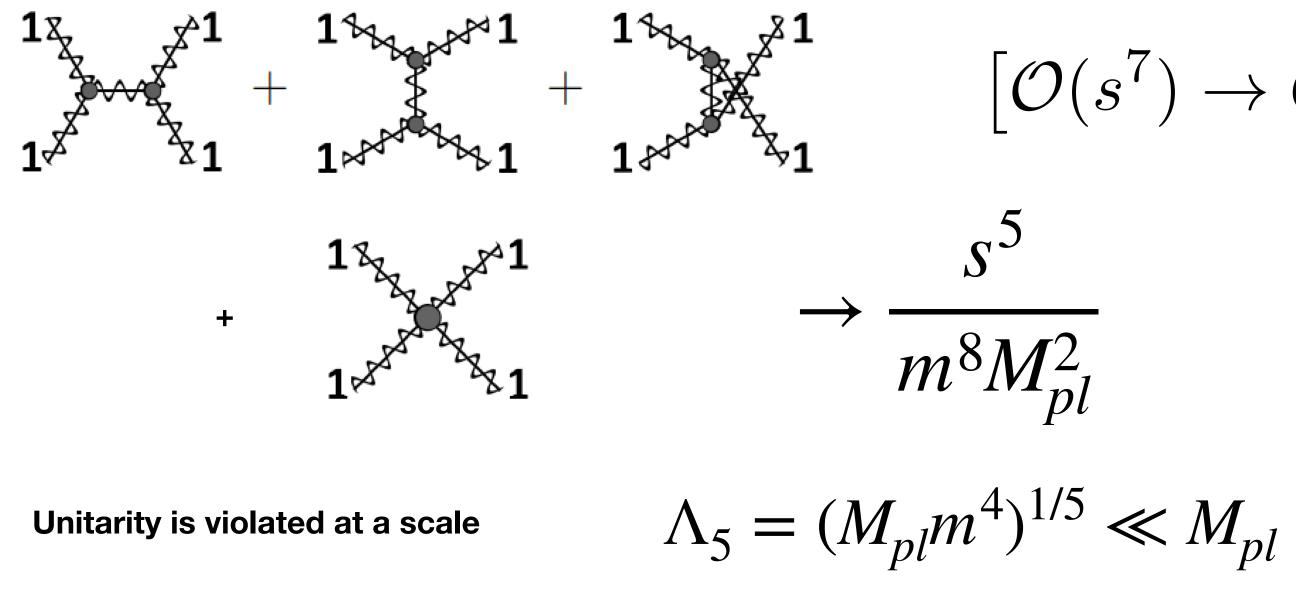
$$S_G = \int d^4x \sqrt{g}R + m^2((h_{\mu\nu})^2 - h^2)$$

$$h_{\mu\nu} \to h_{\mu\nu} + \partial_{(\mu}\xi_{\nu)}$$

$$d(d+1)/2 - 2d = d(d-3)/2$$

D.O.F for d=4 : 2 D.O.F for d=4 : 5

Low Energy Scale in Massive Gravity



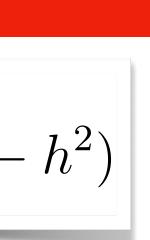
Fierz-Pauli theory and extensions

- **1.** Resembles a Brans-Dicke theory.
- 2. Does not reduce to GR in the massless limit (van-Dam Veltman Zakahrov (vDVZ) discontinuity).
- 3. Vainshtein -> vDVZ discontinuity artifact of the linear theory, (Vainshtein screening).
- **4.** Boulware-Deser -> Generic non-linear extensions of FP theory introduces ghosts.
- 5. dRGT theory (2010) -> A ghost free construction of massive gravity by tuning generic coefficients

 $\left[\mathcal{O}(s^7) \to \mathcal{O}(s^5)\right] \qquad S_G = \int d^4x \sqrt{g}R + m^2((h_{\mu\nu})^2 - h^2)$

Van Damn-Veltman-Zakharov (VDVZ) discontinuity : 1963

<u>De-Rham, Gabadadze, Tolley (2010)</u> Cheung and Remen (2018) **Bonifacio, Rosen, Hinterbichler(2019)** Georgi, Arkani-Hamed, Schwartz(2001) Schwartz (2003)



Extra Dimensions

- Soon after Einstein published, Theodore Kaluza suggested a 4th space dimension
 - (5th spacetime dimension).
- WHY?

He recognised that gravity in the extra dimension would look like electromagnetism in regular space!

But wouldn't we notice another dimension?

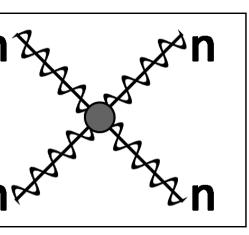
Why should I care about compactified theories

Why should I care about compactified theories

$\rightarrow h^{(n)}h^{(n)}$

ocess, seven

8n **n**



ation for Extra Dimensions came from ry (1980s)

nensions are predicted in consistent string

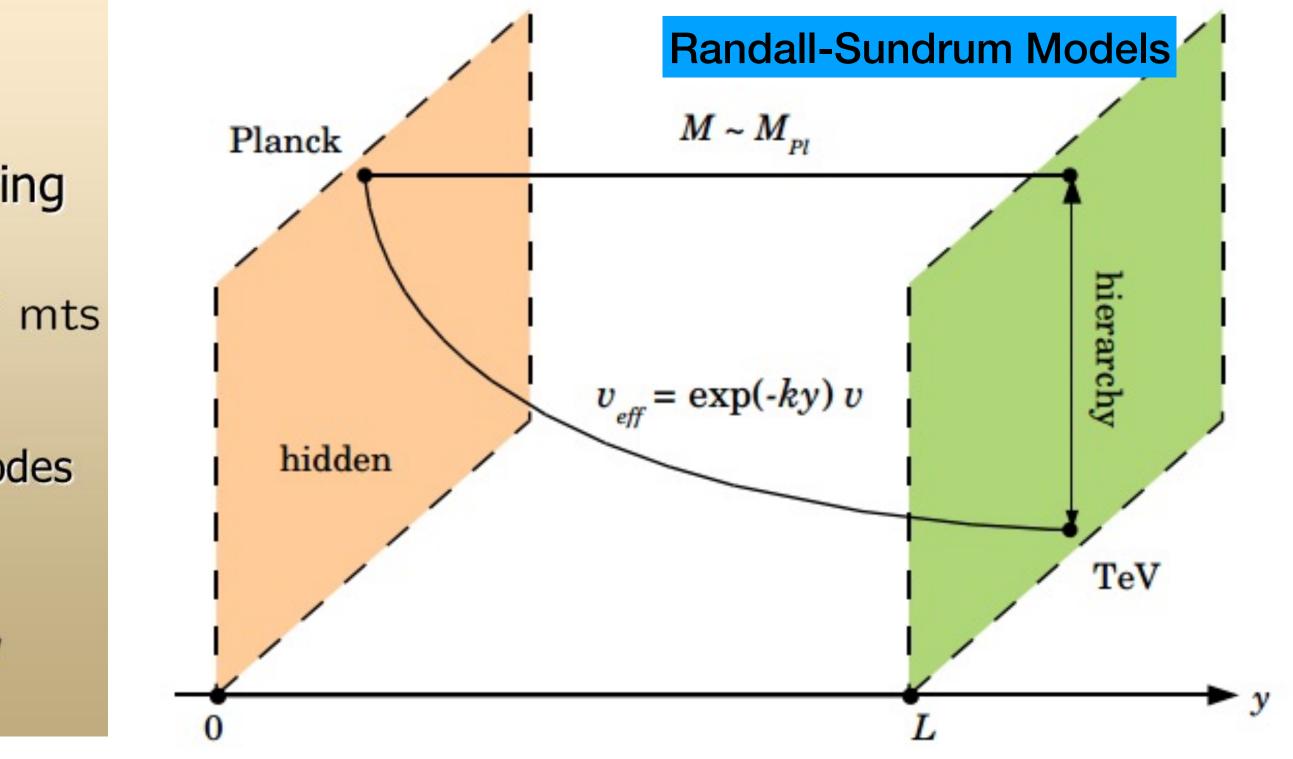
considered to be tiny small $l_P \sim 10^{-34}$ mts

 Higher dimensional fields decompose in massless modes plus modes with masses

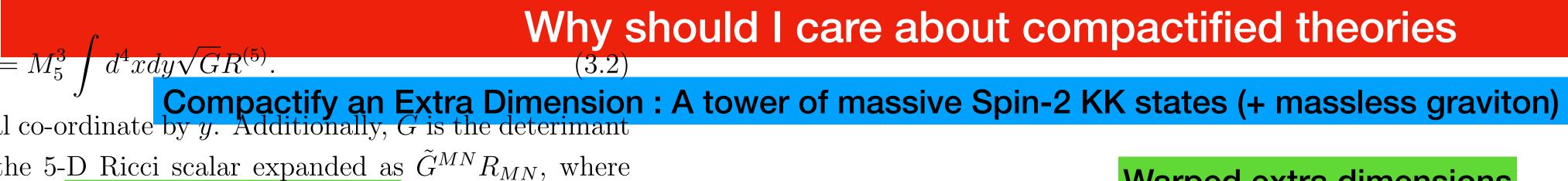
 $m_{KK} \sim n/R \sim nM_P$

ED effects irrelevant at low energies

 $\mathcal{S}_{5D_{26/38}}^{EH} \propto \frac{1}{M_5^3} \int d^5 x \sqrt{-g} R_{5D}$



5D diffeomorphism with a 5D Planck mass



and **Reat extra dimensions** We denote the 5-

s related to the 4-D Planck mass by $M_5^3 = M_{Pl}^2/L$.

verse and dysterminant is detailed in Appendix r. Apl. to expand the fields in fourier modes over the 5-R

$$(x, y) = \sum_{n = -\infty}^{\infty} h_{\mu\nu, n}(x) e^{i\omega_n y}$$

 $= M_5^{3}$

Choose even solutions on $[-\pi r_c, \pi r_c] \implies$ massless particles $(x,y) = \sum \rho_{\mu}(x,n)e^{i\omega_n y}$

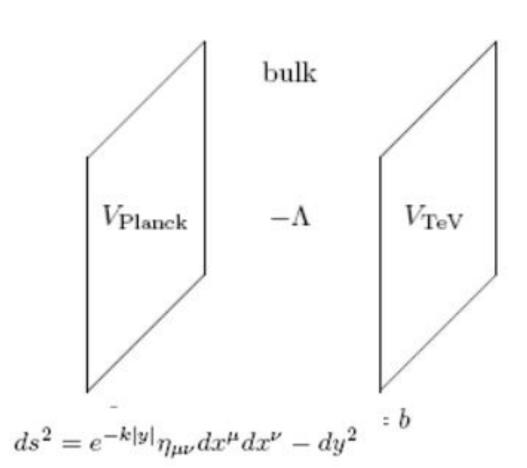
$$(3.3)$$

$$r(x, n)e^{i\omega_n y}$$

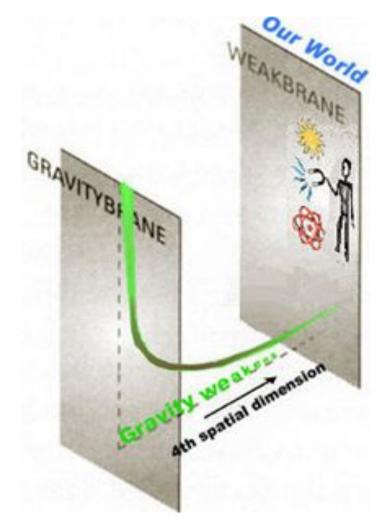
ourier expansion imposes, $\int_0^L dy e^{(i\omega_m y)^*} e^{i\omega_n y} =$ tensor, vector, and a scalar as $h_{\mu,\mu}(x)$, $\rho_{\mu}(x)$ y of the 5-D fields impose,

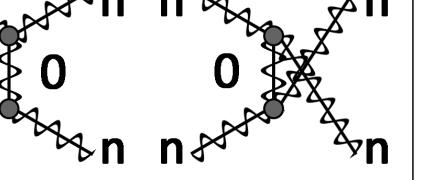
$$_{\mu\nu,-n}, \ \rho_{\mu}^{*}{}_{n} = \rho_{\mu,-n}, \ r_{n}^{*} = \phi_{-n}.$$

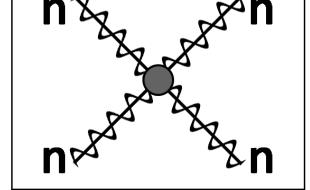
Why should I care about compactified theories



Warped extra dimensions







 $\mathcal{S}_{5D}^{EH}_{26/38} \propto \frac{1}{M_5^3} \int d^5 x \sqrt{-g} R_{5D}$

High energy growth

Coupled channel analysis

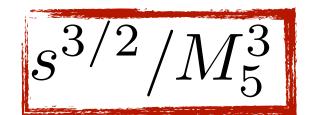
Examine Strong

A. Flat Extra dimension compactified on a torus **B.** The Randall Sundrum Model (ADS)

5D diffeomorphism with a 5D Planck mass

Compactification (IR phenomenon) should not change the high energy (UV) behavior,

$$s/M_{Pl}^2$$



metric inverse and determinant is detailed in Appendix Appendix of the spectively. The 5-D massless symmetric tensor h_{MN} , allows us to expand the fields in formation of the fields in formation of the fields in a second to be a second freedom is split intora tensor ad, $\begin{array}{cccc}
\mathbf{0} & \mathbf{x}^{\mu} & 5-D \\
h_{\mu\nu,n}(x)e^{i\omega_n y} \end{array} \text{ action is given by,}
\end{array}$ $h_{\mu\nu}(x,y) =$

 $n = -\infty$

Choose even solutions on the tenther of the strate of the state of the $h_{\mu 5}(x,y) = \sum \rho_{\mu}(x,n) e^{i\omega_n y}$ of the 5-D metric and $R^{(5)}$ is the 5-D Ricci scalar expanded as $\tilde{G}^{MN}R_{MN}$, where \tilde{G}_{MN} is the 5-D metric inverse, and R_{MN} the 5-D Ricci tensor. We denote the 5 $n = -\infty$ $h_{55}(x,y) = \left| \sum_{\substack{m=0\\m\neq n}}^{\infty} (x \left(n \frac{\bar{\gamma} \hat{e}}{\bar{\gamma} e}^{i} (\tilde{\eta}_{\mu}^{n} y + \kappa \hat{h}_{m}) \right) = 0 \right) \left(x \left(n \frac{\bar{\gamma} \hat{e}}{\bar{\gamma} e}^{i} (\tilde{\eta}_{\mu}^{n} y + \kappa \hat{h}_{m}) \right) \right) \right) \right|_{1}^{\infty} (x + \kappa \hat{h}_{m}) = 0 \right|_{1}^{\infty} (x + \kappa \hat{h}_{m}) = 0$ which is related to the 4-D Planck mass by $M_{5}^{3} = M_{Pl}^{2}/L$. metr Parametrized for Canonical kinetic and mass presents A1.The compactification allows us to expand the fields in fourier modes over the 5-D co-ordinates. These read,

that characterizes t v of the fourier expandent of the fourier expansion of the fourier expa ken to a tensor, ver $S = M_5^3 \int d^4x dy \sqrt{G} R^{(5)}$ Integra branes (at y = 0 and πr_c) with the ally, reality of the 5-**Discrete momentum conservation in** $\eta_{MN} = \text{Diag}(+1, -1, -1)$

$$h^*_{\mu\nu,n} = h_{\mu\nu,-n}, \ \rho^*_{\mu,n}$$

at one of those branes (flat 4D

approxipactificontheories Micrositon ded Toras $g_{\mu\nu} = \eta_{\mu\nu} + \kappa_{4D}h_{\mu\nu}$, where κ_{4D} is a small coupling (weak field expansion parameter). The fields r and ρ_{μ} are the with two transvers Degibisolded torus, a vector ρ_{μ} with two transverse degrees of freedom, and a scalar degree of freedom in r. The

$$S = M_5^3 \int d^4x dy \sqrt{G} R^{(5)}.$$
 (3.2)

$$\begin{array}{l} \text{Dimension, } \lim_{\mu \nu} (x, y) = \lim_{\mu \nu} \mathbb{RS} \\ h_{\mu\nu,n}(x) e^{i\omega_n y} \\ \text{ate over extra dimension: EFT with a cut off} \\ \text{tra dimension between two 4D} \\ \text{extra dimensions} \xrightarrow{\rho_{\mu}(x, n)} e^{i\omega_n y} \\ \text{extra dimensions} \xrightarrow{\rho_{\mu\nu}(x, n)} e^{j\omega_n y} \\ \text{tra dimensions} \end{array}$$

$$(3.3)$$

- $Diag(\pm 1, \pm 1, \pm 1, \pm 1, \pm 1)$ is the hat 4D method. elstam variable $s \equiv (p_{i_1} + p_{i_2})^2 = (E_{i_1} + E_{i_2})^2$ So convenient frame frame

 $f_{\text{Fe}}^{y}(k,l) \to (m,n) \text{ Scattering may proceed via} \mathcal{M}_{2\to 2} \to \mathcal{O}(s^5)$ eral diagrams, which we₁organize into the sets $\overline{B}^{\alpha\beta} \equiv \eta^{\alpha\beta} - \frac{\eta^{\alpha\beta}}{M^2} \delta_{0,M}^{\beta}$ many massive spin-2 modes.

 $M_{n}^{\mu\nu} = D_{n}^{\mu} (+1, -1, -1, -1) \text{ is the fat } 4D \text{ (metric below of the second where the second with the second where the second with the second$ vides a convenient frame invariant measure of colli-litude $\mathcal{M}_{nn\to nn}$ at $\mathcal{O}(\kappa^2)$. seenwigh klarger nt, has cathering the produce asses, the apfzaterondia dramany sistere spinnize propagatorn and cribed in Fig. (The total tree-level matrix element derivago like $\mathcal{O}(s)$. Meanwhile, the B-Type in- $n \to n$ in $\mathcal{O}(k)$ and the massive sypropagators fall $\sum \mathcal{M}_{nn \to nn}^{(k)} s^k$). Thus, we naively $expect_{j=0}$

energies much larger than the external masses, the

K

(AG)

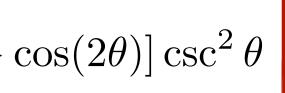
′ 38

Compactified theories: Orbifolded torus

	s^5	s^4	s^3	s^2
$\mathcal{M}_{contact}$	$-\frac{\kappa^2 r_c^7 [7 + c_{2\theta}] s_{\theta}^2}{3072 n^8 \pi}$	$\frac{\kappa^2 r_c^5 [63 {-} 196 c_{2\theta} {+} 5 c_{4\theta}]}{9216 n^6 \pi}$	$\frac{\kappa^2 r_c^3 [-185{+}692c_{2\theta}{+}5c_{4\theta}]}{4608 n^4 \pi}$	$-\frac{\kappa^2 r_c [5+47 c_{2\theta}]}{72 n^2 \pi}$
\mathcal{M}_{2n}	$\frac{\kappa^2 r_c^7 [7 + c_{2\theta}] s_{\theta}^2}{9216 n^8 \pi}$	$\frac{\kappa^2 r_c^5 [-13{+}c_{2\theta}] s_{\theta}^2}{1152 n^6 \pi}$	$\frac{\kappa^2 r_c^3 [97 + 3 c_{2\theta}] s_{\theta}^2}{1152 n^4 \pi}$	$\frac{\kappa^2 r_c [-179 + 116 c_{2\theta} - c_{4\theta}]}{1152 n^2 \pi}$
\mathcal{M}_0	$\frac{\kappa^2 r_c^7 [7 + c_{2\theta}] s_{\theta}^2}{4608 n^8 \pi}$	$\frac{\kappa^2 r_c^5 [-9{+}140 c_{2\theta} {-}3 c_{4\theta}]}{9216 n^6 \pi}$	$\frac{\kappa^2 r_c^3 [15 {-} 270 c_{2\theta} {-} c_{4\theta}]}{2304 n^4 \pi}$	$\frac{\kappa^2 r_c [175 + 624 c_{2\theta} + c_{4\theta}]}{1152 n^2 \pi}$
\mathcal{M}_{radion}	0	0	$-\frac{\kappa^2 r_c^3 s_\theta^2}{64 n^4 \pi}$	$\frac{\kappa^2 r_c [7 + c_{2\theta}]}{96n^2 \pi}$
Sum	0	0	0	0

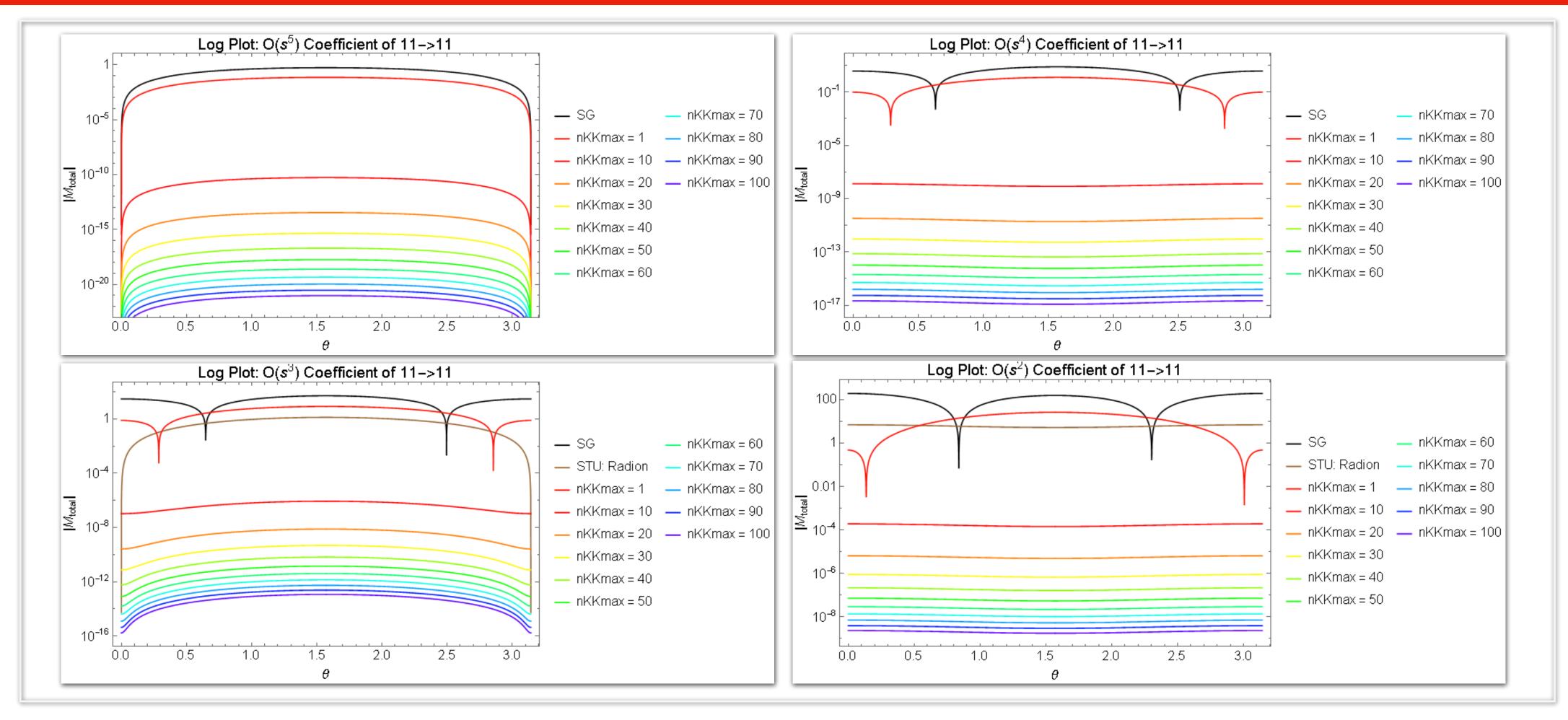
$$\overline{\mathcal{M}}^{(5)} = \overline{\mathcal{M}}^{(4)} = \overline{\mathcal{M}}^{(3)} = \overline{\mathcal{M}}^{(2)} = 0 \qquad \overline{\mathcal{M}}^{(1)} = \frac{x_{klmn}\kappa^2}{256\pi r_c} \left[7 + e^{\frac{\pi}{2}}\right]$$

Can be proved analytically from symmetry arguments and Sturm-Liouville Theory of compact dimensions



Amplitude grows as

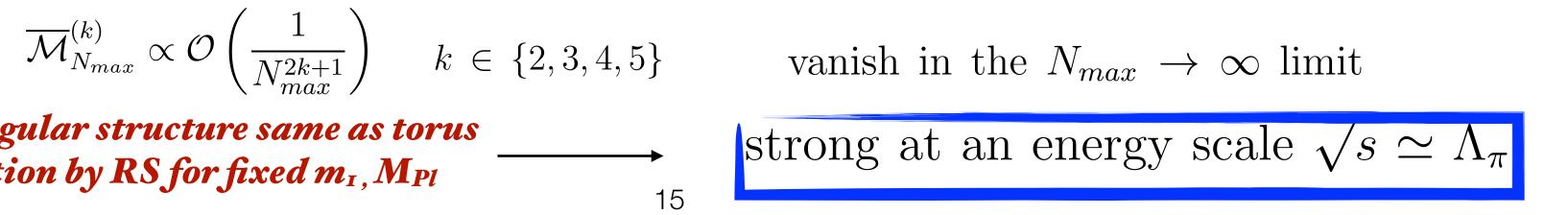
Compactified theories: Randall Sundrum model



Cancellations a function of intermediate KK states, ideally sum to infinity, limited by machine precision

Residual s growth : Angular structure same as torus Divide torus contribution by RS for fixed m_1 , M_{Pl}

Residual growth



ere θ is the center-of-mass

$$\sqrt{-g_h}\lambda_h \left(\Phi^2 - v_h^2\right)^2$$

$$\sqrt{-g_v}\lambda_v\left(\Phi^2-v_v^2\right)^2$$

o ensure the effective 4D the earlier 5DOT metric

Mix the radial model of the metric (G_{55}) with the bulk scalar -> Generate an effective potential

$$V_{\Phi}(r_c)$$
Minimize $kr_c = \left(\frac{4}{\pi}\right) \frac{k^2}{m^2} \ln \left[\frac{v_h}{v_v}\right]$ StabilizationRadion Mass $\frac{k^2 v_v^2}{3M^3} \epsilon^2 e^{-2kr_c \pi}$ Changes Background M

U

- No dynamical mechanism for the radius
- Matter on the brane + massless scalar metric fluctuation
- = Brans-Dicke theory

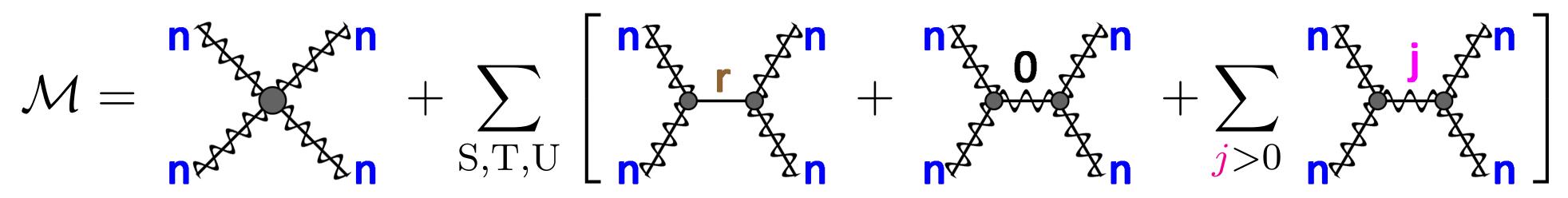
nsure the effective

, une earlier 5DOT n

n from Dynamics

letric : Changes the description of the 4D EFT

Contributions to the matrix Element



Add a naive mass term for the radion → massive radion propagator

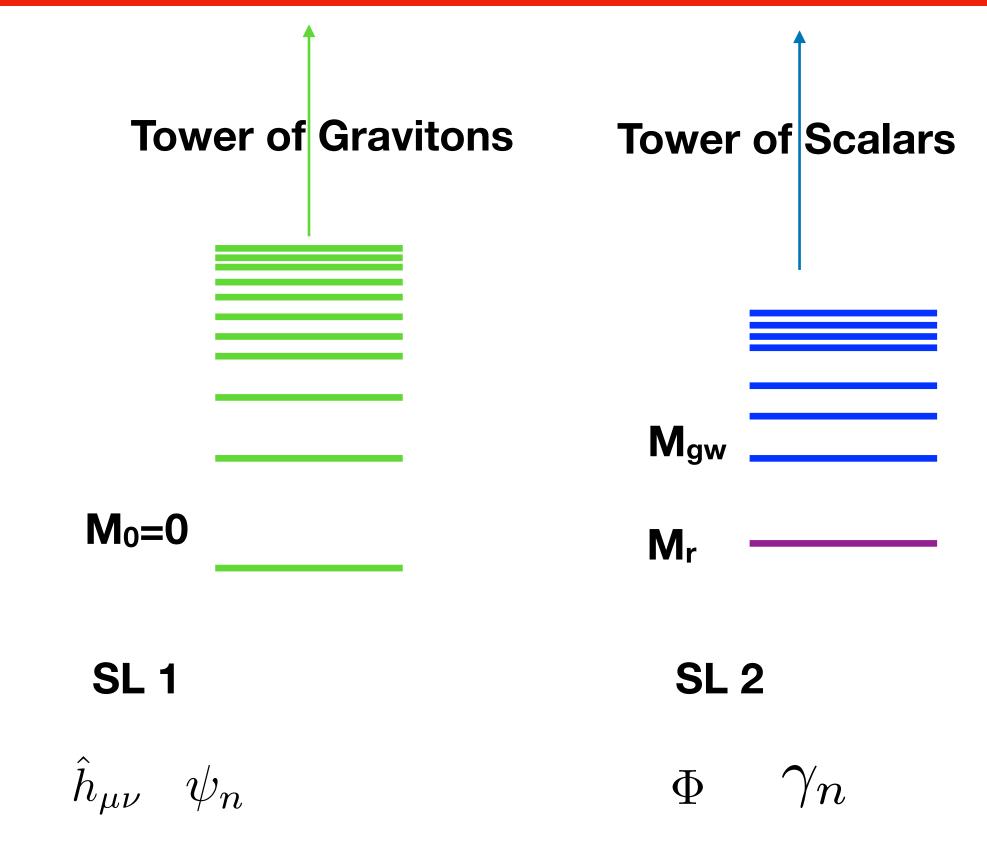
$$\mathcal{M} \propto rac{s^2 m_r^2}{\Lambda_\pi^2 m_n^4}$$

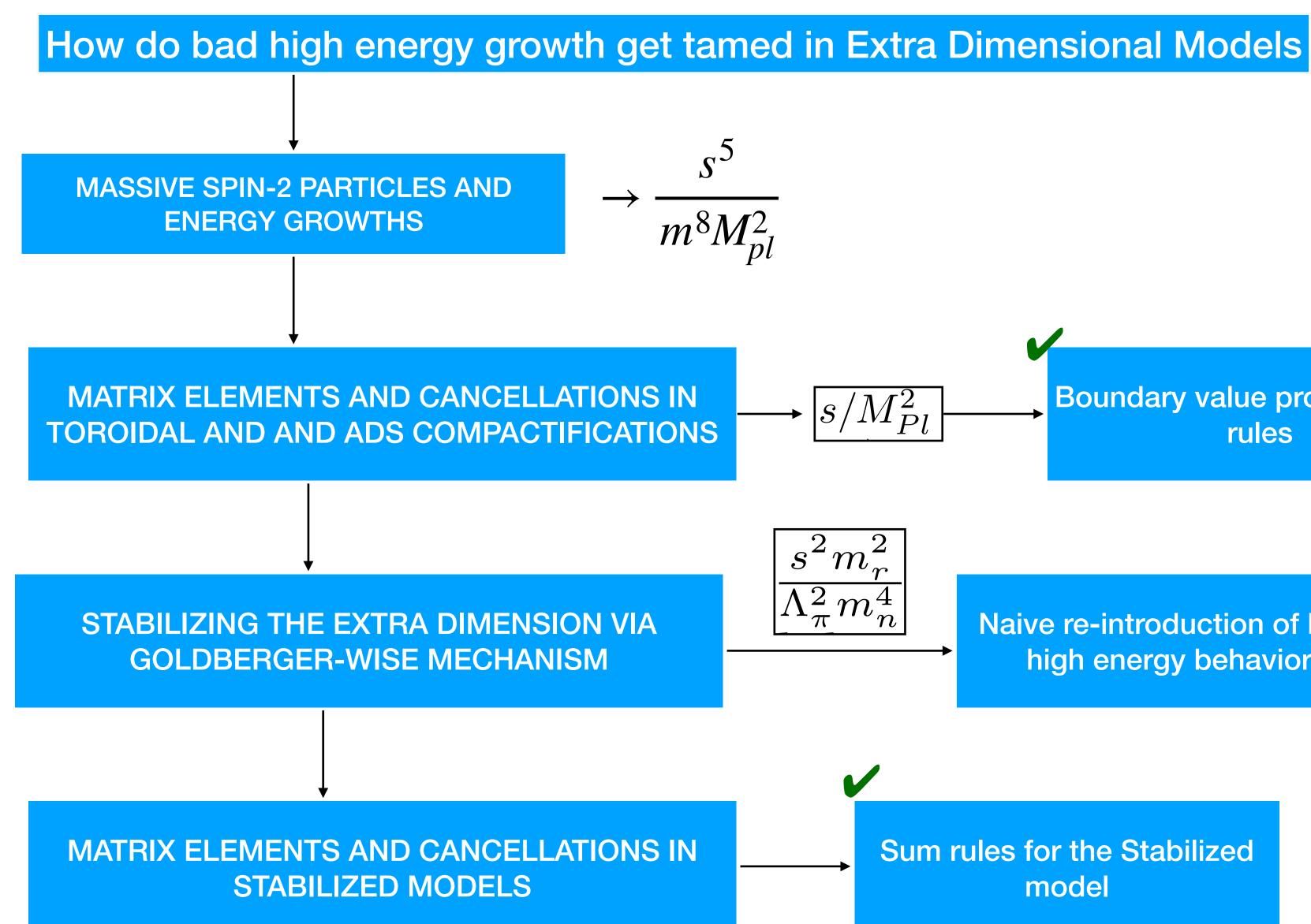
Conjecture : Contribution must cancel from from the dynamics of the larger problem

Re-introduction of a low energy cut-off

SL problem of the Stabilized model

- Two Connected SL problems
- Radion piece must cancelled by a combination GW scalars and gravitons





Summary -again

Boundary value problem, Sum rules

Naive re-introduction of bad high energy behavior

Sum rules for the Stabilized model

Conclusions and perspective

- **Compactified theories of extra dimensions -> No low energy cut-off**
- Cancellations due to different diagrams reduce O(s⁵) growth to O(s).
- No low energy cut-off for consistent models of stabilization
- Uncovered sum rules enforcing this cancellation
- Can show -> Analysis extends to matter on brane or bulk
- Consistent with literature on massive gravity.
- Pheno papers : Doing an unitarity analysis for DM models, ultralight radion as a candidate ...
- Theory papers : Spinor Helicity calculation ? More connections with massive gravity community ...

Possible to double-copy a compactified gauge theory to compactified gravity for flat toroidal compactification