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The validity of a Quantum Field Theory

✤ Perturbative Quantum Field Theories describe a physical system until some high energy scale

✤ For renormalizable theories in d space-time dimensions, the scale is determined by the fundamental couplings of the theory 

4

Power Counting

The EFT functional integral is
Z

D� eiS , (4.1)

so that the action S is dimensionless. The EFT action is the integral of a local La-
grangian density

S =

Z
ddx L (x) , (4.2)

(neglecting topological terms), so that in d spacetime dimensions, the Lagrangian
density has mass dimension d,

[L (x)] = d , (4.3)

and is the sum

L (x) =
X

i

ci Oi(x) , (4.4)

of local, gauge invariant, and Lorentz invariant operators Oi with coe�cients ci. The
operator dimension will be denoted by D , and its coe�cient has dimension d� D .

The fermion and scalar kinetic terms are

S =

Z
ddx  ̄ i/@  , S =

Z
ddx

1

2
@µ�@

µ�, (4.5)

so that dimensions of fermion and scalar fields are

[ ] =
1

2
(d� 1), [�] =

1

2
(d� 2). (4.6)

The two terms in the covariant derivative Dµ = @µ + igAµ have the same dimension,
so

[Dµ] = 1, [gAµ] = 1 . (4.7)

The gauge field strength Xµ⌫ = @µA⌫ � @⌫Aµ + . . . has a single derivative of Aµ, so
Aµ has the same dimension as a scalar field. This determines, using eqn (4.7), the
dimension of the gauge coupling g,
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20 Power Counting

� for a scalar,  for a fermion, Xµ⌫ for a field strength, and D for a derivative. For example,
an operator of type �2D such as �Dµ� is not allowed because it is not Lorentz-invariant. An
operator of type �2D2 could be either Dµ�D

µ� or �D2�, so a �2D2 operator is allowed, and
we will worry later about how many independent �2D2 operators can be constructed.

Exercise 4.2 For d = 2, 3, 4, 5, 6 dimensions, work out the field content of operators with
dimension D  d, i.e. the “renormalizable” operators.

4.1 EFT Expansion

The EFT Lagrangian follows the same rules as the previous section, and has an ex-
pansion in powers of the operator dimension

LEFT =
X

D�0,i

c(D)
i O(D)

i

⇤D�d
=

X

D�0

LD

⇤D�d
(4.13)

where O(D)
i are the allowed operators of dimension D . All operators of dimension D

are combined into the dimension D Lagrangian LD . The main di↵erence from the
previous discussion is that one does not stop at D = d, but includes operators of

arbitrarily high dimension. A scale ⇤ has been introduced so that the coe�cients c(D)
i

are dimensionless. ⇤ is the short-distance scale at which new physics occurs, analogous
to 1/a in the multipole expansion example in Sec. 2.2. As in the multipole example,
what is relevant for theoretical calculations and experimental measurements is the
product cD⇤d�D , not cD and ⇤d�D separately. ⇤ is a convenient device that makes it
clear how to organize the EFT expansion.

In d = 4,

LEFT = LD4 +
L5

⇤
+

L6

⇤2
+ . . . (4.14)

LEFT is given by an infinite series of terms of increasing operator dimension. An
important point is that the LEFT has to be treated as an expansion in powers of 1/⇤.
If you try and sum terms to all orders, you violate the EFT power counting rules, and
the EFT breaks down.

4.2 Power Counting and Renormalizability

Consider a scattering amplitude A in d dimensions, normalized to have mass dimen-
sion zero. If one works at some typical momentum scale p, then a single insertion of an
operator of dimension D in the scattering graph gives a contribution to the amplitude
of order

A ⇠

⇣ p

⇤

⌘D�d
(4.15)

by dimensional analysis. The operator has a coe�cient of mass dimension 1/⇤D�d from
eqn (4.13), and the remaining dimensions are produced by kinematic factors such as
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The validity of a Quantum Field Theory

How do we understand the validity of an EFT ?  

22 Power Counting

Fig. 4.1 The left figure is the QED contribution to the �� scattering amplitude from an

electron loop. The right figure is the low-energy limit of the QED amplitude treated as a

local F 4
µ⌫ operator in the Euler-Heisenberg Lagrangian.

generated by loops have 0  D  d, and have already been included in L . We do not
need to add counterterms with negative dimension operators, such as 1/�2(x), since
there are no divergences of this type. In general, renormalizable terms are those with
0  D  d, i.e. the contribution to n in eqn (4.17) is non-positive.

Renormalizable theories are a special case of EFTs, where we formally take the
limit ⇤ ! 1. Then all terms in L have dimension D  d. Scattering amplitudes can
be computed to arbitrary accuracy, as there are no p/⇤ corrections. Theories with op-
erators of dimensions D > d are referred to as non-renormalizable theories, because an
infinite number of higher dimension operators are needed to renormalize the theory. We
have seen, however, that as long one is interested in corrections with some maximum
value of n in eqn (4.17), there are only a finite number of operators that contribute,
and non-renormalizable theories (i.e. EFTs) are just as good as renormalizable ones.

4.3 Photon-Photon Scattering

We now illustrate the use of the EFT power counting formula eqn (4.17) with some
simple examples, which show the power of eqn (4.17) when combined with constraints
from gauge invariance and Lorentz invariance.

Consider �� scattering at energies much lower than the electron mass, E ⌧ me.
At these low energies, the only dynamical degrees of freedom in the EFT are photons.
Classical electromagnetism without charged particles is a free theory, but in QED,
photons can interact via electron loops, as shown in Fig. 4.1. In the EFT, there are no
dynamical electrons, so the 4� interaction due to electron loops is given by a series of
higher dimension operators involving photon fields. The lowest dimension interactions
that preserve charge conjugation are given by dimension eight operators, so the EFT
Lagrangian has the expansion

L = �
1

4
Fµ⌫F

µ⌫ +
↵2

m4
e


c1 (Fµ⌫F

µ⌫)2 + c2

⇣
Fµ⌫ F̃

µ⌫
⌘2

�
+ . . . . (4.18)

This is the Euler-Heisenberg Lagrangian [43]. We can compare eqn (4.18) with the
general form eqn (4.13). We have used me for the scale ⇤, since we know that the
higher dimension operators are generated by the electron loop graph in QED shown in
Fig. 4.1. Since QED is perturbative, we have included a factor of e4 from the vertices,
and 1/16⇡2 from the loop, so that c1,2 are pure numbers.
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dynamical electrons, so the 4� interaction due to electron loops is given by a series of
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This is the Euler-Heisenberg Lagrangian [43]. We can compare eqn (4.18) with the
general form eqn (4.13). We have used me for the scale ⇤, since we know that the
higher dimension operators are generated by the electron loop graph in QED shown in
Fig. 4.1. Since QED is perturbative, we have included a factor of e4 from the vertices,
and 1/16⇡2 from the loop, so that c1,2 are pure numbers.
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The scattering amplitude computed from eqn (4.18) in the center-of-mass frame is
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where ! is the photon energy. The ↵2/m4
e factor is from the Lagrangian, and the !4

factor is because each field-strength tensor is the gradient of Aµ, and produces a factor

of !. The scattering cross section � is proportional to |A |
2, and has mass dimension

�2. The phase space integral is thus / 1/!2 to get the correct dimensions, since ! is
the only dimensionful parameter in the low-energy problem. The cross section is then
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The 1/(16⇡) will be explained in Sec. 8. The !6 dependence of the cross section follows
from the lowest operator being of dimension eight, so that A / 1/m4

e, and � / 1/m8
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If we had assumed (incorrectly) that gauge invariance was not important and written
the interaction operator generated by Fig. 4.1 as the dimension four operator

L = c ↵2(AµAµ)2 (4.22)

the cross section would be � ⇠ ↵4/(16⇡!2) instead. The ratio of the two estimates is
(!/me)8. For ! ⇠ 1 eV, the ratio is 1048!

An explicit computation [28,27,43] gives

c1 =
1
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, c2 =

7

360
, (4.23)

and [61]
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15568

10125
. (4.24)

Our estimate eqn (4.20) is quite good (about 50% o↵), and was obtained with very
little work.

For scalar field scattering, the interaction operator would be �4, so that � ⇠

1/(16⇡!2), whereas Goldstone bosons such as pions have interactions ⇧2(@⇧)2/f2,
so that � ⇠ !4/(16⇡f4). Cross sections can vary by many orders of magnitude (1048

between scalars and gauge bosons), so dimensional estimates such as this are very
useful to decide whether a cross section is experimentally relevant before starting on
a detailed calculation.

The mass of the electron determines the validity of this EFT
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What if I did not know about gauge invariance in nature ?
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than n, that takes part in the scattering amplitude, and therefore there is incomplete

cancellation at every power s. Therefore the amplitude will grow like s
5
/(M2

P lm
8),

and therfore the strong coupling scale is set by ⇤5.

4 Compactified extra dimensions in RS

5 Conclusions

Acknowledgements

A Metrics and determinants

The four dimensional metric gµ⌫ is expanded around the flat Minkowski background

⌘µ⌫ as gµ⌫ ! ⌘µ⌫ + hµ⌫ . We use the metric convention ⌘µ⌫ = Diag(1,�1,�1,�1).

We require gµ↵g̃
⇢⌫ = �

⇢
⌫ where g̃ = g

�1. The inverse is thus given by
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The overall brackets imply contractions to leave the free indices wherever they ap-

pear. The first few terms in the expansion of the inverse and the determinant is,
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The 5-D metric for the orbifolded torus is,

GMN =
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Graviton

Compactified theories: Orbifolded torusFigure 1. The various diagrams of the process h(n)h(n) ! h(n)h(n).

s
5

s
4

s
3

s
2

2n r7c
2(7+cos(2✓)) sin2 ✓

9216n8⇡
r5c

2(�13+cos(2✓)) sin2 ✓
1152n6⇡

r3c
2(97+3 cos(2✓)) sin2 ✓

1152n4⇡ �
rc2(179�116 cos(2✓)+cos(4✓))

1152n2⇡

0 . r7c
2(7+cos(2✓)) sin2 ✓

4608n8⇡
r5c

2(9�140 cos(2✓)+3 cos(4✓)
9216n6⇡

r3c
2(�15+270 cos(2✓)+cos(4✓))

2304n4⇡ �
rc2(175�624 cos(2✓)+cos(4✓))

1152n2⇡

Seagull - r7c
2(7+cos(2✓)) sin2 ✓

3072n8⇡
r5c

2(63�196 cos(2✓)+5 cos(4✓)
9216n6⇡

r3c
2(692 cos(2✓)+5(�37+cos(4✓)))

4608n4⇡
rc2(7+cos(2✓))

4608n4⇡

Radion – – r3c
2 sin2 ✓

64n4⇡
rc2(7+cos(2✓))

96n2⇡

Sum 0 0 0 0

Table 1. Cancellations of the various powers of s of the amplitudes for the process

h(n)h(n) ! h(n)h(n).

3.3 Cancellations and the strong couple scale

We first consider the process h(n)
h
(n)

! h
(n)

h
(n), with all possible Feynman diagrams

demonstrated in Fig. 1. There are 4 classes of diagrams upto O(2) in coupling.

Due to KK number conservation, h(n)
h
(n)

! h
(n)

h
(n) can occur through either the

massless graviton, or a massive h(2n) state graviton, with s, t and u channel diagrams

for each set. Additionally there is a radion mediated set with s, t and u channel

diagrams. Finally there is a 4 point interaction diagram which we call the seagull.

To obtain the scattering amplitudes in the high energy limit, we consider the pure

longitudinal polarization states. Each external state has a mass m
2
n = n2

r2c
, while

the structure of the interaction vertices and the polarization vectors for the external

states are given in the appendices. The scattering amplitude is then determined in

terms of the energy
p
s, and the scattering angle ✓ in the center of mass frame. We

need to somehow demonstrate the scale and the di�culty of the problem.

– 13 –

Amplitude cancels through order s2 - same true for all helicity states

Radion diagrams start contributing at order s3

Order s persists - and KK mode. 
Sum will reproduce expected E3 behavior
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2r5
c
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2304n4⇡
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Mradion 0 0 �
2r3

c
s2
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64n4⇡
2rc[7+c2✓ ]

96n2⇡

Sum 0 0 0 0

TABLE I. Cancellations in the (n, n) ! (n, n) 5DOT amplitude, where ✓ is the center-of-mass scattering angle and (cn✓, sn✓) =

(cosn✓, sinn✓).

expand the diagrams and total matrix element in s, and
label the coe�cients like so:

M(s, ✓) ⌘
X

�2Z
M

(�)
(✓) · s� (51)

In this paper, we will demonstrate that M
(�)

vanishes
for � > 1 and present the residual linear term in s.

V. CANCELLATIONS AND HIGH ENERGY
GROWTH OF AMPLITUDES

A. Cancellations in the orbifolded torus model

We first analyze the cancellations in the orbifolded
torus. While we have calculated all arbitrary scatter-
ing states, we present the (n, n) ! (n, n) process due to
the relative simplicity. The full matrix element is,

M
(5DOT)
(n,n)!(n,n) = Mcontact +Mradion +M0 +M2n (52)

The principle results were presented in [], here we ex-
pand and provide some additional details of the calcula-
tion. For the process (n, n) ! (n, n), we summarize the
growth and cancellation of amplitudes at every order in
s
�, starting from � = 5. Due to the KK number con-
servation for the 5DOT, the intermediate states for the
non-contact diagrams can only be a massive 2n state and
the massless graviton(0 state). In Table I we present the
growth of matrix elements for each diagram for the scat-
tering of longitudinal helicity modes. As expected, we
observe that the contact, as well as diagrams with mas-
sive intermediate propagator and the masless graviton
grow like s

5 as the highest power. However the diagram
with a radion intermediate state appears only at O(s3).
Note that the results for the massive intermediate prop-
agator 2n and the massless graviton are presented after
summing up the s, t and u channel diagrams. At O(s5)
and O(s4), the contact diagrams along with the massive
2n state and the massless graviton state cancel each other
out. The underlying reason for this due to a 4D di↵eo-
morphism invariance being part of the full 5D di↵eomor-
phism. This feature will be clearer when we discuss the
sum rules for cancellation. At order s

3 and s
2 however,

the massless radion plays an important role in the cancel-
lation, which will be elucidated in more detail within the

context of sum rules. In Fig. 2, we present the pattern
of cancellations at every order in s

�, for all phase space
points between (�⇡,⇡) for the scattering of KK states
(2, 2) ! (2, 2). We observe that although the angular
distributions for various individual diagrams are quite
di↵erent, the cancellations between various diagrams is
exact for every phase space point. Notice that the radion
plays a significant role in the cancellations from O(s3).
This cancellation is therefore extremely intricate, and re-
quires a subtle conspiracy between various field degrees
of freedom of the underlying 5D theory. Any calculation
that does not take into account the full field content and
all possible diagrams will encounter a high energy growth
greater than O(s), which is misleading and incorrect.

The only non-zero contribution therefore appears at
O(s). In general, for a process (k, l) ! (m,n) in the
5DOT model,
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2
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where xklmn is fully symmetric in its indices, ✓ being the
scatering angle and satisfies

xaaaa = 3, xaabb = 2, and xabcd = 1

when discrete KK momentum is conserved, and vanishes
when it is not. For the (n, n) ! (n, n) scattering there-
fore, we have,
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Since 
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as expected. More importantly, for scattering of (n, n) !
(n, n) states, if we truncate the theory below 2n, the
amplitude will grow as s5, in the absence of the state 2n.
Thus the cut-o↵ scale for this theory is ⇤5, and not ⇤3,
as suggested in [].
Processes like (1, 4) ! (2, 3) are particularly nice

because discrete KK momentum conservation forbids a
massless intermediate, such that the full matrix element
is devoid of t- and u-channel singularities. For these, we
can directly compute the appropriately normalized par-
tial wave amplitude,
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256⇡rc
[7 + cos(2✓)] csc2 ✓ (54)

Since 
2
/(⇡rc) = 8/M2

Pl
, the amplitude grows as s/M2

Pl

as expected. More importantly, for scattering of (n, n) !
(n, n) states, if we truncate the theory below 2n, the
amplitude will grow as s5, in the absence of the state 2n.
Thus the cut-o↵ scale for this theory is ⇤5, and not ⇤3,
as suggested in [].
Processes like (1, 4) ! (2, 3) are particularly nice

because discrete KK momentum conservation forbids a
massless intermediate, such that the full matrix element
is devoid of t- and u-channel singularities. For these, we
can directly compute the appropriately normalized par-
tial wave amplitude,

a
J

�a�b!�c�d
=

1

32⇡2

Z
d⌦ D

J

�i�f
(✓,�)Ma�b!�c�d

(s, ✓,�) ,

(55)

If truncated below 2n : 

7

s5 s4 s3 s2

Mcontact �
2r7

c
[7+c2✓ ]s

2
✓

3072n8⇡

2r5
c
[63�196c2✓+5c4✓ ]

9216n6⇡

2r3
c
[�185+692c2✓+5c4✓ ]

4608n4⇡
�

2rc[5+47 c2✓ ]
72n2⇡

M2n
2r7

c
[7+c2✓ ]s

2
✓

9216n8⇡

2r5
c
[�13+c2✓ ]s

2
✓

1152n6⇡

2r3
c
[97+3 c2✓ ]s

2
✓

1152n4⇡
2rc[�179+116c2✓�c4✓ ]

1152n2⇡

M0
2r7

c
[7+c2✓ ]s

2
✓

4608n8⇡

2r5
c
[�9+140c2✓�3c4✓ ]

9216n6⇡

2r3
c
[15�270c2✓�c4✓ ]

2304n4⇡
2rc[175+624 c2✓+c4✓ ]

1152n2⇡

Mradion 0 0 �
2r3

c
s2
✓

64n4⇡
2rc[7+c2✓ ]

96n2⇡

Sum 0 0 0 0

TABLE I. Cancellations in the (n, n) ! (n, n) 5DOT amplitude, where ✓ is the center-of-mass scattering angle and (cn✓, sn✓) =

(cosn✓, sinn✓).

expand the diagrams and total matrix element in s, and
label the coe�cients like so:

M(s, ✓) ⌘
X

�2Z
M

(�)
(✓) · s� (51)

In this paper, we will demonstrate that M
(�)

vanishes
for � > 1 and present the residual linear term in s.

V. CANCELLATIONS AND HIGH ENERGY
GROWTH OF AMPLITUDES

A. Cancellations in the orbifolded torus model

We first analyze the cancellations in the orbifolded
torus. While we have calculated all arbitrary scatter-
ing states, we present the (n, n) ! (n, n) process due to
the relative simplicity. The full matrix element is,

M
(5DOT)
(n,n)!(n,n) = Mcontact +Mradion +M0 +M2n (52)

The principle results were presented in [], here we ex-
pand and provide some additional details of the calcula-
tion. For the process (n, n) ! (n, n), we summarize the
growth and cancellation of amplitudes at every order in
s
�, starting from � = 5. Due to the KK number con-
servation for the 5DOT, the intermediate states for the
non-contact diagrams can only be a massive 2n state and
the massless graviton(0 state). In Table I we present the
growth of matrix elements for each diagram for the scat-
tering of longitudinal helicity modes. As expected, we
observe that the contact, as well as diagrams with mas-
sive intermediate propagator and the masless graviton
grow like s

5 as the highest power. However the diagram
with a radion intermediate state appears only at O(s3).
Note that the results for the massive intermediate prop-
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summing up the s, t and u channel diagrams. At O(s5)
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phism. This feature will be clearer when we discuss the
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3 and s
2 however,
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context of sum rules. In Fig. 2, we present the pattern
of cancellations at every order in s
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distributions for various individual diagrams are quite
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This cancellation is therefore extremely intricate, and re-
quires a subtle conspiracy between various field degrees
of freedom of the underlying 5D theory. Any calculation
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all possible diagrams will encounter a high energy growth
greater than O(s), which is misleading and incorrect.
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M
(1)

=
xklmn

2

256⇡rc
[7 + cos(2✓)] csc2 ✓ (53)

where xklmn is fully symmetric in its indices, ✓ being the
scatering angle and satisfies

xaaaa = 3, xaabb = 2, and xabcd = 1

when discrete KK momentum is conserved, and vanishes
when it is not. For the (n, n) ! (n, n) scattering there-
fore, we have,

M
(1)(✓) =

32

256⇡rc
[7 + cos(2✓)] csc2 ✓ (54)

Since 
2
/(⇡rc) = 8/M2

Pl
, the amplitude grows as s/M2

Pl

as expected. More importantly, for scattering of (n, n) !
(n, n) states, if we truncate the theory below 2n, the
amplitude will grow as s5, in the absence of the state 2n.
Thus the cut-o↵ scale for this theory is ⇤5, and not ⇤3,
as suggested in [].
Processes like (1, 4) ! (2, 3) are particularly nice

because discrete KK momentum conservation forbids a
massless intermediate, such that the full matrix element
is devoid of t- and u-channel singularities. For these, we
can directly compute the appropriately normalized par-
tial wave amplitude,

a
J

�a�b!�c�d
=

1

32⇡2

Z
d⌦ D

J

�i�f
(✓,�)Ma�b!�c�d

(s, ✓,�) ,

(55)

Scattering Amplitude grows as Classical/Semi-Classical gravity is a valid EFT until the Planck Scale

What about theories with a massive graviton ? 

Mass is constrained by gravitational wave experiments to be less than 1.22 X 10-22 eV/c2 

A spin-2 particle



Invitation :  Massive Spin-2 particles and where to find them 

Massive Interacting Spin-2 Particles

Modifying massless GR:

 Fierz Pauli theory (1940)
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KK decomposition, 


Extra dimensions (1922)

Unification of forces, String Theory
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massive gravity, dRGT,
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 Massive Spin-2 particles, Fierz-Pauli Theory and beyond

The rest of the paper is organized as follows: Details of the organization

2 A strong coupling scale for massive gravity in 4-dimensions

We briefly discuss the strong coupling scales in the Fierz Pauli theory. The Fierz

Pauli theory is constructed by adding a ghost free Lorentz invariant mass term of

the form,

SG =

Z
d4x

p
gR +m2((hµ⌫)

2 � h2). (2.1)

Here we have expanded the metric in the weak field approximation with a flat

Minkowski background. The mass terms break di↵eomorphism invaiance and prop-

agates longitudinal polarization modes. The estimation of the growth of scattering

amplitudes in this theory can be most easily studied by restoring the gauge invari-

ance using the Stückelberg formalism. Schematically, restoring the gauge invariance

involves introducing a vector field Aµ, with two transverse degrees of freedom and

a scalar � with one degree of freedom. This is e↵ectively therefore the addition of

Goldstone bosons, and using the equivalence theorem to estimate the high energy

scattering amplitudes. Using canonically normalize the fields as A0 = 1
2mMPA,�0 =

1
2m

2MP�, h0 = 1
2MPh, expansion of the Ricci scalar, the determinant of the matrix

and the inverse of the metric in Einstein-Hilbert term gives a slew of interaction

terms. It can be observed that � always appears with two derivatives, A appears

with one derivative, and h appears with no derivatives. A generic interaction term

with nh powers of the tensor, nA powers of the vector and n� powers of the scalar

can be written as,

⇠ m2M2
P (@A

0)nA(@2�0)n�(h0
µ⌫)

nh = (⇤�)
4�nh�2nA�3n�h0nh(@A0)nA(@2�0)n� (2.2)

The coe�cient ⇤� is the scale of the e↵ective theory, and is given by,

⇤� = (MPm
��1)1/�, � =

3n� + 2nA + nh � 4

n� + nA + nh � 2
(2.3)

For interaction terms, we need terms n� + nA + nh � 3. The smallest term is the

scalar cubic with n� = 3, nA = nh = 0, and therefore the lowest scale suppressing

term is,
(@2�)3

⇤5
5

, ⇤5 = (MPm
4)1/5 (2.4)

This suggests that the scattering amplitude of a theroy with a single massive graviton

should grow with energy like s5. This scaling, known as the ⇤5 theory, can be

– 3 –

Fierz-Pauli theory : 1940

D.O.F counting in d dimensions for the massless graviton

the same argument applies exactly and the Einstein–Hilbert term appears naturally as the unique
kinetic term free of any ghost-like instability. This is possible thanks to a symmetry which projects
out all unwanted dofs, namely di↵eomorphism invariance (linear di↵s at the linearized level, and
non-linear di↵s/general covariance at the non-linear level).

2.2.1 Einstein–Hilbert kinetic term

We consider a symmetric Lorentz tensor field hµ⌫ . The kinetic term can be decomposed into four
possible local contributions (assuming Lorentz invariance and ignoring terms which are equivalent
upon integration by parts):

Lspin�2
kin =

1

2
@↵hµ⌫

�
b1@↵hµ⌫ + 2b2@(µh⌫)↵ + b3@↵h⌘µ⌫ + 2b4@(µh⌘⌫)↵

�
, (2.32)

where b1,2,3,4 are dimensionless coe�cients which are to be determined in the same way as for the
vector field. We split the 10 components of the symmetric tensor field hµ⌫ into a transverse tensor
hT

µ⌫
(which carries 6 components) and a vector field �µ (which carries 4 components),

hµ⌫ = hT

µ⌫
+ 2@(µ�⌫) . (2.33)

Just as in the case of the spin-1 field, an arbitrary kinetic term of the form (2.32) with untuned
coe�cients bi would contain higher derivatives for �µ which in turn would imply a ghost. As we
shall see below, avoiding a ghost within the kinetic term automatically leads to gauge-invariance.
After substitution of hµ⌫ in terms of hT

µ⌫
and �µ, the potentially dangerous parts are

Lspin�2
kin � (b1 + b2)�

µ22�µ + (b1 + 3b2 + 2b3 + 4b4)�
µ2@µ@⌫�

⌫ (2.34)

�2hTµ⌫
�
(b2 + b4)@µ@⌫@↵�

↵ + (b1 + b2)@µ2�µ

+ (b3 + b4)2@↵�
↵ ⌘µ⌫

�
.

Preventing these higher derivative terms from arising sets

b4 = �b3 = �b2 = b1 , (2.35)

or in other words, the unique (local and Lorentz-invariant) kinetic term one can write for a spin-2
field is the Einstein–Hilbert term

Lspin�2
kin = �1

4
hµ⌫ Ê↵�

µ⌫
h↵� = �1

4
hTµ⌫ Ê↵�

µ⌫
hT

↵�
, (2.36)

where Ê is the Lichnerowicz operator

Ê↵�

µ⌫
h↵� = �1

2

⇣
2hµ⌫ � 2@(µ@↵h

↵

⌫) + @µ@⌫h� ⌘µ⌫(2h� @↵@�h
↵�)

⌘
, (2.37)

and we have set b1 = �1/4 to follow standard conventions. As a result, the kinetic term for the
tensor field hµ⌫ is invariant under the following gauge transformation,

hµ⌫ ! hµ⌫ + @(µ⇠⌫) . (2.38)

We emphasize that the form of the kinetic term and its gauge invariance is independent on whether
or not the tensor field has a mass, (as long as we restrict ourselves to a local and Lorentz-invariant
kinetic term). However just as in the case of a massive vector field, this gauge invariance cannot
be maintained by a mass term or any other self-interacting potential. So only in the massless case,
does this symmetry remain exact. Out of the 10 components of a tensor field, the gauge symmetry
removes 2⇥4 = 8 of them, leaving a massless tensor field with only two propagating dofs as is well
known from the propagation of gravitational waves in four dimensions.

In d � 3 spacetime dimensions, gravitational waves have d(d+1)/2�2d = d(d�3)/2 independent
polarizations. This means that in three dimensions there are no gravitational waves and in five
dimensions they have five independent polarizations.
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2 A strong coupling scale for massive gravity in 4-dimensions

We briefly discuss the strong coupling scales in the Fierz Pauli theory. The Fierz

Pauli theory is constructed by adding a ghost free Lorentz invariant mass term of

the form,

SG =

Z
d4x

p
gR +m2((hµ⌫)

2 � h2). (2.1)

Here we have expanded the metric in the weak field approximation with a flat

Minkowski background. The mass terms break di↵eomorphism invaiance and prop-

agates longitudinal polarization modes. The estimation of the growth of scattering

amplitudes in this theory can be most easily studied by restoring the gauge invari-

ance using the Stückelberg formalism. Schematically, restoring the gauge invariance

involves introducing a vector field Aµ, with two transverse degrees of freedom and

a scalar � with one degree of freedom. This is e↵ectively therefore the addition of

Goldstone bosons, and using the equivalence theorem to estimate the high energy

scattering amplitudes. Using canonically normalize the fields as A0 = 1
2mMPA,�0 =

1
2m

2MP�, h0 = 1
2MPh, expansion of the Ricci scalar, the determinant of the matrix

and the inverse of the metric in Einstein-Hilbert term gives a slew of interaction

terms. It can be observed that � always appears with two derivatives, A appears

with one derivative, and h appears with no derivatives. A generic interaction term

with nh powers of the tensor, nA powers of the vector and n� powers of the scalar

can be written as,

⇠ m2M2
P (@A

0)nA(@2�0)n�(h0
µ⌫)

nh = (⇤�)
4�nh�2nA�3n�h0nh(@A0)nA(@2�0)n� (2.2)

The coe�cient ⇤� is the scale of the e↵ective theory, and is given by,

⇤� = (MPm
��1)1/�, � =

3n� + 2nA + nh � 4

n� + nA + nh � 2
(2.3)

For interaction terms, we need terms n� + nA + nh � 3. The smallest term is the

scalar cubic with n� = 3, nA = nh = 0, and therefore the lowest scale suppressing

term is,
(@2�)3

⇤5
5

, ⇤5 = (MPm
4)1/5 (2.4)

This suggests that the scattering amplitude of a theroy with a single massive graviton

should grow with energy like s5. This scaling, known as the ⇤5 theory, can be
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Massless GR : 

the same argument applies exactly and the Einstein–Hilbert term appears naturally as the unique
kinetic term free of any ghost-like instability. This is possible thanks to a symmetry which projects
out all unwanted dofs, namely di↵eomorphism invariance (linear di↵s at the linearized level, and
non-linear di↵s/general covariance at the non-linear level).

2.2.1 Einstein–Hilbert kinetic term

We consider a symmetric Lorentz tensor field hµ⌫ . The kinetic term can be decomposed into four
possible local contributions (assuming Lorentz invariance and ignoring terms which are equivalent
upon integration by parts):

Lspin�2
kin =
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b1@↵hµ⌫ + 2b2@(µh⌫)↵ + b3@↵h⌘µ⌫ + 2b4@(µh⌘⌫)↵
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, (2.32)

where b1,2,3,4 are dimensionless coe�cients which are to be determined in the same way as for the
vector field. We split the 10 components of the symmetric tensor field hµ⌫ into a transverse tensor
hT

µ⌫
(which carries 6 components) and a vector field �µ (which carries 4 components),

hµ⌫ = hT

µ⌫
+ 2@(µ�⌫) . (2.33)

Just as in the case of the spin-1 field, an arbitrary kinetic term of the form (2.32) with untuned
coe�cients bi would contain higher derivatives for �µ which in turn would imply a ghost. As we
shall see below, avoiding a ghost within the kinetic term automatically leads to gauge-invariance.
After substitution of hµ⌫ in terms of hT

µ⌫
and �µ, the potentially dangerous parts are
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.

Preventing these higher derivative terms from arising sets

b4 = �b3 = �b2 = b1 , (2.35)

or in other words, the unique (local and Lorentz-invariant) kinetic term one can write for a spin-2
field is the Einstein–Hilbert term
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4
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and we have set b1 = �1/4 to follow standard conventions. As a result, the kinetic term for the
tensor field hµ⌫ is invariant under the following gauge transformation,

hµ⌫ ! hµ⌫ + @(µ⇠⌫) . (2.38)

We emphasize that the form of the kinetic term and its gauge invariance is independent on whether
or not the tensor field has a mass, (as long as we restrict ourselves to a local and Lorentz-invariant
kinetic term). However just as in the case of a massive vector field, this gauge invariance cannot
be maintained by a mass term or any other self-interacting potential. So only in the massless case,
does this symmetry remain exact. Out of the 10 components of a tensor field, the gauge symmetry
removes 2⇥4 = 8 of them, leaving a massless tensor field with only two propagating dofs as is well
known from the propagation of gravitational waves in four dimensions.

In d � 3 spacetime dimensions, gravitational waves have d(d+1)/2�2d = d(d�3)/2 independent
polarizations. This means that in three dimensions there are no gravitational waves and in five
dimensions they have five independent polarizations.
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Diffeomorphism/Gauge Invariance/Co-ordinate Invariance  :

6

D.O.F for d=4 : 2

D.O.F for d=4 : 5



Low Energy Scale in Massive Gravity

→
s5

m8M2
pl

ϵ0
μν →

kμkν

m2

⇥
O(s7) ! O(s5)

⇤
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2 A strong coupling scale for massive gravity in 4-dimensions

We briefly discuss the strong coupling scales in the Fierz Pauli theory. The Fierz

Pauli theory is constructed by adding a ghost free Lorentz invariant mass term of

the form,

SG =

Z
d4x

p
gR +m2((hµ⌫)

2 � h2). (2.1)

Here we have expanded the metric in the weak field approximation with a flat

Minkowski background. The mass terms break di↵eomorphism invaiance and prop-

agates longitudinal polarization modes. The estimation of the growth of scattering

amplitudes in this theory can be most easily studied by restoring the gauge invari-

ance using the Stückelberg formalism. Schematically, restoring the gauge invariance

involves introducing a vector field Aµ, with two transverse degrees of freedom and

a scalar � with one degree of freedom. This is e↵ectively therefore the addition of

Goldstone bosons, and using the equivalence theorem to estimate the high energy

scattering amplitudes. Using canonically normalize the fields as A0 = 1
2mMPA,�0 =

1
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2MP�, h0 = 1
2MPh, expansion of the Ricci scalar, the determinant of the matrix

and the inverse of the metric in Einstein-Hilbert term gives a slew of interaction

terms. It can be observed that � always appears with two derivatives, A appears

with one derivative, and h appears with no derivatives. A generic interaction term

with nh powers of the tensor, nA powers of the vector and n� powers of the scalar

can be written as,
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µ⌫)

nh = (⇤�)
4�nh�2nA�3n�h0nh(@A0)nA(@2�0)n� (2.2)

The coe�cient ⇤� is the scale of the e↵ective theory, and is given by,

⇤� = (MPm
��1)1/�, � =

3n� + 2nA + nh � 4
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For interaction terms, we need terms n� + nA + nh � 3. The smallest term is the

scalar cubic with n� = 3, nA = nh = 0, and therefore the lowest scale suppressing

term is,
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This suggests that the scattering amplitude of a theroy with a single massive graviton

should grow with energy like s5. This scaling, known as the ⇤5 theory, can be

– 3 –

Unitarity is violated at a scale  Λ5 = (Mplm4)1/5 ≪ Mpl Van Damn-Veltman-Zakharov (VDVZ) discontinuity  : 1963

Fierz-Pauli theory and extensions

1. Resembles a  Brans-Dicke theory.


2. Does not reduce to GR in the massless limit (van-Dam Veltman Zakahrov (vDVZ) 
discontinuity ).


3. Vainshtein -> vDVZ discontinuity artifact of the linear theory, (Vainshtein 
screening).


4. Boulware-Deser -> Generic non-linear extensions of FP theory introduces ghosts.


5. dRGT theory (2010) -> A ghost free construction of massive gravity by tuning 
generic coefficients 


De-Rham, Gabadadze, Tolley (2010)
Cheung and Remen (2018)
Bonifacio, Rosen, Hinterbichler(2019)
Georgi, Arkani-Hamed, Schwartz(2001)
Schwartz (2003)



Why should I care about compactified theories



Why should I care about compactified theories
Randall-Sundrum Models

Compactified 5D Theory

This growth cannot occur in a compactified 5-D 
 model … Compactification is an IR phenomenon, UV 

behavior determined by power-counting is |Amp| ∝E3/(M5)3!

Diagrams Relevant to Longitudinal h(n)h(n) ! h(n)h(n)

There are ten diagrams relevant to aforementioned process, seven
of which diverge as O(s5):

26 / 38
SEH

5D / 1

M3
5

Z
d5x

p
�gR5D

<latexit sha1_base64="6IKtZRrIyKzTXpwwQ3AuZfmCdw0="></latexit>

What happens in the compactified theory?

5D diffeomorphism with a 5D Planck mass 



Why should I care about compactified theories
Compactify an Extra Dimension : A tower of massive Spin-2 KK states (+ massless graviton) 

Flat extra dimensions

Orbifolding a Compact Extra Dimension, like RS

Suppose there exists a compact extra dimension between two 4D
branes (at y = 0 and ⇡rc) with the metric GMN equal to...

⌘MN = Diag(+1,�1,�1,�1,�1) = ⌘µ⌫ ⌦ ⌘55

at one of those branes (flat 4D = our 4D). Next, orbifold:

Choose even solutions on [�⇡rc ,⇡rc ] =) massless particles

8 / 38

Mode expansion for gravity 
in a toroidal extra dimension

We will denote latin alphabets as the 5-D coordinates while greek indices are reserved

for 4-D coordinates. The 4-D part of the metric gµ⌫ , is expanded in the weak field

approximation around the flat Minkowski metric ⌘µ⌫ as gµ⌫ = ⌘µ⌫ + 4Dhµ⌫ , where

4D is a small coupling(weak field expansion parameter). The fields r and ⇢µ are the

radion and the graviphoton respectively. The 5-D massless symmetric tensor hMN ,

that satisfies the full 5-D di↵eomorphism invariance, with 5 transverse degrees of

freedom is split into a tensor hµ⌫ with two transverse degrees of freedom, a vector

⇢µ with two transverse degrees of freedom, and a scalar degree of freedom in r. The

5-D action is given by,

S = M
3
5

Z
d
4
xdy

p

GR
(5)
. (3.2)

We denote the extra dimensional co-ordinate by y. Additionally, G is the deterimant

of the 5-D metric and R
(5) is the 5-D Ricci scalar expanded as G̃

MN
RMN , where

G̃MN is the 5-D metric inverse, and RMN the 5-D Ricci tensor. We denote the 5-

D Planck mass by M5, which is related to the 4-D Planck mass by M
3
5 = M

2
P l/L.

The expansion of the metric inverse and determinant is detailed in Appendix A1.

The compactification allows us to expand the fields in fourier modes over the 5-D

co-ordinates. These read,

hµ⌫(x, y) =
1X

n=�1
hµ⌫,n(x)e

i!ny

hµ5(x, y) =
1X

n=�1
⇢µ(x, n)e

i!ny

h55(x, y) =
1X

n=�1
r(x, n)ei!ny (3.3)

where n is an integer that characterizes the mode number with frequencies !n ⌘

2⇡n
L . The orthogonality of the fourier expansion imposes,

R L

0 dye
(i!my)⇤

e
i!ny = L�mn.

The field hMN is broken to a tensor, vector, and a scalar as hµ,⌫(x), ⇢µ(x), r(x)

respectively. Additionally, reality of the 5-D fields impose,

h
⇤
µ⌫,n = hµ⌫,�n, ⇢

⇤
µ,n = ⇢µ,�n, r

⇤
n = ��n. (3.4)
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Graviphoton (massless spin-1 state from gμν) has odd  
parity in y and does not play a role in this model 

“graviphoton”

“radion”
Warped extra dimensions



Compactified 5D theory

Compactified 5D Theory

This growth cannot occur in a compactified 5-D 
 model … Compactification is an IR phenomenon, UV 

behavior determined by power-counting is |Amp| ∝E3/(M5)3!

Diagrams Relevant to Longitudinal h(n)h(n) ! h(n)h(n)

There are ten diagrams relevant to aforementioned process, seven
of which diverge as O(s5):
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What happens in the compactified theory?

Compactification (IR phenomenon) should not change the high energy (UV) behavior,

High energy growth

8

FIG. 2. Cancellations in the orbifolded torus model for

(2, 2) ! (2, 2) KK states. (Clockwise) From top left O(s5 �

�s2). The radion starts to contribute only at O(s3).

where �i(f) = �a(c)��b(d), are the initial and final helicity
states, and the Wigner D functions are normalized in the
usual way,

Z
d⌦ D

J

�1�2
(✓,�).DJ

0⇤
�10�2

(✓,�) =
4⇡

2J + 1
�JJ 0��1�10

(56)
The leading partial wave amplitude is obtained for J = 0,
which gives us ,

a
J=0
00!00(14 ! 23) =

s

M
2
Pl

ln
�
sr

2
c

�
+ . . . . (57)

Partial wave unitarity demands that the real part of the
amplitude must be bounded by unity, and therefore we
conclude that the 4D 2 ! 2 scattering becomes strongly
coupled at s ⇠ M

2
Pl
. We need one more step to complete

this analysis from a 5D perspective. While each indi-
vidual scattering amplitude grows only like s, as in the
case of compactified Yang-Mills theory there are coupled
channels of the first N KK modes whose scattering am-
plitudes grow like Ns/M

2
Pl
. Identifying N /

p
src, the

expected s
3/2

/M
3
5 growth is recovered for the underly-

ing five-dimensional gravityand directly demonstrate the
theory is valid up to a scale ⇤3/2. Phenomenologically,
the 5DOT torus model as described here is unviable as
the radion, a massless scalar would couple directly to the
stress energy tensor in a theory with matter. Therefore
without a proper stabilization mechanism that provides
the radion a mass, this theory would be equivalent to a
Brans-Dicke like theory.

B. Cancellations in the Randall Sundrum model

While the calculation for the RS model proceeds in
the same way as the torus, the convenience of the KK
momentum conservation is not present anymore. The
wave functions for the RS model are obtained by solv-
ing the Sturm-Liouville problem, and are a combination
of the Bessel functions J and Y . The spectrum con-
sists of a massless graviton and a radion, along with a
tower of massive spin-2 states, which unlike the 5DOT
are not uniformly distributed. Moreover, as described
in Appendix. ??, the 3 point and the 4 point couplings

FIG. 3. Cancellations in the RS for (1, 1) ! (1, 1) KK states.

(Clockwise) From top left O(s5 � s2). The radion starts to

contribute only at O(s3).

are overlap integrals of wave functions which consist of
a combination Bessel functions, which need to be eval-
uated numerically. The coupling forms and the tensor
structures are presented in Appendix. ??. Notably while
the massless graviton couples only diagonally, the radion
couples to all intermediate KK states.
Since we no longer have KK number conservation, all

intermediate massive propagators contribute, and need
to be included for the cancellations to take place accu-
rately. Hence we needed a very high degree of numerical
accuracy in our calculation. The problem is compounded
by the sheer number of terms for every intermediate KK
mode (O(10k)) due to the tensor structures at cubic or-
der in coupling. We present the results for scattering of
(1, 1) ! (1, 1) by Laurent expanding the matrix elements
in powers of s. The matrix elements that need to be com-
puted are the same as, Fig. ??, the caveat now being all
intermediate states contribute to this process. Therefore,
we study the convergence of the amplitude as a function
of the maximum number intermediate KK state Nmax.
In Fig. 3, we present the cancellations in amplitudes for
scattering of (1, 1) ! (1, 1), from O(s5 � s

2), as a func-
tion of the number of the intermediate states NKK . The
plots are separated in two categories, first the contact
diagram dubbed SG, and the sum of s, t, u channel dia-
grams with increasing number of KK states. At order s5

and s
4, only the contact diagram and the diagrams with

and arbitrary number of massive intermediate KK states
contribute. The y axis represents the matrix element in
arbitrary units. We separate the contact diagram in the
black solid line , while the sum of all diagrams (including
the contact) are represented in various colors as a func-
tion of NKK . We observe that at O(s5) � O(s4), the
overall matrix element keeps going down as the number
of intermediate KK modes go up. The convergence is
quite fast, and in fact only the first few modes ensure
cancellations by orders of magnitude. We include up to
100 intermediate KK modes, and observe that the cancel-
lations can be obtained down to machine precision level.
In general, we find that by truncating the intermediate
propagators at Nmax � 10, the sum of amplitudes for the
residual higher mode number scale as,

M
(k)
Nmax

/ O

✓
1

N
2k+1
max

◆
, k 2 (2, 3, 4, 5) (58)

A. Flat Extra dimension compactified on a torus 
B. The Randall Sundrum Model (ADS) 

Examine Strong coupling scale

5D diffeomorphism with a 5D Planck mass 

11

7

s5 s4 s3 s2

Mcontact �
2r7

c
[7+c2✓ ]s

2
✓

3072n8⇡

2r5
c
[63�196c2✓+5c4✓ ]

9216n6⇡

2r3
c
[�185+692c2✓+5c4✓ ]

4608n4⇡
�

2rc[5+47 c2✓ ]
72n2⇡

M2n
2r7

c
[7+c2✓ ]s

2
✓

9216n8⇡

2r5
c
[�13+c2✓ ]s

2
✓

1152n6⇡

2r3
c
[97+3 c2✓ ]s

2
✓

1152n4⇡
2rc[�179+116c2✓�c4✓ ]

1152n2⇡

M0
2r7

c
[7+c2✓ ]s

2
✓

4608n8⇡

2r5
c
[�9+140c2✓�3c4✓ ]

9216n6⇡

2r3
c
[15�270c2✓�c4✓ ]

2304n4⇡
2rc[175+624 c2✓+c4✓ ]

1152n2⇡

Mradion 0 0 �
2r3

c
s2
✓

64n4⇡
2rc[7+c2✓ ]

96n2⇡

Sum 0 0 0 0

TABLE I. Cancellations in the (n, n) ! (n, n) 5DOT amplitude, where ✓ is the center-of-mass scattering angle and (cn✓, sn✓) =

(cosn✓, sinn✓).

expand the diagrams and total matrix element in s, and
label the coe�cients like so:

M(s, ✓) ⌘
X

�2Z
M

(�)
(✓) · s� (51)

In this paper, we will demonstrate that M
(�)

vanishes
for � > 1 and present the residual linear term in s.

V. CANCELLATIONS AND HIGH ENERGY
GROWTH OF AMPLITUDES

A. Cancellations in the orbifolded torus model

We first analyze the cancellations in the orbifolded
torus. While we have calculated all arbitrary scatter-
ing states, we present the (n, n) ! (n, n) process due to
the relative simplicity. The full matrix element is,

M
(5DOT)
(n,n)!(n,n) = Mcontact +Mradion +M0 +M2n (52)

The principle results were presented in [], here we ex-
pand and provide some additional details of the calcula-
tion. For the process (n, n) ! (n, n), we summarize the
growth and cancellation of amplitudes at every order in
s
�, starting from � = 5. Due to the KK number con-
servation for the 5DOT, the intermediate states for the
non-contact diagrams can only be a massive 2n state and
the massless graviton(0 state). In Table I we present the
growth of matrix elements for each diagram for the scat-
tering of longitudinal helicity modes. As expected, we
observe that the contact, as well as diagrams with mas-
sive intermediate propagator and the masless graviton
grow like s

5 as the highest power. However the diagram
with a radion intermediate state appears only at O(s3).
Note that the results for the massive intermediate prop-
agator 2n and the massless graviton are presented after
summing up the s, t and u channel diagrams. At O(s5)
and O(s4), the contact diagrams along with the massive
2n state and the massless graviton state cancel each other
out. The underlying reason for this due to a 4D di↵eo-
morphism invariance being part of the full 5D di↵eomor-
phism. This feature will be clearer when we discuss the
sum rules for cancellation. At order s

3 and s
2 however,

the massless radion plays an important role in the cancel-
lation, which will be elucidated in more detail within the

context of sum rules. In Fig. 2, we present the pattern
of cancellations at every order in s

�, for all phase space
points between (�⇡,⇡) for the scattering of KK states
(2, 2) ! (2, 2). We observe that although the angular
distributions for various individual diagrams are quite
di↵erent, the cancellations between various diagrams is
exact for every phase space point. Notice that the radion
plays a significant role in the cancellations from O(s3).
This cancellation is therefore extremely intricate, and re-
quires a subtle conspiracy between various field degrees
of freedom of the underlying 5D theory. Any calculation
that does not take into account the full field content and
all possible diagrams will encounter a high energy growth
greater than O(s), which is misleading and incorrect.

The only non-zero contribution therefore appears at
O(s). In general, for a process (k, l) ! (m,n) in the
5DOT model,

M
(1)

=
xklmn

2

256⇡rc
[7 + cos(2✓)] csc2 ✓ (53)

where xklmn is fully symmetric in its indices, ✓ being the
scatering angle and satisfies

xaaaa = 3, xaabb = 2, and xabcd = 1

when discrete KK momentum is conserved, and vanishes
when it is not. For the (n, n) ! (n, n) scattering there-
fore, we have,

M
(1)(✓) =

32

256⇡rc
[7 + cos(2✓)] csc2 ✓ (54)

Since 
2
/(⇡rc) = 8/M2

Pl
, the amplitude grows as s/M2

Pl

as expected. More importantly, for scattering of (n, n) !
(n, n) states, if we truncate the theory below 2n, the
amplitude will grow as s5, in the absence of the state 2n.
Thus the cut-o↵ scale for this theory is ⇤5, and not ⇤3,
as suggested in [].
Processes like (1, 4) ! (2, 3) are particularly nice

because discrete KK momentum conservation forbids a
massless intermediate, such that the full matrix element
is devoid of t- and u-channel singularities. For these, we
can directly compute the appropriately normalized par-
tial wave amplitude,

a
J

�a�b!�c�d
=

1

32⇡2

Z
d⌦ D

J

�i�f
(✓,�)Ma�b!�c�d

(s, ✓,�) ,

(55)

Coupled channel analysis



Orbifolding a Compact Extra Dimension, like RS

Suppose there exists a compact extra dimension between two 4D
branes (at y = 0 and ⇡rc) with the metric GMN equal to...

⌘MN = Diag(+1,�1,�1,�1,�1) = ⌘µ⌫ ⌦ ⌘55

at one of those branes (flat 4D = our 4D). Next, orbifold:

Choose even solutions on [�⇡rc ,⇡rc ] =) massless particles
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Mode expansion for gravity 
in a toroidal extra dimension

We will denote latin alphabets as the 5-D coordinates while greek indices are reserved

for 4-D coordinates. The 4-D part of the metric gµ⌫ , is expanded in the weak field

approximation around the flat Minkowski metric ⌘µ⌫ as gµ⌫ = ⌘µ⌫ + 4Dhµ⌫ , where

4D is a small coupling(weak field expansion parameter). The fields r and ⇢µ are the

radion and the graviphoton respectively. The 5-D massless symmetric tensor hMN ,

that satisfies the full 5-D di↵eomorphism invariance, with 5 transverse degrees of

freedom is split into a tensor hµ⌫ with two transverse degrees of freedom, a vector

⇢µ with two transverse degrees of freedom, and a scalar degree of freedom in r. The

5-D action is given by,

S = M
3
5

Z
d
4
xdy

p

GR
(5)
. (3.2)

We denote the extra dimensional co-ordinate by y. Additionally, G is the deterimant

of the 5-D metric and R
(5) is the 5-D Ricci scalar expanded as G̃

MN
RMN , where

G̃MN is the 5-D metric inverse, and RMN the 5-D Ricci tensor. We denote the 5-

D Planck mass by M5, which is related to the 4-D Planck mass by M
3
5 = M

2
P l/L.

The expansion of the metric inverse and determinant is detailed in Appendix A1.

The compactification allows us to expand the fields in fourier modes over the 5-D

co-ordinates. These read,

hµ⌫(x, y) =
1X

n=�1
hµ⌫,n(x)e

i!ny

hµ5(x, y) =
1X

n=�1
⇢µ(x, n)e

i!ny

h55(x, y) =
1X

n=�1
r(x, n)ei!ny (3.3)

where n is an integer that characterizes the mode number with frequencies !n ⌘

2⇡n
L . The orthogonality of the fourier expansion imposes,

R L

0 dye
(i!my)⇤

e
i!ny = L�mn.

The field hMN is broken to a tensor, vector, and a scalar as hµ,⌫(x), ⇢µ(x), r(x)

respectively. Additionally, reality of the 5-D fields impose,

h
⇤
µ⌫,n = hµ⌫,�n, ⇢

⇤
µ,n = ⇢µ,�n, r

⇤
n = ��n. (3.4)
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Graviphoton (massless spin-1 state from gμν) has odd  
parity in y and does not play a role in this model 

“graviphoton”

“radion”
Compactified theories : Orbifolded Torus

5

whereas its second term becomes

L
(e↵)
B:hh ⌘

Z +⇡rc

�⇡rc

dy e
�4k|y|

LB:hh (27)

=

Z +⇡rc

�⇡rc

dy e
�4k|y|


�
1

2
Jĥ0

ĥ
0K + 1

2
Jĥ0K2

�

=
+1X

m,n=0


�
1

2
Jĥ(m)

ĥ
(n)K + 1

2
Jĥ(m)KJĥ(n)K

�

⇥
1

⇡r2
c

Z +⇡

�⇡

d' e
�4krc|'|(@' m)(@' n)

These are simplified via the orthonormality relations
(B13) and (B15), such that the 4D e↵ective Lagrangian

resulting from L
(RS)
hh

equals

L
(RS,e↵)
hh

= L
(e↵)
A:hh + L

(e↵)
B:hh (28)

= L
(S=2)
Kin (ĥ(0)) +

+1X

n=1

LFP(mn, ĥ
(n))

Therefore, KK decomposition of the 5D graviton field re-
sults in the following 4D particle content: a single mass-
less spin-2 mode ĥ(0), and countably many massive spin-2
modes ĥ

(n) with n 2 {1, 2, · · · }. The zero mode ĥ
(0) is

consistent with the usual 4D graviton (with dimension-
ful coupling constant 4D = 2/MPl,4D =  0/

p
⇡rc), and

will be identified as such.
The 4D e↵ective equivalent of L(RS)

rr (24) equals:

L
(RS,e↵)
rr

=

Z +⇡rc

�⇡rc

dy L
(RS)
rr

(29)

=

Z +⇡rc

�⇡rc

dy e
+2k(|y|�⇡rc)


1

2
(@µr̂)(@

µ
r̂)

�

=
1

2
(@µr̂

(0))(@µr̂(0)) ·
 0

2

⇡rc

Z +⇡rc

�⇡rc

dy e
+2k(|y|�⇡rc)

= L
S=0
Kin (r̂(0))

Therefore, KK decomposing the 5D radion yields only a
single massless spin-0 mode r̂

(0). Like its 5D progenitor,
this 4D state is called the radion.

The derivations above are so clean in part because all
nontrivial wavefunctions appear in pairs and are thus
subject to orthonormality relations. Such simplifications
are seldom possible when dealing with a product of three
or more 5D fields, and instead the integrals must be dealt
with as-is. Consequently, calculating the matrix element
for 2-to-2 scattering of massive KK modes typically re-
quires a sum over infinitely-many diagrams, each of which
contains various products of these overlap integrals.

Consider all terms in the weak field expanded La-

grangian L
(RS)
5D that have exactly H spin-2 fields and no

radion fields. After KK decomposition, terms with two
spatial derivatives (designated as A-Type) are propor-

tional to the unitless overlap integral

a~n ⌘
1

⇡

Z +⇡

�⇡

d' e
�2krc|'|

HY

i=1

 ni
(30)

and those containing two extra-dimensional derivatives
(designated as B-Type) are proportional to integrals

b~n ⌘
1

⇡

Z +⇡

�⇡

d' e
�4krc|'|(@' n1)(@' n2)

HY

i=3

 ni
(31)

where ~n = (n1 · · ·nH) are the KK numbers of the rel-
evant spin-2 fields. Note that a~n is fully symmetric in
all KK indices, whereas b~n is symmetric in the first pair
and remaining KK indices separately. Furthermore, note
that the triple spin-2 couplings imply that the graviton
couples diagonally to massive spin-2 states: via the or-
thogonality relations,

an1n20 =  0�n1,n2 (32)

bn1 n2 0 = (mn1rc)
2
 0�n1,n2

For nonzero krc, couplings to the graviton are generically
weaker than the analogous couplings with a nonzero KK
mode or radion.
To discuss 2-to-2 scattering of massive KK modes, we

also need the integrals which dictate how a radion couples
to a pair of spin-2 particles:

brn1n2 ⌘
 0

⇡

Z +⇡

�⇡

d' e
�krc(2|'|+⇡)(@' n1)(@' n2)

(33)

The theory lacks an analogous A-Type coupling. Note
that the exponential factor in the integrand of brn1n2 is
inconsistent with the orthonormality relations. Conse-
quently, the radion generally couples non-diagonally to
massive spin-2 modes.
Appendix C describes how interactions between 4D

particles are derived from the 5D theory and summarizes
the relevant interactions.

B. The 5D Orbifolded Torus

As a first slightly simpler exercise we consider the limit
where the curvature vanishes. Thus we take the limit of
the RS metric (16) as k ! 0 while simultaneously be-
ing careful to maintain a finite first mass m1, with the
orbifold condition imposed. The 5DOT metric is factor-
izable over R4⇥S1, where the vaccum solution containing
no dependence on the internal dimension,

G
(5DOT)
MN

=

0

@ e

�r̂p
6 (⌘µ⌫ + ĥµ⌫) 0

0 �

⇣
1 + r̂p

6

⌘2

1

A (34)

Orbifolding a Compact Extra Dimension, like RS

Suppose there exists a compact extra dimension between two 4D
branes (at y = 0 and ⇡rc) with the metric GMN equal to...

⌘MN = Diag(+1,�1,�1,�1,�1) = ⌘µ⌫ ⌦ ⌘55

at one of those branes (flat 4D = our 4D). Next, orbifold:

Choose even solutions on [�⇡rc ,⇡rc ] =) massless particles
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Mode expansion for gravity 
in a toroidal extra dimension

We will denote latin alphabets as the 5-D coordinates while greek indices are reserved

for 4-D coordinates. The 4-D part of the metric gµ⌫ , is expanded in the weak field

approximation around the flat Minkowski metric ⌘µ⌫ as gµ⌫ = ⌘µ⌫ + 4Dhµ⌫ , where

4D is a small coupling(weak field expansion parameter). The fields r and ⇢µ are the

radion and the graviphoton respectively. The 5-D massless symmetric tensor hMN ,

that satisfies the full 5-D di↵eomorphism invariance, with 5 transverse degrees of

freedom is split into a tensor hµ⌫ with two transverse degrees of freedom, a vector

⇢µ with two transverse degrees of freedom, and a scalar degree of freedom in r. The

5-D action is given by,

S = M
3
5

Z
d
4
xdy

p

GR
(5)
. (3.2)

We denote the extra dimensional co-ordinate by y. Additionally, G is the deterimant

of the 5-D metric and R
(5) is the 5-D Ricci scalar expanded as G̃

MN
RMN , where

G̃MN is the 5-D metric inverse, and RMN the 5-D Ricci tensor. We denote the 5-

D Planck mass by M5, which is related to the 4-D Planck mass by M
3
5 = M

2
P l/L.

The expansion of the metric inverse and determinant is detailed in Appendix A1.

The compactification allows us to expand the fields in fourier modes over the 5-D

co-ordinates. These read,

hµ⌫(x, y) =
1X

n=�1
hµ⌫,n(x)e

i!ny

hµ5(x, y) =
1X

n=�1
⇢µ(x, n)e

i!ny

h55(x, y) =
1X

n=�1
r(x, n)ei!ny (3.3)

where n is an integer that characterizes the mode number with frequencies !n ⌘

2⇡n
L . The orthogonality of the fourier expansion imposes,

R L

0 dye
(i!my)⇤

e
i!ny = L�mn.

The field hMN is broken to a tensor, vector, and a scalar as hµ,⌫(x), ⇢µ(x), r(x)

respectively. Additionally, reality of the 5-D fields impose,

h
⇤
µ⌫,n = hµ⌫,�n, ⇢

⇤
µ,n = ⇢µ,�n, r

⇤
n = ��n. (3.4)
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Graviphoton (massless spin-1 state from gμν) has odd  
parity in y and does not play a role in this model 

“graviphoton”

“radion”

Parametrized for Canonical kinetic and mass terms 

Integrate over extra dimension:  EFT with a cut off 

5D orbifolded torus

12

Discrete momentum conservation in extra dimensions KK number conservation 



→
s5

m8M2
pl

ϵ0
μν →

kμkν

m2

⇥
O(s7) ! O(s5)

⇤
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Compactified theories : Orbifolded TorusRestating the Problem

Recall: we’re interested in how the high-energy limits of...

Massless 5D Gravity: M2!2 ! O(s)

Massive 4D Gravity: M2!2 ! O(s5)

are consistent despite massless 5D gravity’s KK expansion
involving infinitely many massive spin-2 modes.

To see how this is resolved, we focus on the h
(n)

h
(n)

! h
(n)

h
(n)

pure longitudinal helicity amplitude Mnn!nn at O(2).

Mnn!nn = =
X

k

M
(k)
nn!nn s

k
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M2!2 ! O(
p

N0s)
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Diagrams Relevant to Longitudinal h(n)h(n) ! h(n)h(n)

There are ten diagrams relevant to aforementioned process, seven
of which diverge as O(s5):

26 / 38

The Radion-Mediated Diagrams

The remaining three diagrams are radion-mediated and diverge like

O(s3), thereby contributing at M(3)
nn!nn and lower.

Important to Note: We didn’t include a radion in our previous
dark matter calculation!
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Intermediate massless graviton

Intermediate radion

“Seagull”

Expectations for Massive KK 
Spin-2 Modes: Torus

6

and the massive wavefunctions go from exponentially-
distorted Bessel functions to cosines:

 n =

(
 0 = 1p

2

 n = � cos(n|'|) 0 < n 2 Z
(35)

with masses given by mnrc = n and coupling  =
p
2⇡rc4D. Without warp factors, not only does

the radion now couple diagonally, but spin-2 interac-
tions satisfy the more general property of discrete KK
number conservation. Explicitly, an H-point vertex
ĥ
(n1) · · · ĥ(nH) in the 4D e↵ective 5DOT model has van-

ishing coupling if there exists no choice of ci 2 {�1,+1}
such that c1n1 + · · · + cHnH = 0. For example, the
three-point couplings almn and blmn are nonzero only
when l = |m ± n|. Therefore, unlike when krc is
nonzero, the 5DOT matrix element M

(5DOT) for a pro-
cess (k, l) ! (m,n) consists of only finitely many nonzero
diagrams.

IV. MATRIX ELEMENTS

We investigate tree-level 2-to-2 scattering of helicity-0
massive spin-2 states in the center-of-momentum frame.
For scattering of nonzero KK modes (k, l) ! (m,n), we
choose coordinates such that the initial particle pair have
4-momenta satisfying

p
µ

i1
= (Ei1 ,+|~pi|ẑ) p

2
i1

= m
2
k

(36)

p
µ

i2
= (Ei2 ,�|~pi|ẑ) p

2
i2

= m
2
l

(37)

and the final particle pair have 4-momenta satisfying

p
µ

f1
= (Ef1 ,+~pf ) p

2
f1

= m
2
m

(38)

p
µ

f2
= (Ef2 ,�~pf ) p

2
f2

= m
2
n

(39)

where ~pf ⌘ |~pf |(sin ✓ cos�, sin ✓ sin�, cos ✓). That is, the
initial pair approach along the z-axis and the final pair
separate along the line described by the angles (✓,�).
The helicity-0 spin-2 polarization tensor ✏µ⌫0 (p) for a par-
ticle with 4-momentum p equals

✏
µ⌫

0 =
1
p
6


✏
µ

+1✏
⌫

�1 + ✏
µ

�1✏
⌫

+1 + 2✏µ0 ✏
⌫

0

�
(40)

where ✏µ
s
are the spin-1 polarization vectors

✏
µ

±1 =
e
±i�

p
2


⌥@✓ �

i

sin ✓
@�

�
✏
µ

0 (41)

✏
µ

0 =
1

m

✓p
E2 �m2, E p̂

◆
(42)

2 Meanwhile, the propagator for a virtual spin-2 particle
of mass M and 4-momentum P is

iB
µ⌫,⇢�

P 2 �M2
(43)

2
The phase convention deserves some clarification. For example,

Jacob-Wick 2nd Particle convention introduces no new phases.
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FIG. 1. Diagrams contributing to the tree level scattering

(k, l) ! (m,n)

where

B
µ⌫,⇢�

⌘
1

2


B

µ⇢

B
⌫�

+B
⌫⇢

B
µ�

�
1

3
(2 + �0,M )B

µ⌫

B
⇢�

�

B
↵�
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↵�

�
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↵
P

�

M2
�0,M (44)

and ⌘
µ⌫ = Diag(+1,�1,�1,�1) is the flat 4D metric.

The Mandelstam variable s ⌘ (pi1 + pi2)
2 = (Ei1 +Ei2)

2

provides a convenient frame-invariant measure of colli-
sion energy.
Tree-level (k, l) ! (m,n) scattering may proceed via

any of several diagrams, which we organize into the sets
described in Fig. 1. The total tree-level matrix element
is thus

M = Mcontact +Mradion +
+1X

j=0

Mj (45)

At energies much larger than the external masses, the
spin-2 polarizations ✏µ⌫0 , massive spin-2 propagator, and
A-Type interactions (which contain two spatial deriva-
tives) each grow like O(s). Meanwhile, the B-Type in-
teractions go like O(1) and the massless propagators fall
like O(1/s). Thus, we naively expect

Mj>0 ⇠ O(s7) (46)

Mcontact and M0 ⇠ O(s5) (47)

Mradion ⇠ O(s3) (48)

However, explicit calculations reveal Mj>0 grows slower
than otherwise expected diagram-by-diagram, such that

Mj ⇠ O(s5) (49)

We demonstrate additional cancellations occur when all
diagrams are combined such that the full matrix element
grows linearly in s,

M ⇠ O(s) (50)

as expected from the underlying 5D di↵eomorphism in-

variance of L(RS)
5D . To isolate these cancellations, we series

Compactified theories

Restating the Problem

Recall: we’re interested in how the high-energy limits of...

Massless 5D Gravity: M2!2 ! O(s)

Massive 4D Gravity: M2!2 ! O(s5)

are consistent despite massless 5D gravity’s KK expansion
involving infinitely many massive spin-2 modes.

To see how this is resolved, we focus on the h
(n)

h
(n)

! h
(n)

h
(n)

pure longitudinal helicity amplitude Mnn!nn at O(2).
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Diagrams Relevant to Longitudinal h(n)h(n) ! h(n)h(n)

There are ten diagrams relevant to aforementioned process, seven
of which diverge as O(s5):
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The Radion-Mediated Diagrams

The remaining three diagrams are radion-mediated and diverge like

O(s3), thereby contributing at M(3)
nn!nn and lower.

Important to Note: We didn’t include a radion in our previous
dark matter calculation!
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Intermediate massless graviton

Intermediate radion

“Seagull”

Expectations for Massive KK 
Spin-2 Modes: Torus
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KK discrete momentum conservation
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provides a convenient frame-invariant measure of colli-
sion energy.
Tree-level (k, l) ! (m,n) scattering may proceed via

any of several diagrams, which we organize into the sets
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At energies much larger than the external masses, the
spin-2 polarizations ✏µ⌫0 , massive spin-2 propagator, and
A-Type interactions (which contain two spatial deriva-
tives) each grow like O(s). Meanwhile, the B-Type in-
teractions go like O(1) and the massless propagators fall
like O(1/s). Thus, we naively expect

Mj>0 ⇠ O(s7) (46)

Mcontact and M0 ⇠ O(s5) (47)

Mradion ⇠ O(s3) (48)

However, explicit calculations reveal Mj>0 grows slower
than otherwise expected diagram-by-diagram, such that

Mj ⇠ O(s5) (49)

We demonstrate additional cancellations occur when all
diagrams are combined such that the full matrix element
grows linearly in s,

M ⇠ O(s) (50)

as expected from the underlying 5D di↵eomorphism in-

variance of L(RS)
5D . To isolate these cancellations, we series
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and the massive wavefunctions go from exponentially-
distorted Bessel functions to cosines:
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with masses given by mnrc = n and coupling  =
p
2⇡rc4D. Without warp factors, not only does

the radion now couple diagonally, but spin-2 interac-
tions satisfy the more general property of discrete KK
number conservation. Explicitly, an H-point vertex
ĥ
(n1) · · · ĥ(nH) in the 4D e↵ective 5DOT model has van-

ishing coupling if there exists no choice of ci 2 {�1,+1}
such that c1n1 + · · · + cHnH = 0. For example, the
three-point couplings almn and blmn are nonzero only
when l = |m ± n|. Therefore, unlike when krc is
nonzero, the 5DOT matrix element M

(5DOT) for a pro-
cess (k, l) ! (m,n) consists of only finitely many nonzero
diagrams.

IV. MATRIX ELEMENTS

We investigate tree-level 2-to-2 scattering of helicity-0
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2 Meanwhile, the propagator for a virtual spin-2 particle
of mass M and 4-momentum P is
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The phase convention deserves some clarification. For example,

Jacob-Wick 2nd Particle convention introduces no new phases.
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described in Fig. 1. The total tree-level matrix element
is thus
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Mj (45)

At energies much larger than the external masses, the
spin-2 polarizations ✏µ⌫0 , massive spin-2 propagator, and
A-Type interactions (which contain two spatial deriva-
tives) each grow like O(s). Meanwhile, the B-Type in-
teractions go like O(1) and the massless propagators fall
like O(1/s). Thus, we naively expect

Mj>0 ⇠ O(s7) (46)

Mcontact and M0 ⇠ O(s5) (47)
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However, explicit calculations reveal Mj>0 grows slower
than otherwise expected diagram-by-diagram, such that

Mj ⇠ O(s5) (49)

We demonstrate additional cancellations occur when all
diagrams are combined such that the full matrix element
grows linearly in s,

M ⇠ O(s) (50)

as expected from the underlying 5D di↵eomorphism in-

variance of L(RS)
5D . To isolate these cancellations, we series

Compactified theories

Restating the Problem

Recall: we’re interested in how the high-energy limits of...

Massless 5D Gravity: M2!2 ! O(s)

Massive 4D Gravity: M2!2 ! O(s5)

are consistent despite massless 5D gravity’s KK expansion
involving infinitely many massive spin-2 modes.

To see how this is resolved, we focus on the h
(n)

h
(n)

! h
(n)

h
(n)

pure longitudinal helicity amplitude Mnn!nn at O(2).

Mnn!nn = =
X

k

M
(k)
nn!nn s

k
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Diagrams Relevant to Longitudinal h(n)h(n) ! h(n)h(n)

There are ten diagrams relevant to aforementioned process, seven
of which diverge as O(s5):

26 / 38

The Radion-Mediated Diagrams

The remaining three diagrams are radion-mediated and diverge like

O(s3), thereby contributing at M(3)
nn!nn and lower.

Important to Note: We didn’t include a radion in our previous
dark matter calculation!
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KK discrete momentum conservation

6

and the massive wavefunctions go from exponentially-
distorted Bessel functions to cosines:

 n =

(
 0 = 1p

2

 n = � cos(n|'|) 0 < n 2 Z
(35)

with masses given by mnrc = n and coupling  =
p
2⇡rc4D. Without warp factors, not only does

the radion now couple diagonally, but spin-2 interac-
tions satisfy the more general property of discrete KK
number conservation. Explicitly, an H-point vertex
ĥ
(n1) · · · ĥ(nH) in the 4D e↵ective 5DOT model has van-

ishing coupling if there exists no choice of ci 2 {�1,+1}
such that c1n1 + · · · + cHnH = 0. For example, the
three-point couplings almn and blmn are nonzero only
when l = |m ± n|. Therefore, unlike when krc is
nonzero, the 5DOT matrix element M

(5DOT) for a pro-
cess (k, l) ! (m,n) consists of only finitely many nonzero
diagrams.

IV. MATRIX ELEMENTS

We investigate tree-level 2-to-2 scattering of helicity-0
massive spin-2 states in the center-of-momentum frame.
For scattering of nonzero KK modes (k, l) ! (m,n), we
choose coordinates such that the initial particle pair have
4-momenta satisfying
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where ~pf ⌘ |~pf |(sin ✓ cos�, sin ✓ sin�, cos ✓). That is, the
initial pair approach along the z-axis and the final pair
separate along the line described by the angles (✓,�).
The helicity-0 spin-2 polarization tensor ✏µ⌫0 (p) for a par-
ticle with 4-momentum p equals
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2 Meanwhile, the propagator for a virtual spin-2 particle
of mass M and 4-momentum P is
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P 2 �M2
(43)
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The phase convention deserves some clarification. For example,

Jacob-Wick 2nd Particle convention introduces no new phases.
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and ⌘
µ⌫ = Diag(+1,�1,�1,�1) is the flat 4D metric.

The Mandelstam variable s ⌘ (pi1 + pi2)
2 = (Ei1 +Ei2)

2

provides a convenient frame-invariant measure of colli-
sion energy.
Tree-level (k, l) ! (m,n) scattering may proceed via

any of several diagrams, which we organize into the sets
described in Fig. 1. The total tree-level matrix element
is thus

M = Mcontact +Mradion +
+1X

j=0

Mj (45)

At energies much larger than the external masses, the
spin-2 polarizations ✏µ⌫0 , massive spin-2 propagator, and
A-Type interactions (which contain two spatial deriva-
tives) each grow like O(s). Meanwhile, the B-Type in-
teractions go like O(1) and the massless propagators fall
like O(1/s). Thus, we naively expect

Mj>0 ⇠ O(s7) (46)

Mcontact and M0 ⇠ O(s5) (47)

Mradion ⇠ O(s3) (48)

However, explicit calculations reveal Mj>0 grows slower
than otherwise expected diagram-by-diagram, such that

Mj ⇠ O(s5) (49)

We demonstrate additional cancellations occur when all
diagrams are combined such that the full matrix element
grows linearly in s,

M ⇠ O(s) (50)

as expected from the underlying 5D di↵eomorphism in-

variance of L(RS)
5D . To isolate these cancellations, we series
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as expected from the underlying 5D di↵eomorphism in-

variance of L(RS)
5D . To isolate these cancellations, we series

Compactified theories

Restating the Problem

Recall: we’re interested in how the high-energy limits of...

Massless 5D Gravity: M2!2 ! O(s)

Massive 4D Gravity: M2!2 ! O(s5)

are consistent despite massless 5D gravity’s KK expansion
involving infinitely many massive spin-2 modes.

To see how this is resolved, we focus on the h
(n)

h
(n)

! h
(n)

h
(n)

pure longitudinal helicity amplitude Mnn!nn at O(2).
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Diagrams Relevant to Longitudinal h(n)h(n) ! h(n)h(n)

There are ten diagrams relevant to aforementioned process, seven
of which diverge as O(s5):
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The Radion-Mediated Diagrams

The remaining three diagrams are radion-mediated and diverge like

O(s3), thereby contributing at M(3)
nn!nn and lower.

Important to Note: We didn’t include a radion in our previous
dark matter calculation!
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KK discrete momentum conservation
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and the massive wavefunctions go from exponentially-
distorted Bessel functions to cosines:

 n =

(
 0 = 1p

2

 n = � cos(n|'|) 0 < n 2 Z
(35)

with masses given by mnrc = n and coupling  =
p
2⇡rc4D. Without warp factors, not only does

the radion now couple diagonally, but spin-2 interac-
tions satisfy the more general property of discrete KK
number conservation. Explicitly, an H-point vertex
ĥ
(n1) · · · ĥ(nH) in the 4D e↵ective 5DOT model has van-

ishing coupling if there exists no choice of ci 2 {�1,+1}
such that c1n1 + · · · + cHnH = 0. For example, the
three-point couplings almn and blmn are nonzero only
when l = |m ± n|. Therefore, unlike when krc is
nonzero, the 5DOT matrix element M

(5DOT) for a pro-
cess (k, l) ! (m,n) consists of only finitely many nonzero
diagrams.

IV. MATRIX ELEMENTS

We investigate tree-level 2-to-2 scattering of helicity-0
massive spin-2 states in the center-of-momentum frame.
For scattering of nonzero KK modes (k, l) ! (m,n), we
choose coordinates such that the initial particle pair have
4-momenta satisfying
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where ~pf ⌘ |~pf |(sin ✓ cos�, sin ✓ sin�, cos ✓). That is, the
initial pair approach along the z-axis and the final pair
separate along the line described by the angles (✓,�).
The helicity-0 spin-2 polarization tensor ✏µ⌫0 (p) for a par-
ticle with 4-momentum p equals
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2 Meanwhile, the propagator for a virtual spin-2 particle
of mass M and 4-momentum P is
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P 2 �M2
(43)
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The phase convention deserves some clarification. For example,

Jacob-Wick 2nd Particle convention introduces no new phases.
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and ⌘
µ⌫ = Diag(+1,�1,�1,�1) is the flat 4D metric.

The Mandelstam variable s ⌘ (pi1 + pi2)
2 = (Ei1 +Ei2)

2

provides a convenient frame-invariant measure of colli-
sion energy.
Tree-level (k, l) ! (m,n) scattering may proceed via

any of several diagrams, which we organize into the sets
described in Fig. 1. The total tree-level matrix element
is thus

M = Mcontact +Mradion +
+1X

j=0

Mj (45)

At energies much larger than the external masses, the
spin-2 polarizations ✏µ⌫0 , massive spin-2 propagator, and
A-Type interactions (which contain two spatial deriva-
tives) each grow like O(s). Meanwhile, the B-Type in-
teractions go like O(1) and the massless propagators fall
like O(1/s). Thus, we naively expect

Mj>0 ⇠ O(s7) (46)

Mcontact and M0 ⇠ O(s5) (47)

Mradion ⇠ O(s3) (48)

However, explicit calculations reveal Mj>0 grows slower
than otherwise expected diagram-by-diagram, such that

Mj ⇠ O(s5) (49)

We demonstrate additional cancellations occur when all
diagrams are combined such that the full matrix element
grows linearly in s,

M ⇠ O(s) (50)

as expected from the underlying 5D di↵eomorphism in-

variance of L(RS)
5D . To isolate these cancellations, we series
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and ⌘
µ⌫ = Diag(+1,�1,�1,�1) is the flat 4D metric.

The Mandelstam variable s ⌘ (pi1 + pi2)
2 = (Ei1 +Ei2)

2

provides a convenient frame-invariant measure of colli-
sion energy.
Tree-level (k, l) ! (m,n) scattering may proceed via

any of several diagrams, which we organize into the sets
described in Fig. 1. The total tree-level matrix element
is thus

M = Mcontact +Mradion +
+1X

j=0

Mj (45)

At energies much larger than the external masses, the
spin-2 polarizations ✏µ⌫0 , massive spin-2 propagator, and
A-Type interactions (which contain two spatial deriva-
tives) each grow like O(s). Meanwhile, the B-Type in-
teractions go like O(1) and the massless propagators fall
like O(1/s). Thus, we naively expect

Mj>0 ⇠ O(s7) (46)

Mcontact and M0 ⇠ O(s5) (47)

Mradion ⇠ O(s3) (48)

However, explicit calculations reveal Mj>0 grows slower
than otherwise expected diagram-by-diagram, such that

Mj ⇠ O(s5) (49)

We demonstrate additional cancellations occur when all
diagrams are combined such that the full matrix element
grows linearly in s,

M ⇠ O(s) (50)

as expected from the underlying 5D di↵eomorphism in-

variance of L(RS)
5D . To isolate these cancellations, we series

Compactified theories

Restating the Problem

Recall: we’re interested in how the high-energy limits of...

Massless 5D Gravity: M2!2 ! O(s)

Massive 4D Gravity: M2!2 ! O(s5)

are consistent despite massless 5D gravity’s KK expansion
involving infinitely many massive spin-2 modes.

To see how this is resolved, we focus on the h
(n)

h
(n)

! h
(n)

h
(n)

pure longitudinal helicity amplitude Mnn!nn at O(2).
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Diagrams Relevant to Longitudinal h(n)h(n) ! h(n)h(n)

There are ten diagrams relevant to aforementioned process, seven
of which diverge as O(s5):

26 / 38

The Radion-Mediated Diagrams

The remaining three diagrams are radion-mediated and diverge like

O(s3), thereby contributing at M(3)
nn!nn and lower.

Important to Note: We didn’t include a radion in our previous
dark matter calculation!
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Intermediate massless graviton

Intermediate radion

“Seagull”

Expectations for Massive KK 
Spin-2 Modes: Torus
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KK discrete momentum conservation

6

and the massive wavefunctions go from exponentially-
distorted Bessel functions to cosines:

 n =

(
 0 = 1p

2

 n = � cos(n|'|) 0 < n 2 Z
(35)

with masses given by mnrc = n and coupling  =
p
2⇡rc4D. Without warp factors, not only does

the radion now couple diagonally, but spin-2 interac-
tions satisfy the more general property of discrete KK
number conservation. Explicitly, an H-point vertex
ĥ
(n1) · · · ĥ(nH) in the 4D e↵ective 5DOT model has van-

ishing coupling if there exists no choice of ci 2 {�1,+1}
such that c1n1 + · · · + cHnH = 0. For example, the
three-point couplings almn and blmn are nonzero only
when l = |m ± n|. Therefore, unlike when krc is
nonzero, the 5DOT matrix element M

(5DOT) for a pro-
cess (k, l) ! (m,n) consists of only finitely many nonzero
diagrams.

IV. MATRIX ELEMENTS

We investigate tree-level 2-to-2 scattering of helicity-0
massive spin-2 states in the center-of-momentum frame.
For scattering of nonzero KK modes (k, l) ! (m,n), we
choose coordinates such that the initial particle pair have
4-momenta satisfying
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where ~pf ⌘ |~pf |(sin ✓ cos�, sin ✓ sin�, cos ✓). That is, the
initial pair approach along the z-axis and the final pair
separate along the line described by the angles (✓,�).
The helicity-0 spin-2 polarization tensor ✏µ⌫0 (p) for a par-
ticle with 4-momentum p equals
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and ⌘
µ⌫ = Diag(+1,�1,�1,�1) is the flat 4D metric.

The Mandelstam variable s ⌘ (pi1 + pi2)
2 = (Ei1 +Ei2)
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provides a convenient frame-invariant measure of colli-
sion energy.
Tree-level (k, l) ! (m,n) scattering may proceed via

any of several diagrams, which we organize into the sets
described in Fig. 1. The total tree-level matrix element
is thus

M = Mcontact +Mradion +
+1X

j=0

Mj (45)

At energies much larger than the external masses, the
spin-2 polarizations ✏µ⌫0 , massive spin-2 propagator, and
A-Type interactions (which contain two spatial deriva-
tives) each grow like O(s). Meanwhile, the B-Type in-
teractions go like O(1) and the massless propagators fall
like O(1/s). Thus, we naively expect
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diagrams are combined such that the full matrix element
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ĥ
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and ⌘
µ⌫ = Diag(+1,�1,�1,�1) is the flat 4D metric.

The Mandelstam variable s ⌘ (pi1 + pi2)
2 = (Ei1 +Ei2)

2

provides a convenient frame-invariant measure of colli-
sion energy.
Tree-level (k, l) ! (m,n) scattering may proceed via

any of several diagrams, which we organize into the sets
described in Fig. 1. The total tree-level matrix element
is thus

M = Mcontact +Mradion +
+1X

j=0

Mj (45)

At energies much larger than the external masses, the
spin-2 polarizations ✏µ⌫0 , massive spin-2 propagator, and
A-Type interactions (which contain two spatial deriva-
tives) each grow like O(s). Meanwhile, the B-Type in-
teractions go like O(1) and the massless propagators fall
like O(1/s). Thus, we naively expect

Mj>0 ⇠ O(s7) (46)

Mcontact and M0 ⇠ O(s5) (47)

Mradion ⇠ O(s3) (48)

However, explicit calculations reveal Mj>0 grows slower
than otherwise expected diagram-by-diagram, such that

Mj ⇠ O(s5) (49)

We demonstrate additional cancellations occur when all
diagrams are combined such that the full matrix element
grows linearly in s,

M ⇠ O(s) (50)

as expected from the underlying 5D di↵eomorphism in-

variance of L(RS)
5D . To isolate these cancellations, we series

Compactified theories

Restating the Problem

Recall: we’re interested in how the high-energy limits of...

Massless 5D Gravity: M2!2 ! O(s)

Massive 4D Gravity: M2!2 ! O(s5)

are consistent despite massless 5D gravity’s KK expansion
involving infinitely many massive spin-2 modes.

To see how this is resolved, we focus on the h
(n)

h
(n)

! h
(n)

h
(n)

pure longitudinal helicity amplitude Mnn!nn at O(2).

Mnn!nn = =
X

k

M
(k)
nn!nn s
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Diagrams Relevant to Longitudinal h(n)h(n) ! h(n)h(n)

There are ten diagrams relevant to aforementioned process, seven
of which diverge as O(s5):
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The Radion-Mediated Diagrams

The remaining three diagrams are radion-mediated and diverge like

O(s3), thereby contributing at M(3)
nn!nn and lower.

Important to Note: We didn’t include a radion in our previous
dark matter calculation!
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KK discrete momentum conservation

6

and the massive wavefunctions go from exponentially-
distorted Bessel functions to cosines:

 n =

(
 0 = 1p

2

 n = � cos(n|'|) 0 < n 2 Z
(35)

with masses given by mnrc = n and coupling  =
p
2⇡rc4D. Without warp factors, not only does

the radion now couple diagonally, but spin-2 interac-
tions satisfy the more general property of discrete KK
number conservation. Explicitly, an H-point vertex
ĥ
(n1) · · · ĥ(nH) in the 4D e↵ective 5DOT model has van-

ishing coupling if there exists no choice of ci 2 {�1,+1}
such that c1n1 + · · · + cHnH = 0. For example, the
three-point couplings almn and blmn are nonzero only
when l = |m ± n|. Therefore, unlike when krc is
nonzero, the 5DOT matrix element M

(5DOT) for a pro-
cess (k, l) ! (m,n) consists of only finitely many nonzero
diagrams.

IV. MATRIX ELEMENTS

We investigate tree-level 2-to-2 scattering of helicity-0
massive spin-2 states in the center-of-momentum frame.
For scattering of nonzero KK modes (k, l) ! (m,n), we
choose coordinates such that the initial particle pair have
4-momenta satisfying

p
µ

i1
= (Ei1 ,+|~pi|ẑ) p

2
i1

= m
2
k

(36)

p
µ

i2
= (Ei2 ,�|~pi|ẑ) p

2
i2

= m
2
l

(37)

and the final particle pair have 4-momenta satisfying

p
µ
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= (Ef1 ,+~pf ) p

2
f1

= m
2
m

(38)

p
µ

f2
= (Ef2 ,�~pf ) p

2
f2

= m
2
n

(39)

where ~pf ⌘ |~pf |(sin ✓ cos�, sin ✓ sin�, cos ✓). That is, the
initial pair approach along the z-axis and the final pair
separate along the line described by the angles (✓,�).
The helicity-0 spin-2 polarization tensor ✏µ⌫0 (p) for a par-
ticle with 4-momentum p equals

✏
µ⌫

0 =
1
p
6


✏
µ

+1✏
⌫

�1 + ✏
µ

�1✏
⌫

+1 + 2✏µ0 ✏
⌫

0

�
(40)

where ✏µ
s
are the spin-1 polarization vectors

✏
µ

±1 =
e
±i�

p
2
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⌥@✓ �

i

sin ✓
@�

�
✏
µ

0 (41)

✏
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0 =
1

m

✓p
E2 �m2, E p̂

◆
(42)

2 Meanwhile, the propagator for a virtual spin-2 particle
of mass M and 4-momentum P is

iB
µ⌫,⇢�

P 2 �M2
(43)

2
The phase convention deserves some clarification. For example,

Jacob-Wick 2nd Particle convention introduces no new phases.
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and ⌘
µ⌫ = Diag(+1,�1,�1,�1) is the flat 4D metric.

The Mandelstam variable s ⌘ (pi1 + pi2)
2 = (Ei1 +Ei2)

2

provides a convenient frame-invariant measure of colli-
sion energy.
Tree-level (k, l) ! (m,n) scattering may proceed via

any of several diagrams, which we organize into the sets
described in Fig. 1. The total tree-level matrix element
is thus

M = Mcontact +Mradion +
+1X

j=0

Mj (45)

At energies much larger than the external masses, the
spin-2 polarizations ✏µ⌫0 , massive spin-2 propagator, and
A-Type interactions (which contain two spatial deriva-
tives) each grow like O(s). Meanwhile, the B-Type in-
teractions go like O(1) and the massless propagators fall
like O(1/s). Thus, we naively expect

Mj>0 ⇠ O(s7) (46)

Mcontact and M0 ⇠ O(s5) (47)

Mradion ⇠ O(s3) (48)

However, explicit calculations reveal Mj>0 grows slower
than otherwise expected diagram-by-diagram, such that

Mj ⇠ O(s5) (49)

We demonstrate additional cancellations occur when all
diagrams are combined such that the full matrix element
grows linearly in s,

M ⇠ O(s) (50)

as expected from the underlying 5D di↵eomorphism in-

variance of L(RS)
5D . To isolate these cancellations, we series
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(n1) · · · ĥ(nH) in the 4D e↵ective 5DOT model has van-

ishing coupling if there exists no choice of ci 2 {�1,+1}
such that c1n1 + · · · + cHnH = 0. For example, the
three-point couplings almn and blmn are nonzero only
when l = |m ± n|. Therefore, unlike when krc is
nonzero, the 5DOT matrix element M

(5DOT) for a pro-
cess (k, l) ! (m,n) consists of only finitely many nonzero
diagrams.

IV. MATRIX ELEMENTS

We investigate tree-level 2-to-2 scattering of helicity-0
massive spin-2 states in the center-of-momentum frame.
For scattering of nonzero KK modes (k, l) ! (m,n), we
choose coordinates such that the initial particle pair have
4-momenta satisfying

p
µ

i1
= (Ei1 ,+|~pi|ẑ) p
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Compactified theories: Orbifolded torus

7

s5 s4 s3 s2

Mcontact �
2r7

c
[7+c2✓ ]s

2
✓

3072n8⇡

2r5
c
[63�196c2✓+5c4✓ ]

9216n6⇡

2r3
c
[�185+692c2✓+5c4✓ ]

4608n4⇡
�

2rc[5+47 c2✓ ]
72n2⇡

M2n
2r7

c
[7+c2✓ ]s

2
✓

9216n8⇡

2r5
c
[�13+c2✓ ]s

2
✓

1152n6⇡

2r3
c
[97+3 c2✓ ]s

2
✓

1152n4⇡
2rc[�179+116c2✓�c4✓ ]

1152n2⇡

M0
2r7

c
[7+c2✓ ]s

2
✓

4608n8⇡

2r5
c
[�9+140c2✓�3c4✓ ]

9216n6⇡

2r3
c
[15�270c2✓�c4✓ ]

2304n4⇡
2rc[175+624 c2✓+c4✓ ]

1152n2⇡

Mradion 0 0 �
2r3

c
s2
✓

64n4⇡
2rc[7+c2✓ ]

96n2⇡

Sum 0 0 0 0

TABLE I. Cancellations in the (n, n) ! (n, n) 5DOT amplitude, where ✓ is the center-of-mass scattering angle and (cn✓, sn✓) =

(cosn✓, sinn✓).

expand the diagrams and total matrix element in s, and
label the coe�cients like so:

M(s, ✓) ⌘
X

�2Z
M

(�)
(✓) · s� (51)

In this paper, we will demonstrate that M
(�)

vanishes
for � > 1 and present the residual linear term in s.

V. CANCELLATIONS AND HIGH ENERGY
GROWTH OF AMPLITUDES

A. Cancellations in the orbifolded torus model

We first analyze the cancellations in the orbifolded
torus. While we have calculated all arbitrary scatter-
ing states, we present the (n, n) ! (n, n) process due to
the relative simplicity. The full matrix element is,

M
(5DOT)
(n,n)!(n,n) = Mcontact +Mradion +M0 +M2n (52)

The principle results were presented in [], here we ex-
pand and provide some additional details of the calcula-
tion. For the process (n, n) ! (n, n), we summarize the
growth and cancellation of amplitudes at every order in
s
�, starting from � = 5. Due to the KK number con-
servation for the 5DOT, the intermediate states for the
non-contact diagrams can only be a massive 2n state and
the massless graviton(0 state). In Table I we present the
growth of matrix elements for each diagram for the scat-
tering of longitudinal helicity modes. As expected, we
observe that the contact, as well as diagrams with mas-
sive intermediate propagator and the masless graviton
grow like s

5 as the highest power. However the diagram
with a radion intermediate state appears only at O(s3).
Note that the results for the massive intermediate prop-
agator 2n and the massless graviton are presented after
summing up the s, t and u channel diagrams. At O(s5)
and O(s4), the contact diagrams along with the massive
2n state and the massless graviton state cancel each other
out. The underlying reason for this due to a 4D di↵eo-
morphism invariance being part of the full 5D di↵eomor-
phism. This feature will be clearer when we discuss the
sum rules for cancellation. At order s

3 and s
2 however,

the massless radion plays an important role in the cancel-
lation, which will be elucidated in more detail within the

context of sum rules. In Fig. 2, we present the pattern
of cancellations at every order in s

�, for all phase space
points between (�⇡,⇡) for the scattering of KK states
(2, 2) ! (2, 2). We observe that although the angular
distributions for various individual diagrams are quite
di↵erent, the cancellations between various diagrams is
exact for every phase space point. Notice that the radion
plays a significant role in the cancellations from O(s3).
This cancellation is therefore extremely intricate, and re-
quires a subtle conspiracy between various field degrees
of freedom of the underlying 5D theory. Any calculation
that does not take into account the full field content and
all possible diagrams will encounter a high energy growth
greater than O(s), which is misleading and incorrect.

The only non-zero contribution therefore appears at
O(s). In general, for a process (k, l) ! (m,n) in the
5DOT model,

M
(1)

=
xklmn

2

256⇡rc
[7 + cos(2✓)] csc2 ✓ (53)

where xklmn is fully symmetric in its indices, ✓ being the
scatering angle and satisfies

xaaaa = 3, xaabb = 2, and xabcd = 1

when discrete KK momentum is conserved, and vanishes
when it is not. For the (n, n) ! (n, n) scattering there-
fore, we have,

M
(1)(✓) =

32

256⇡rc
[7 + cos(2✓)] csc2 ✓ (54)

Since 
2
/(⇡rc) = 8/M2

Pl
, the amplitude grows as s/M2

Pl

as expected. More importantly, for scattering of (n, n) !
(n, n) states, if we truncate the theory below 2n, the
amplitude will grow as s5, in the absence of the state 2n.
Thus the cut-o↵ scale for this theory is ⇤5, and not ⇤3,
as suggested in [].
Processes like (1, 4) ! (2, 3) are particularly nice

because discrete KK momentum conservation forbids a
massless intermediate, such that the full matrix element
is devoid of t- and u-channel singularities. For these, we
can directly compute the appropriately normalized par-
tial wave amplitude,

a
J

�a�b!�c�d
=

1

32⇡2

Z
d⌦ D

J

�i�f
(✓,�)Ma�b!�c�d

(s, ✓,�) ,

(55)

Amplitude grows as
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label the coe�cients like so:

M(s, ✓) ⌘
X

�2Z
M

(�)
(✓) · s� (51)

In this paper, we will demonstrate that M
(�)

vanishes
for � > 1 and present the residual linear term in s.

V. CANCELLATIONS AND HIGH ENERGY
GROWTH OF AMPLITUDES

A. Cancellations in the orbifolded torus model

We first analyze the cancellations in the orbifolded
torus. While we have calculated all arbitrary scatter-
ing states, we present the (n, n) ! (n, n) process due to
the relative simplicity. The full matrix element is,

M
(5DOT)
(n,n)!(n,n) = Mcontact +Mradion +M0 +M2n (52)

The principle results were presented in [], here we ex-
pand and provide some additional details of the calcula-
tion. For the process (n, n) ! (n, n), we summarize the
growth and cancellation of amplitudes at every order in
s
�, starting from � = 5. Due to the KK number con-
servation for the 5DOT, the intermediate states for the
non-contact diagrams can only be a massive 2n state and
the massless graviton(0 state). In Table I we present the
growth of matrix elements for each diagram for the scat-
tering of longitudinal helicity modes. As expected, we
observe that the contact, as well as diagrams with mas-
sive intermediate propagator and the masless graviton
grow like s

5 as the highest power. However the diagram
with a radion intermediate state appears only at O(s3).
Note that the results for the massive intermediate prop-
agator 2n and the massless graviton are presented after
summing up the s, t and u channel diagrams. At O(s5)
and O(s4), the contact diagrams along with the massive
2n state and the massless graviton state cancel each other
out. The underlying reason for this due to a 4D di↵eo-
morphism invariance being part of the full 5D di↵eomor-
phism. This feature will be clearer when we discuss the
sum rules for cancellation. At order s

3 and s
2 however,

the massless radion plays an important role in the cancel-
lation, which will be elucidated in more detail within the

context of sum rules. In Fig. 2, we present the pattern
of cancellations at every order in s

�, for all phase space
points between (�⇡,⇡) for the scattering of KK states
(2, 2) ! (2, 2). We observe that although the angular
distributions for various individual diagrams are quite
di↵erent, the cancellations between various diagrams is
exact for every phase space point. Notice that the radion
plays a significant role in the cancellations from O(s3).
This cancellation is therefore extremely intricate, and re-
quires a subtle conspiracy between various field degrees
of freedom of the underlying 5D theory. Any calculation
that does not take into account the full field content and
all possible diagrams will encounter a high energy growth
greater than O(s), which is misleading and incorrect.

The only non-zero contribution therefore appears at
O(s). In general, for a process (k, l) ! (m,n) in the
5DOT model,

M
(1)

=
xklmn

2

256⇡rc
[7 + cos(2✓)] csc2 ✓ (53)

where xklmn is fully symmetric in its indices, ✓ being the
scatering angle and satisfies

xaaaa = 3, xaabb = 2, and xabcd = 1

when discrete KK momentum is conserved, and vanishes
when it is not. For the (n, n) ! (n, n) scattering there-
fore, we have,

M
(1)(✓) =

32

256⇡rc
[7 + cos(2✓)] csc2 ✓ (54)

Since 
2
/(⇡rc) = 8/M2

Pl
, the amplitude grows as s/M2

Pl

as expected. More importantly, for scattering of (n, n) !
(n, n) states, if we truncate the theory below 2n, the
amplitude will grow as s5, in the absence of the state 2n.
Thus the cut-o↵ scale for this theory is ⇤5, and not ⇤3,
as suggested in [].
Processes like (1, 4) ! (2, 3) are particularly nice

because discrete KK momentum conservation forbids a
massless intermediate, such that the full matrix element
is devoid of t- and u-channel singularities. For these, we
can directly compute the appropriately normalized par-
tial wave amplitude,

a
J

�a�b!�c�d
=

1

32⇡2

Z
d⌦ D

J

�i�f
(✓,�)Ma�b!�c�d

(s, ✓,�) ,

(55)

s5 s4 s3 s2

Mcontact −κ2r7c [7+c2θ]s
2
θ

3072n8π
κ2r5c [63−196c2θ+5c4θ]

9216n6π
κ2r3c [−185+692c2θ+5c4θ]

4608n4π
−κ2rc[5+47c2θ]

72n2π

M2n
κ2r7c [7+c2θ]s

2
θ

9216n8π

κ2r5c [−13+c2θ]s
2
θ

1152n6π

κ2r3c [97+3c2θ]s
2
θ

1152n4π
κ2rc[−179+116c2θ−c4θ]

1152n2π

M0
κ2r7c [7+c2θ]s

2
θ

4608n8π
κ2r5c [−9+140c2θ−3c4θ]

9216n6π
κ2r3c [15−270c2θ−c4θ]

2304n4π
κ2rc[175+624c2θ+c4θ]

1152n2π

Mradion 0 0 −κ2r3cs
2
θ

64n4π
κ2rc[7+c2θ]

96n2π

Sum 0 0 0 0

TABLE I. Cancellations in the (n, n) → (n, n) 5DOT amplitude, where θ is the center-of-mass

scattering angle and (cnθ, snθ) = (cosnθ, sinnθ).

tributions growing as fast as s5. Instead, there are cancellations
2
which lead to the total

amplitude’s growing only like s. Note the amplitude is proportional to κ2/πrc = 8/M2
Pl, and

is hence suppressed by the 4D Planck scale.

Additional calculations confirm cancellations that tamp growth down to O(s) for other

2 → 2 scattering processes as well, including processes like (1, 4) → (2, 3) to which the radion

and graviton cannot contribute due to KK number conservation. For processes lacking t-

and u-channel IR divergences, we can directly compute the properly normalized partial-wave

helicity amplitude [23]

aJλaλb→λcλd
=

1

32π2

"
dΩ DJ

λiλf
(θ,φ)Maλb→λcλd

(s, θ,φ) , (5)

We find the largest (helicity-0, spin-0) partial wave amplitude has the leading behavior

aJ=0
00→00(14 → 23) =

s

M2
Pl

ln
#
sr2c

$
+ . . . . (6)

From this we conclude that 4D 2 → 2 scattering amplitudes from the 5DOT become large

at s ≃ M2
Pl.

Finally, while each individual scattering amplitude grows only like s, as in the case of

compactified Yang-Mills theory [24] there are coupled channels of the first N KK modes

whose scattering amplitudes grow like Ns/M2
Pl. Following [24], by identifying N ∝

√
src

we recover the expected s3/2/M3
5 growth underlying five-dimensional gravity—and directly

demonstrate the theory is valid up to a scale Λ3/2 = M5 as suggested in [13].

2
Note that the radion contributes at O(s3) as shown in [13]. However, if the theory is truncated below level

2n, the 2nth KK mode is absent and its contributions from the second row of Table I are not included.

Thus, the total amplitude in the truncated theory grows like O(s5) – not like O(s3) as [13] had suggested.

6
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FIG. 1. Feynman diagrams contributing to nn → nn level spin-2 KK boson scattering. In the

orbifold torus model, the intermediate states x include the radion, the massless graviton, and the

KK-mode at level 2n.

between 5D fields become 3-point and 4-point interactions between various KK modes pro-

portional to integrals of products of wavefunctions. For this flat internal space, discrete KK

momentum conservation restricts the non-zero interaction vertices, e.g. a 3-point vertex

attached to modes with KK numbers l,m, n is only nonzero when l = |m± n|.

As an explicit example, consider the tree-level elastic scattering amplitude M of KK

modes (n, n) → (n, n) and its expansion as a Laurent series for large s. Due to KK mo-

mentum conservation, this amplitude has contributions arising only from the exchange of

the KK mode at level 2n, and the massless graviton and radion states (which yield t- and

u-channel IR divergences) as shown in Fig. 1. The first three combinations we consider

are labeled by the relevant exchange particle, i.e. whether it is the 2nth KK mode, the

graviton, or the radion; these sums of s-, t-, and u-channel exchange diagrams are labeled

M2n, M0, and Mradion, respectively. The fourth combination consists solely of the 4-point

contact interaction diagram Mcontact. Up to second order in coupling κ, these diagrams form

a diffeomorphism-invariant set. We calculate

M = M2n +M0 +Mradion +Mcontact

≡
+5!

k=−∞
M(k) · sk . (3)

and present the results for each class of diagrams in Table I. By including all intermediate

states we find (here θ is the center-of-mass scattering angle)

M(5)
= M(4)

= M(3)
= M(2)

= 0

M(1)
(θ) =

3κ2

256πrc
[7 + cos(2θ)] csc2 θ .

(4)

As anticipated, the amplitude does not grow like s5 (or even s3) despite individual con-

5
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FIG. 2. Cancellations in the orbifolded torus model for

(2, 2) ! (2, 2) KK states. (Clockwise) From top left O(s5 �

�s2). The radion starts to contribute only at O(s3).

where �i(f) = �a(c)��b(d), are the initial and final helicity
states, and the Wigner D functions are normalized in the
usual way,

Z
d⌦ D

J

�1�2
(✓,�).DJ

0⇤
�10�2

(✓,�) =
4⇡

2J + 1
�JJ 0��1�10

(56)
The leading partial wave amplitude is obtained for J = 0,
which gives us ,

a
J=0
00!00(14 ! 23) =

s

M
2
Pl

ln
�
sr

2
c

�
+ . . . . (57)

Partial wave unitarity demands that the real part of the
amplitude must be bounded by unity, and therefore we
conclude that the 4D 2 ! 2 scattering becomes strongly
coupled at s ⇠ M

2
Pl
. We need one more step to complete

this analysis from a 5D perspective. While each indi-
vidual scattering amplitude grows only like s, as in the
case of compactified Yang-Mills theory there are coupled
channels of the first N KK modes whose scattering am-
plitudes grow like Ns/M

2
Pl
. Identifying N /

p
src, the

expected s
3/2

/M
3
5 growth is recovered for the underly-

ing five-dimensional gravityand directly demonstrate the
theory is valid up to a scale ⇤3/2. Phenomenologically,
the 5DOT torus model as described here is unviable as
the radion, a massless scalar would couple directly to the
stress energy tensor in a theory with matter. Therefore
without a proper stabilization mechanism that provides
the radion a mass, this theory would be equivalent to a
Brans-Dicke like theory.

B. Cancellations in the Randall Sundrum model

While the calculation for the RS model proceeds in
the same way as the torus, the convenience of the KK
momentum conservation is not present anymore. The
wave functions for the RS model are obtained by solv-
ing the Sturm-Liouville problem, and are a combination
of the Bessel functions J and Y . The spectrum con-
sists of a massless graviton and a radion, along with a
tower of massive spin-2 states, which unlike the 5DOT
are not uniformly distributed. Moreover, as described
in Appendix. ??, the 3 point and the 4 point couplings

FIG. 3. Cancellations in the RS for (1, 1) ! (1, 1) KK states.

(Clockwise) From top left O(s5 � s2). The radion starts to

contribute only at O(s3).

are overlap integrals of wave functions which consist of
a combination Bessel functions, which need to be eval-
uated numerically. The coupling forms and the tensor
structures are presented in Appendix. ??. Notably while
the massless graviton couples only diagonally, the radion
couples to all intermediate KK states.
Since we no longer have KK number conservation, all

intermediate massive propagators contribute, and need
to be included for the cancellations to take place accu-
rately. Hence we needed a very high degree of numerical
accuracy in our calculation. The problem is compounded
by the sheer number of terms for every intermediate KK
mode (O(10k)) due to the tensor structures at cubic or-
der in coupling. We present the results for scattering of
(1, 1) ! (1, 1) by Laurent expanding the matrix elements
in powers of s. The matrix elements that need to be com-
puted are the same as, Fig. ??, the caveat now being all
intermediate states contribute to this process. Therefore,
we study the convergence of the amplitude as a function
of the maximum number intermediate KK state Nmax.
In Fig. 3, we present the cancellations in amplitudes for
scattering of (1, 1) ! (1, 1), from O(s5 � s

2), as a func-
tion of the number of the intermediate states NKK . The
plots are separated in two categories, first the contact
diagram dubbed SG, and the sum of s, t, u channel dia-
grams with increasing number of KK states. At order s5

and s
4, only the contact diagram and the diagrams with

and arbitrary number of massive intermediate KK states
contribute. The y axis represents the matrix element in
arbitrary units. We separate the contact diagram in the
black solid line , while the sum of all diagrams (including
the contact) are represented in various colors as a func-
tion of NKK . We observe that at O(s5) � O(s4), the
overall matrix element keeps going down as the number
of intermediate KK modes go up. The convergence is
quite fast, and in fact only the first few modes ensure
cancellations by orders of magnitude. We include up to
100 intermediate KK modes, and observe that the cancel-
lations can be obtained down to machine precision level.
In general, we find that by truncating the intermediate
propagators at Nmax � 10, the sum of amplitudes for the
residual higher mode number scale as,

M
(k)
Nmax

/ O

✓
1

N
2k+1
max

◆
, k 2 (2, 3, 4, 5) (58)

Cancellations a function of intermediate KK states, ideally sum to infinity, limited by machine precision 

all combinations of 4D particles. Furthermore, the overlap integrals that accompany these

interactions (containing three or four wavefunctions each) cannot be performed analytically.

Investigating an RS1 scattering amplitude therefore requires extensive numerical accuracy,

which in turn demands accurate evaluation of the relevant highly-oscillatory wavefunctions

and their overlap integrals. This difficulty is amplified by the large number of terms in each

contribution: every intermediate KK mode contributes over 9300 terms to the scattering

amplitude even before we substitute polarizations and momenta or Laurent expand – then

we must sum over all intermediate KK modes.

Consider the KK scattering amplitude (1, 1) → (1, 1) in RS1, and its expansion as a

Laurent series per Eqn. (3). Because KK momentum is not conserved in RS1, all KK

modes contribute as intermediate states to this amplitude. In practice, therefore, we study

the convergence of the amplitude as a function of Nmax, the maximum KK level included as

an intermediate state. From this perspective, we verify that cancellations in RS1 proceed just

as they do in the 5DOT. In particular, we find that the contribution of the Nth intermediate

KK mode to sk-like growth of the scattering amplitude scales like 1/N2k+2
for k ∈ {2, 3, 4, 5}.

By truncating at level Nmax ∼> 10 and summing over the states of higher mode number, we

find the residual amplitude therefore scales like

M
(k)

Nmax
∝ O

*
1

N2k+1
max

+
, (8)

for each k ∈ {2, 3, 4, 5} and these contributions all vanish in the Nmax → ∞ limit. By

contrast, M
(1)

converges to a finite result and the leading contribution to the amplitude

scales like s1 as expected.

We also find that the angular dependence of M
(1)
(θ) is exactly the same as in the toroidal

case. Dividing M
(1)

by its toroidal equivalent (with fixed MPl and m1), we can then scale

from Eqn. (6) to estimate the scale of validity of this 4D RS1 EFT calculation. We have

done so for a number of different scattering amplitudes, and in all cases we find the 4D

scattering amplitudes become strong at an energy scale
√
s ≃ Λπ – verifying directly that

the cutoff scale for the RS1 effective field theory, as determined by the exclusive scattering

amplitudes, is controlled by Λπ.

A detailed discussion of the limits of the 4D RS1 EFT, as well as an analysis of the

truncation errors arising from summing over a finite number of intermediate states and

considering a coupled-channel analysis, will be given in a subsequent publication.
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Why Stabilize ? 

Compactified theories: Randall Sundrum model

3

LCC generates two types of terms. There are terms pro-
portional to |y|

0 2 which provide a 5D cosmological con-
stant in the bulk and terms proportional to |y|

00 which
generate tension on the branes (a prime indicates di↵er-
entiation with respect to y, e.g. f

0 = @yf). Combining
these Lagrangians yields the matter-free 5D theory:

L5D = LEH + LCC (8)

The 4D e↵ective theory is then defined from the action:

S =

Z
d
4
x


dy L5D

�
⌘

Z
d
4
x L

(e↵)
4D (9)

i.e. by integrating L5D across the extra dimension. A
nonzero LCC is necessary to cancel terms from LEH that
would otherwise generate a nonzero 4D cosmological con-
stant in the e↵ective theory. We do not yet consider sta-
bilizing the geometry, which would require an additional
Lagrangian with a bulk scalar. Additionally, although
the functions w(x, y), and v(x, y) are written in it’s most
general form, solution of Einstein’s equation and the re-
quirement of a vanishing e↵ective 4D cosmological con-
stant force the solutions to be either flat, or one with
negative curvature, i.e, over an ADS space.

B. The Randall-Sundrum Model

To be more specific, the vacuum solution of the
Randall-Sundrum (RS) model equals

⌘
(RS)
MN

⌘

✓
e
�2k|y|

⌘µ⌫ 0
0 �1

◆
(10)

for coordinates xM = (xµ
, y), where the nonzero warping

parameter k has units (Energy)+1. The vacuum solution,
along with the tuned brane tension terms yield a vanish-
ing cosmological constant. In the way we have set up the
problem, Eq. 8 and autmoatically ensure that this is the
case.

In conformal co-ordinates (xµ
, z) , the RS metric, a

patch of ADS5 can be written as,

ds
2 =

L
2

z2
(⌘µ⌫dx

µ
dx

⌫
� dz

2) (11)

The conformal transformations z ! �z, x
µ
! �x

µ, leave
the metric invariant. After orbifold projection the above
metric can be written as,

ds
2 =

1

(1 + kz)2
(⌘µ⌫dx

µ
dx

⌫
� dz

2)

= A
2(z)(⌘µ⌫dx

µ
dx

⌫
� dz

2) (12)

where L ⇠ 1/k is the curvature of the ADS space. The
zero mode graviton is localized at the Planck brane y = 0
(z = 0 in conformal coordinates), while the ‘TeV’ (IR)
brane is located at y = ⇡rc. The Planck brane and the
TeV brane breaks the conformal invariance of the RS

model explicitly. In a variant of the RS model, generally
called the RS2 model, the IR brane is sent to infinity(z !

1) , such that conformal invariance in restored on one
side of the ADS5 patch. This construction then describes
gravity localized on an infinite fifth dimension being dual
to a broken strongly coupled CFT and an e↵ective 4D
gravity.
In order to study the interactions of the e↵ective 4D

theory, we need a convenient way to describe the met-
ric fluctuations. Metric fluctuations are obtained by
perturbing the vacuum with field-dependent functions
weighted by the parameter . A judicious choice of met-
ric perturbation helps in simplifying the kinetic and mass
terms as well as the interaction terms originating from
the Ricci scalar 1. For example, consider perturbing gµ⌫

in GMN about the flat background ⌘µ⌫ ,

gµ⌫ ⌘ ⌘µ⌫ + ĥµ⌫ (13)

where the symmetric tensor field ĥµ⌫(x, y) is the 5D
graviton field. If Eq. (13) is the only appearance of
ĥµ⌫ in the perturbed metric, then the theory automati-
cally possesses the correct graviton physics. This is our
motivation for distinguishing w(x, y) and gµ⌫ within Eq.
(1) in the first place.

As for the rest of G(RS)
MN

, we choose to utilize the Ein-
stein frame parameterization, defined by
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where
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The Einstein frame parameterization is advantageous
because it directly yields a canonical 4D e↵ective La-
grangian. At the level of the metric, this parameteriza-
tion equals
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The scalar field r̂(x, y) in û(x, y) describes the 5D radion
field. Unlike the 5D graviton field, the 5D radion field
can be made y-independent via a gauge transformation
such that r̂(x, y) = r̂(x). Additionally, the graviton and
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(z)(⌘MN + hMN ). An

expansion of the determinant and the Ricci scalar yields kinetic

and mass terms as well as interactions for the 4D graviton and the

radion. However it turns out that there are non-trivial mixing

terms between the graviton an the radion. This is a generic

feature of the expansion, and the mixing needs to be eliminated
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two derivative shift over the radion fields.

3

LCC generates two types of terms. There are terms pro-
portional to |y|

0 2 which provide a 5D cosmological con-
stant in the bulk and terms proportional to |y|

00 which
generate tension on the branes (a prime indicates di↵er-
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i.e. by integrating L5D across the extra dimension. A
nonzero LCC is necessary to cancel terms from LEH that
would otherwise generate a nonzero 4D cosmological con-
stant in the e↵ective theory. We do not yet consider sta-
bilizing the geometry, which would require an additional
Lagrangian with a bulk scalar. Additionally, although
the functions w(x, y), and v(x, y) are written in it’s most
general form, solution of Einstein’s equation and the re-
quirement of a vanishing e↵ective 4D cosmological con-
stant force the solutions to be either flat, or one with
negative curvature, i.e, over an ADS space.

B. The Randall-Sundrum Model

To be more specific, the vacuum solution of the
Randall-Sundrum (RS) model equals
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for coordinates xM = (xµ
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where L ⇠ 1/k is the curvature of the ADS space. The
zero mode graviton is localized at the Planck brane y = 0
(z = 0 in conformal coordinates), while the ‘TeV’ (IR)
brane is located at y = ⇡rc. The Planck brane and the
TeV brane breaks the conformal invariance of the RS

model explicitly. In a variant of the RS model, generally
called the RS2 model, the IR brane is sent to infinity(z !

1) , such that conformal invariance in restored on one
side of the ADS5 patch. This construction then describes
gravity localized on an infinite fifth dimension being dual
to a broken strongly coupled CFT and an e↵ective 4D
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In order to study the interactions of the e↵ective 4D

theory, we need a convenient way to describe the met-
ric fluctuations. Metric fluctuations are obtained by
perturbing the vacuum with field-dependent functions
weighted by the parameter . A judicious choice of met-
ric perturbation helps in simplifying the kinetic and mass
terms as well as the interaction terms originating from
the Ricci scalar 1. For example, consider perturbing gµ⌫

in GMN about the flat background ⌘µ⌫ ,

gµ⌫ ⌘ ⌘µ⌫ + ĥµ⌫ (13)

where the symmetric tensor field ĥµ⌫(x, y) is the 5D
graviton field. If Eq. (13) is the only appearance of
ĥµ⌫ in the perturbed metric, then the theory automati-
cally possesses the correct graviton physics. This is our
motivation for distinguishing w(x, y) and gµ⌫ within Eq.
(1) in the first place.

As for the rest of G(RS)
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, we choose to utilize the Ein-
stein frame parameterization, defined by
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The scalar field r̂(x, y) in û(x, y) describes the 5D radion
field. Unlike the 5D graviton field, the 5D radion field
can be made y-independent via a gauge transformation
such that r̂(x, y) = r̂(x). Additionally, the graviton and
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i.e. by integrating L5D across the extra dimension. A
nonzero LCC is necessary to cancel terms from LEH that
would otherwise generate a nonzero 4D cosmological con-
stant in the e↵ective theory. We do not yet consider sta-
bilizing the geometry, which would require an additional
Lagrangian with a bulk scalar. Additionally, although
the functions w(x, y), and v(x, y) are written in it’s most
general form, solution of Einstein’s equation and the re-
quirement of a vanishing e↵ective 4D cosmological con-
stant force the solutions to be either flat, or one with
negative curvature, i.e, over an ADS space.
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, y), where the nonzero warping

parameter k has units (Energy)+1. The vacuum solution,
along with the tuned brane tension terms yield a vanish-
ing cosmological constant. In the way we have set up the
problem, Eq. 8 and autmoatically ensure that this is the
case.
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where L ⇠ 1/k is the curvature of the ADS space. The
zero mode graviton is localized at the Planck brane y = 0
(z = 0 in conformal coordinates), while the ‘TeV’ (IR)
brane is located at y = ⇡rc. The Planck brane and the
TeV brane breaks the conformal invariance of the RS

model explicitly. In a variant of the RS model, generally
called the RS2 model, the IR brane is sent to infinity(z !

1) , such that conformal invariance in restored on one
side of the ADS5 patch. This construction then describes
gravity localized on an infinite fifth dimension being dual
to a broken strongly coupled CFT and an e↵ective 4D
gravity.
In order to study the interactions of the e↵ective 4D

theory, we need a convenient way to describe the met-
ric fluctuations. Metric fluctuations are obtained by
perturbing the vacuum with field-dependent functions
weighted by the parameter . A judicious choice of met-
ric perturbation helps in simplifying the kinetic and mass
terms as well as the interaction terms originating from
the Ricci scalar 1. For example, consider perturbing gµ⌫

in GMN about the flat background ⌘µ⌫ ,

gµ⌫ ⌘ ⌘µ⌫ + ĥµ⌫ (13)

where the symmetric tensor field ĥµ⌫(x, y) is the 5D
graviton field. If Eq. (13) is the only appearance of
ĥµ⌫ in the perturbed metric, then the theory automati-
cally possesses the correct graviton physics. This is our
motivation for distinguishing w(x, y) and gµ⌫ within Eq.
(1) in the first place.

As for the rest of G(RS)
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, we choose to utilize the Ein-
stein frame parameterization, defined by
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because it directly yields a canonical 4D e↵ective La-
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The scalar field r̂(x, y) in û(x, y) describes the 5D radion
field. Unlike the 5D graviton field, the 5D radion field
can be made y-independent via a gauge transformation
such that r̂(x, y) = r̂(x). Additionally, the graviton and
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i.e. by integrating L5D across the extra dimension. A
nonzero LCC is necessary to cancel terms from LEH that
would otherwise generate a nonzero 4D cosmological con-
stant in the e↵ective theory. We do not yet consider sta-
bilizing the geometry, which would require an additional
Lagrangian with a bulk scalar. Additionally, although
the functions w(x, y), and v(x, y) are written in it’s most
general form, solution of Einstein’s equation and the re-
quirement of a vanishing e↵ective 4D cosmological con-
stant force the solutions to be either flat, or one with
negative curvature, i.e, over an ADS space.
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parameter k has units (Energy)+1. The vacuum solution,
along with the tuned brane tension terms yield a vanish-
ing cosmological constant. In the way we have set up the
problem, Eq. 8 and autmoatically ensure that this is the
case.
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where L ⇠ 1/k is the curvature of the ADS space. The
zero mode graviton is localized at the Planck brane y = 0
(z = 0 in conformal coordinates), while the ‘TeV’ (IR)
brane is located at y = ⇡rc. The Planck brane and the
TeV brane breaks the conformal invariance of the RS

model explicitly. In a variant of the RS model, generally
called the RS2 model, the IR brane is sent to infinity(z !

1) , such that conformal invariance in restored on one
side of the ADS5 patch. This construction then describes
gravity localized on an infinite fifth dimension being dual
to a broken strongly coupled CFT and an e↵ective 4D
gravity.
In order to study the interactions of the e↵ective 4D

theory, we need a convenient way to describe the met-
ric fluctuations. Metric fluctuations are obtained by
perturbing the vacuum with field-dependent functions
weighted by the parameter . A judicious choice of met-
ric perturbation helps in simplifying the kinetic and mass
terms as well as the interaction terms originating from
the Ricci scalar 1. For example, consider perturbing gµ⌫

in GMN about the flat background ⌘µ⌫ ,

gµ⌫ ⌘ ⌘µ⌫ + ĥµ⌫ (13)

where the symmetric tensor field ĥµ⌫(x, y) is the 5D
graviton field. If Eq. (13) is the only appearance of
ĥµ⌫ in the perturbed metric, then the theory automati-
cally possesses the correct graviton physics. This is our
motivation for distinguishing w(x, y) and gµ⌫ within Eq.
(1) in the first place.

As for the rest of G(RS)
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, we choose to utilize the Ein-
stein frame parameterization, defined by
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û(x, y) ⌘
 r̂

2
p
6
e
+k(2|y|�⇡rc) (15)
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The scalar field r̂(x, y) in û(x, y) describes the 5D radion
field. Unlike the 5D graviton field, the 5D radion field
can be made y-independent via a gauge transformation
such that r̂(x, y) = r̂(x). Additionally, the graviton and
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and mass terms as well as interactions for the 4D graviton and the

radion. However it turns out that there are non-trivial mixing

terms between the graviton an the radion. This is a generic
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i.e. by integrating L5D across the extra dimension. A
nonzero LCC is necessary to cancel terms from LEH that
would otherwise generate a nonzero 4D cosmological con-
stant in the e↵ective theory. We do not yet consider sta-
bilizing the geometry, which would require an additional
Lagrangian with a bulk scalar. Additionally, although
the functions w(x, y), and v(x, y) are written in it’s most
general form, solution of Einstein’s equation and the re-
quirement of a vanishing e↵ective 4D cosmological con-
stant force the solutions to be either flat, or one with
negative curvature, i.e, over an ADS space.
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parameter k has units (Energy)+1. The vacuum solution,
along with the tuned brane tension terms yield a vanish-
ing cosmological constant. In the way we have set up the
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case.
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where L ⇠ 1/k is the curvature of the ADS space. The
zero mode graviton is localized at the Planck brane y = 0
(z = 0 in conformal coordinates), while the ‘TeV’ (IR)
brane is located at y = ⇡rc. The Planck brane and the
TeV brane breaks the conformal invariance of the RS

model explicitly. In a variant of the RS model, generally
called the RS2 model, the IR brane is sent to infinity(z !

1) , such that conformal invariance in restored on one
side of the ADS5 patch. This construction then describes
gravity localized on an infinite fifth dimension being dual
to a broken strongly coupled CFT and an e↵ective 4D
gravity.
In order to study the interactions of the e↵ective 4D

theory, we need a convenient way to describe the met-
ric fluctuations. Metric fluctuations are obtained by
perturbing the vacuum with field-dependent functions
weighted by the parameter . A judicious choice of met-
ric perturbation helps in simplifying the kinetic and mass
terms as well as the interaction terms originating from
the Ricci scalar 1. For example, consider perturbing gµ⌫

in GMN about the flat background ⌘µ⌫ ,

gµ⌫ ⌘ ⌘µ⌫ + ĥµ⌫ (13)

where the symmetric tensor field ĥµ⌫(x, y) is the 5D
graviton field. If Eq. (13) is the only appearance of
ĥµ⌫ in the perturbed metric, then the theory automati-
cally possesses the correct graviton physics. This is our
motivation for distinguishing w(x, y) and gµ⌫ within Eq.
(1) in the first place.

As for the rest of G(RS)
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, we choose to utilize the Ein-
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The scalar field r̂(x, y) in û(x, y) describes the 5D radion
field. Unlike the 5D graviton field, the 5D radion field
can be made y-independent via a gauge transformation
such that r̂(x, y) = r̂(x). Additionally, the graviton and
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radion. However it turns out that there are non-trivial mixing

terms between the graviton an the radion. This is a generic

feature of the expansion, and the mixing needs to be eliminated
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r su�ces, the corresponding shift

is much more complicated for the RS. In particular it needs a
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Figure 4: The generation of an exponential hierarchy.

This term corresponds to the 4D action, so that we can read o↵ the value
of the e↵ective 4D Planck mass:

M
2
Pl

= (1� e
�2kL)M3

/k.

We see that it weakly depends on the size of the extra dimension L, provided
kL is moderately large.

Putting our two last results together, we see that the weak scale is ex-
ponentially suppressed along the extra dimension, while the gravity scale is
mostly independent of it (see fig.4).

In conclusion, in a theory where the values of all the bare parameters
(M,⇤,�1, v) are determined by the Planck scale, an exponential hierarchy
can be naturally generated between the weak and the gravity scales. Thus
the Randall-Sundrum model provides an original solution to the Hierarchy
Problem.

Remarkably, the e↵ective Planck mass remains finite even if we take the
decompactification limit L!1. This case where there is only one brane is
known as the Randall-Sundrum II model (RS2). The fact that there could
be an infinite extra dimension and still a 4D gravity as we experience it
results from the localization of gravity around the brane at y = 0, which we
now turn our attention to.
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background remains flat.5 The following RS1 metric generalizes the earlier 5DOT metric
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and is similarly canonical by construction. The new parameter k has dimensions of mass

and determines the curvature of the internal AdS5 space.

In the ‘large krc limit’ (krc ≳ 5), the KKmode masses equalmn = kxne
−krcπ, where xn are

zeroes of the Bessel function of the first kind. The location of the IR (TeV) brane determines

an emergent scale Λπ ≡ MPle
−krcπ that controls the radion and KK mode coupling strengths.

Λπ is exponentially suppressed relative to the 4D Planck scale that determines graviton

couplings (M2
Pl = M3

5/k at large krc). As we will show directly massive spin-2 scattering

amplitudes in RS1 are suppressed by Λπ.

Computing massive spin-2 scattering amplitudes in RS1 proceeds much like in the 5DOT,

but with fewer conveniences (e.g., see [31]). Since the internal space is curved, the harmonic

functions are related to Bessel functions, but the resulting spectrum is similar to that of the

5DOT: a massless radion and graviton, and a tower of massive spin-2 KK states labeled by

the number of nodes across the internal space. However, in RS1 there is no analog of KK

momentum conservation, and so there are nonzero 3- and 4-point interactions between almost

5
Here we address 5D gravity and ignore matter.
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states we find (here θ is the center-of-mass scattering angle)

M
(5)

= M
(4)

= M
(3)

= M
(2)

= 0

M
(1)

(θ) =
3κ2

256πrc
[7 + cos(2θ)] csc2 θ .

(4)

As anticipated, the amplitude does not grow like s5 (or even s3) despite individual con-

tributions growing as fast as s5. Instead, there are cancellations
4
which lead to the total

amplitude’s growing only like s. Note the amplitude is proportional to κ2/πrc = 8/M2
Pl, and

is hence suppressed by the 4D Planck scale.

Additional calculations confirm cancellations that tamp growth down to O(s) for other

2 → 2 scattering processes as well, including processes like (1, 4) → (2, 3) to which the radion

and graviton cannot contribute due to KK number conservation. For processes lacking t-

and u-channel IR divergences, we can directly compute the properly normalized partial-wave

helicity amplitude [28]

aJλaλb→λcλd
=

1

32π2

"
dΩ DJ

λiλf
(θ,φ)Maλb→λcλd

(s, θ,φ) , (5)

We find the largest (helicity-0, spin-0) partial wave amplitude has the leading behavior

aJ=0
00→00(14 → 23) =

s

M2
Pl

ln
#
sr2c

$
+ . . . . (6)

From this we conclude that 4D 2 → 2 scattering amplitudes from the 5DOT become large

at s ≃ M2
Pl.

Finally, while each individual scattering amplitude grows only like s, as in the case of

compactified Yang-Mills theory [29] there are coupled channels of the first N KK modes

whose scattering amplitudes grow like Ns/M2
Pl. Following [29], by identifying N ∝

√
src

we recover the expected s3/2/M3
5 growth underlying five-dimensional gravity—and directly

demonstrate the theory is valid up to a scale Λ3/2 = M5 as suggested in [13].

ANTI-DESITTER SPACE

Next consider the analogous calculation in RS1 [24]. RS1 is a truncated and orbifolded

Anti-de-Sitter space (AdS5), bounded on either end by UV (Planck) and IR (TeV) branes.

4
Note that the radion contributes at O(s3) as shown in [13]. However, if the theory is truncated below level

2n, the 2nth KK mode is absent and its contributions from the second row of Table I are not included.

Thus, the total amplitude in the truncated theory grows like O(s5) – not like O(s3) as [13] had suggested.
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Bulk and brane cosmological constants are added to the action to ensure the effective 4D

background remains flat.5 The following RS1 metric generalizes the earlier 5DOT metric

(which is recovered by taking krc → 0 with finite rc) [30]
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and is similarly canonical by construction. The new parameter k has dimensions of mass

and determines the curvature of the internal AdS5 space.

In the ‘large krc limit’ (krc ≳ 5), the KKmode masses equalmn = kxne
−krcπ, where xn are

zeroes of the Bessel function of the first kind. The location of the IR (TeV) brane determines

an emergent scale Λπ ≡ MPle
−krcπ that controls the radion and KK mode coupling strengths.

Λπ is exponentially suppressed relative to the 4D Planck scale that determines graviton

couplings (M2
Pl = M3

5/k at large krc). As we will show directly massive spin-2 scattering

amplitudes in RS1 are suppressed by Λπ.
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but with fewer conveniences (e.g., see [31]). Since the internal space is curved, the harmonic
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5DOT: a massless radion and graviton, and a tower of massive spin-2 KK states labeled by

the number of nodes across the internal space. However, in RS1 there is no analog of KK

momentum conservation, and so there are nonzero 3- and 4-point interactions between almost
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Here we address 5D gravity and ignore matter.
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Mass spectrum

Randall, Sundrum, 1999 
Randall, Poratti, Arkani Hamed , 2002 
Rattazzi 2003 

• No dynamical mechanism for the radius 
• Matter on the brane + massless scalar metric fluctuation 
•  = Brans-Dicke theory

M2
P l =

M3

k
[1 − e−2krcπ], (2)

so that, even for large krc, MP l is of order M. Because of the exponential factor in the

spacetime metric, a field confined to the 3-brane at φ = π with mass parameter m0 will have

physical mass m0e−krcπ and for krc around 12, the weak scale is dynamically generated from

a fundamental scale M which is on the order of the Planck mass. Furthermore, Kaluza-Klein

gravitational modes have TeV scale mass splittings and couplings [8]. Similarly, a bulk field

with mass on the order of M has low-lying Kaluza-Klein excitations that reside primarily

near φ = π and hence, from a four-dimensional perspective, have masses on the order of the

weak scale [9].

In the scenario presented in ref. [4], rc is associated with the vacuum expectation value

of a massless four-dimensional scalar field. This modulus field has zero potential and conse-

quently rc is not determined by the dynamics of the model. For this scenario to be relevant,

it is necessary to find a mechanism for generating a potential to stabilize the value of rc. Here

we show that such a potential can arise classically from the presence of a bulk scalar with

interaction terms that are localized to the two 3-branes1. The minimum of this potential

can be arranged to yield a value of krc ∼ 10 without fine tuning of parameters.

Imagine adding to the model a scalar field Φ with the following bulk action

Sb =
1

2

∫

d4x
∫ π

−π
dφ

√
G

(

GAB∂AΦ∂BΦ − m2Φ2
)

, (3)

where GAB with A, B = µ, φ is given by Eq. (1). We also include interaction terms on the

hidden and visible branes (at φ = 0 and φ = π respectively) given by

Sh = −
∫

d4x
√
−ghλh

(

Φ2 − v2
h

)2
, (4)

and

Sv = −
∫

d4x
√
−gvλv

(

Φ2 − v2
v

)2
, (5)

where gh and gv are the determinants of the induced metric on the hidden and visible branes

respectively. Note that Φ and vv,h have mass dimension 3/2, while λv,h have mass dimension

−2. Kinetic terms for the scalar field can be added to the brane actions without changing

1Other proposals for stabilizing the rc modulus can be found in ref. [10].
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3

Goldberger, Wise 2000 
De-Wolfe, Freedman, Karch, Gubser 2001 
Tanaka, Garriga 2001 
Peloso, Koffman 2001 

Mix the radial model of the metric (G55) with the bulk scalar -> Generate an effective potential  

VΦ(rc) = kεv2
h + 4ke−4krcπ(vv − vhe

−εkrcπ)2
(

1 +
ε

4

)

− kεvhe
−(4+ε)krcπ(2vv − vhe

−εkrcπ) (13)

where terms of order ε2 are neglected (but εkrc is not treated as small). Ignoring terms

proportional to ε, this potential has a minimum at

krc =
(

4

π

)

k2

m2
ln

[

vh

vv

]

. (14)

With ln(vh/vv) of order unity, we only need m2/k2 of order 1/10 to get krc ∼ 10. Clearly,

no extreme fine tuning of parameters is required to get the right magnitude for krc. For

instance, taking vh/vv = 1.5 and m/k = 0.2 yields krc # 12.

The stress tensor for the scalar field can be written as TAB
s = TAB

k + TAB
m , where for

large krc:

T φφ
k # −

k2

2r2
c

[

(4 + ε)(vv − vhe
−εkrcπ)e−(4+ε)(krcπ−σ) − εvhe

−εσ
]2

, (15)

T µν
k #

k2

2
e2σηµν

[

(4 + ε)(vv − vhe
−εkrcπ)e−(4+ε)(krcπ−σ) − εvhe

−εσ
]2

, (16)

and

T φφ
m # −

2k2ε

r2
c

[

(vv − vhe
−εkrcπ)e−(4+ε)(krcπ−σ) + vhe

−εσ
]2

, (17)

T µν
m # −2k2e2σηµνε

[

(vv − vhe
−εkrcπ)e−(4+ε)(krcπ−σ) + vhe

−εσ
]2

. (18)

As long as v2
h/M

3 and v2
v/M

3 are small, TAB
s can be neglected in comparison to the stress

tensor induced by the bulk cosmological constant. It is therefore safe to ignore the influence

of the scalar field on the background geometry for the computation of V (rc). A similar

criterion ensures that the stress tensor induced by the bulk cosmological constant is dominant

for krc ∼ 1.

One might worry that the validity of Eq. (13) and Eq. (14) requires unnaturally large

values of λh and λv. We will check that this is not the case by computing the leading 1/λ

correction to the potential. To obtain this correction, we linearize Eq. (9) and Eq. (10)

about the large λ solution. Neglecting terms of order ε, the VEVs are shifted by

δΦ(0) =
k

λhv2
h

e−(4+ε)krcπ(vv − vhe
−εkrcπ), (19)

δΦ(π) = −
k

λvv2
v

(vv − vhe
−εkrcπ), (20)

and thus (neglecting subleading exponentials of krcπ)
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Stabilization from Dynamics 

m2
ϕ =

∂2V

∂ϕ2
(〈ϕ〉) =

k2v2v
3M3

ε2e−2krcπ. (13)

Note that the exponential factor rescales mϕ from a quantity of order the Planck scale down

to the TeV scale. Low-lying Kaluza-Klein excitations of bulk fields in the Randall-Sundrum

model have masses which are typically slightly larger than the TeV scale [13,14]. (This also

includes the lowest excitation of the scalar Φ. Although it has a bulk mass which is smaller

than the Planck mass, its lowest Kaluza-Klein mode still has a mass which is on the order

of a few TeV [13].) However if the large value of krc (i.e, krc ∼ 12) arises from a small bulk

scalar mass then in addition to the factor exp(−2krc) in Eq. (13) there is suppression by the

small quantity ε. Consequently, mϕ is somewhat smaller than the TeV scale, and therefore

lighter than the Kaluza-Klein excitations of bulk fields3. Detection of the radion ϕ might

be the first clear signal of the scenario of [4].

Because the radion arises as a gravitational degree of freedom, its couplings to brane

matter are constrained by four-dimensional general covariance. These couplings arise from

the induced metric on the brane. On the φ = 0 brane, the induced metric obtained from

Eq. (3) is simply gµν : the modulus does not couple directly to hidden brane matter. The

induced metric on the visible brane is given by (ϕ/f)2gµν and consequently, ϕ interacts

directly with Standard Model fields. For example, consider a scalar h(x) confined to the

visible brane:

S =
1

2

∫

d4x
√
−g(ϕ/f)4[(ϕ/f)−2gµν∂µh∂νh− µ2

0h
2]. (14)

Rescaling h → (f/〈ϕ〉)h to obtain a canonically normalized field, this becomes

S =
1

2

∫

d4x
√
−g[(ϕ/〈ϕ〉)2gµν∂µh∂νh− µ2(ϕ/〈ϕ〉)4h2], (15)

where

µ = µ0
〈ϕ〉
f

= µ0e
−krcπ. (16)

For µ0 of order the Planck scale and krc ∼ 12, the physical mass µ is of order the weak scale.

This result can be generalized to any operator appearing in the visible brane Lagrangian: a

3In this case, the backreaction of the scalar field on the five-dimensional metric is small (i.e.

suppressed by powers of m/k) and the mixing of the modulus with Kaluza-Klein excitations of the

graviton and Φ are expected to be small.

6

Radion Mass Changes Background Metric : Changes the description of the 4D EFT    
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How do scattering amplitudes behave for a massive radion

Matrix Elements: Relevant Diagrams
Consider elastic KK mode scattering: h

(n)
h

(n)
æ h

(n)
h

(n)

Each h
(n) has 5 helicity eigenvalues: ⁄i œ {≠2, ≠1, 0, +1, +2}.

M⁄1⁄2æ⁄3⁄4 =
ÿ

kÆ5
M

(k)
⁄1⁄2æ⁄3⁄4(◊, „) s

k

Recall: first 2 KK #’s in b-type =∆ (ˆÏÂ)
and Â0 is independent of Ï, so (ˆÏÂ0) = 0

M = +
ÿ

S,T,U

S

U + +
ÿ

j>0

T

V

annnn annr ann0 annj

bnnnn bnnr bnn0 bnnj

bnnnn brnn b0nn bjnn

D. Foren 7 / 14

Contributions to the matrix Element

Add a naive mass term for the radion           massive radion propagator 

Re-introduction of a low energy cut-of

Conjecture : Contribution must cancel from from the dynamics of the larger problem 
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I. INTRODUCTION

Compactified theories of extra dimensional gravity are a prime candidate for a theory of physics beyond the standard

model. It also serves as a primary motivation for a low energy e↵ective field theory originating from string theory

origins, the prime candidate for quantum gravity. The validity of extra-dimensional theories as a low energy EFT

is described in association with a scale where the theory is expected to be strongly coupled. In phenomenologically

attractive models like the Randall-Sundrum set up, where the extra dimensional geometry is Anti-De-Sitter, the EFT

validity is set by a low energy emergent scale that depends on the curvature of the ADS space and the radius of

the compactification. While the EFT scale is generally argued by the ADS/CFT correspondence, an explicit proof

was only recently shown in a series of papers by the authors of this work. In particular it was shown that although

individual Kaluza-Klein spin-2 resonance scattering amplitudes grew as fast as s
5
/⇤

2
⇡
m

8
n
(s being the centre of mass

energy and mn the n
th

spin-2 KK resonance) subtle cancellations lead to this anomalously fast high energy growth

tamed down to s/⇤
2
⇡
, ensuring that higher dimensional di↵eomorphism invariance is preserved and amplitudes are

unitary till the scale ⇤⇡ = MPLe
�⇡krc , where k is the curvature of the ADS space. The pattern of cancellation leads

to a set of sum rules at every order in the Laurent series expansion of the scattering amplitude, starting at s
5
.

The RS set up predicts a massless radial mode, the radion. The massless radion couples to the trace of the Stress-

Energy tensor, resembling a Brans-Dicke theory, which is phenomenologically inconsistent due to a variety of issues

similar to those that plague theories of massive Fierz-Pauli gravity. Additionally since the radion, a proxy for the

size of the extra dimension is unspecified by any dynamics, the geometry is unstable and eventually collapses due to

the Casimir force between the two branes. The stabilization of the extra dimension is performed by adding a bulk

modulii field, following the prescription of Goldberger-Wise, such that there is a non-trivial potential which lifts the

flat radion wave function in the extra dimension, generating a mass and providing a dynamic origin to the size of the

extra dimension.

The question we address in this paper is- How do scattering amplitudes of massive KK resonances behave in the

presence of a stabilizing bulk field and a massive radion ? Naively, plugging in a mass by hand to the radion re-

introduces a low energy divergence in the theory. It can be explicitly checked that in this case scattering amplitudes

of massive KK gravitons grow as M /
s
2
m

2
r

⇤2
⇡m

4
n
, thus suggesting an IR divergence in the limit mn ! 0. In this paper, we

show explicitly that in an an honest stabilization procedure that generates a mass for the radion, no such diveregences

occur, and the amplitudes are unitary untill the scale ⇤⇡, the emergent scale of the RS model.

II. SET UP

We begin our discussion by laying out the set up and various elements of this paper. In this section, we will lay out

the stabilization procedure, with a review of a specific model based on super-potentials. The ADS metric is described

by,

GMN =

✓
w(x, y)gµ⌫ 0

0 �v(x, y)
2

◆
. (1)

This is expressed in coordinates x
M

⌘ (x
µ
, y) such that the corresponding invariant interval ds

2
equals

ds
2
= (GMN )dx

M
dx

N
= (wgµ⌫)dx

µ
dx

⌫
� (v

2
)dy

2
, (2)

allowing for warping of the transverse four-dimensional space. The Minkowski metric ⌘MN is defined by ⌘MN =

(+1,�1,�1,�1,�1). Meanwhile, the inverse metric equals

eGMN
=

✓
g̃
µ⌫
/w(x, y) 0

0 �1/v(x, y)
2

◆
, (3)

where we denote the inverse with a tilde (e.g. eG ⌘ G
�1

and eg ⌘ g
�1

) along with the definitions for w, v and u,

w(x, y) = e
�2(A(y)+û)

(4)

v(x, y) = 1 + 2û (5)

û(x, y) ⌘
 r̂(x, y)

2
p
6

e
+k(2A(y)�⇡rc) . (6)

While r(x, y) is the scalar fluctuations, the tensor fluctuations are obtained by, gµ⌫ ! ⌘µ⌫ + ĥµ⌫ , where  is the 5D

Planck mass. In order to stabilize the extra dimensional set up, a bulk scalar is added with a non-trivial potential
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SL problem of the Stabilized model

Tower of Gravitons Tower of Scalars

M0=0

Mgw

SL 1 SL 2

• Two Connected SL problems 
•  Radion piece must cancelled by a combination GW scalars and gravitons

Mr
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I. INTRODUCTION

Compactified theories of extra dimensional gravity are a prime candidate for a theory of physics beyond the standard

model. It also serves as a primary motivation for a low energy e↵ective field theory originating from string theory

origins, the prime candidate for quantum gravity. The validity of extra-dimensional theories as a low energy EFT

is described in association with a scale where the theory is expected to be strongly coupled. In phenomenologically

attractive models like the Randall-Sundrum set up, where the extra dimensional geometry is Anti-De-Sitter, the EFT

validity is set by a low energy emergent scale that depends on the curvature of the ADS space and the radius of

the compactification. While the EFT scale is generally argued by the ADS/CFT correspondence, an explicit proof

was only recently shown in a series of papers by the authors of this work. In particular it was shown that although

individual Kaluza-Klein spin-2 resonance scattering amplitudes grew as fast as s
5
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(s being the centre of mass

energy and mn the n
th

spin-2 KK resonance) subtle cancellations lead to this anomalously fast high energy growth

tamed down to s/⇤
2
⇡
, ensuring that higher dimensional di↵eomorphism invariance is preserved and amplitudes are

unitary till the scale ⇤⇡ = MPLe
�⇡krc , where k is the curvature of the ADS space. The pattern of cancellation leads

to a set of sum rules at every order in the Laurent series expansion of the scattering amplitude, starting at s
5
.

The RS set up predicts a massless radial mode, the radion. The massless radion couples to the trace of the Stress-

Energy tensor, resembling a Brans-Dicke theory, which is phenomenologically inconsistent due to a variety of issues

similar to those that plague theories of massive Fierz-Pauli gravity. Additionally since the radion, a proxy for the

size of the extra dimension is unspecified by any dynamics, the geometry is unstable and eventually collapses due to

the Casimir force between the two branes. The stabilization of the extra dimension is performed by adding a bulk

modulii field, following the prescription of Goldberger-Wise, such that there is a non-trivial potential which lifts the

flat radion wave function in the extra dimension, generating a mass and providing a dynamic origin to the size of the

extra dimension.

The question we address in this paper is- How do scattering amplitudes of massive KK resonances behave in the

presence of a stabilizing bulk field and a massive radion ? Naively, plugging in a mass by hand to the radion re-

introduces a low energy divergence in the theory. It can be explicitly checked that in this case scattering amplitudes

of massive KK gravitons grow as M /
s
2
m

2
r

⇤2
⇡m

4
n
, thus suggesting an IR divergence in the limit mn ! 0. In this paper, we

show explicitly that in an an honest stabilization procedure that generates a mass for the radion, no such diveregences

occur, and the amplitudes are unitary untill the scale ⇤⇡, the emergent scale of the RS model.

II. SET UP

We begin our discussion by laying out the set up and various elements of this paper. In this section, we will lay out

the stabilization procedure, with a review of a specific model based on super-potentials. The ADS metric is described

by,

GMN =

✓
w(x, y)gµ⌫ 0

0 �v(x, y)
2

◆
. (1)

This is expressed in coordinates x
M

⌘ (x
µ
, y) such that the corresponding invariant interval ds

2
equals

ds
2
= (GMN )dx

M
dx

N
= (wgµ⌫)dx

µ
dx

⌫
� (v

2
)dy

2
, (2)

allowing for warping of the transverse four-dimensional space. The Minkowski metric ⌘MN is defined by ⌘MN =

(+1,�1,�1,�1,�1). Meanwhile, the inverse metric equals

eGMN
=

✓
g̃
µ⌫
/w(x, y) 0

0 �1/v(x, y)
2

◆
, (3)

where we denote the inverse with a tilde (e.g. eG ⌘ G
�1

and eg ⌘ g
�1

) along with the definitions for w, v and u,

w(x, y) = e
�2(A(y)+û)

(4)

v(x, y) = 1 + 2û (5)

û(x, y) ⌘
 r̂(x, y)

2
p
6

e
+k(2A(y)�⇡rc) . (6)

While r(x, y) is the scalar fluctuations, the tensor fluctuations are obtained by, gµ⌫ ! ⌘µ⌫ + ĥµ⌫ , where  is the 5D

Planck mass. In order to stabilize the extra dimensional set up, a bulk scalar is added with a non-trivial potential

5

one for the scalar sector which includes the GW scalars and the resonances. We start with the KK graviton sector.

The SL equation for the flat-stabilized model with general weight factors p and ⇢, read,

d

d✓

 
(p+ �p)

df n

d✓

!
+ (q + �q) e n = �eµ2

n
(⇢+ �⇢) e n , (21)

The unstabilized version of the simplified model is flat, with a Sturm-Liouville problem that can be obtained by

setting k̃ ! 0, such that the weight factor and the shifts are,

p ⌘ 1 , �p� 4✏
2
✓
2

; q ⌘ 0, �q = 0; ⇢ ⌘ 1, �⇢ = �2✏
2
✓
2

(22)

To first order in perturbation theory, formally expanding the wave function, and the eigen values as

e n =  n + � n, eµ2
n
= µ

2
n
+ �µ

2
n

(23)

where � n and �µ
2
n
are first order shifts, the SL equation can be written as,

d
2
( n + � n)

d✓2
= �(µ

2
n
+ �µ

2
n
)(⇢+ �⇢)( n + � n) (24)

The unstabilized SL equation is,

d
2
 n

d✓2
= �µ

2
n
 n (25)

with boundary conditions,

���d n

d✓

���
✓=0

=

���d n

d✓

���
✓=⇡

= 0. The eigen values are µ
2
n
= n

2
, with normalized eigen-functions

given by,

 0 =
1
p
2

 n = � cos(n✓) (26)

At first order in perturbation theory, formally expanding the wave function, we can compute the co-e�cients cnm in

Rayleigh Schrodinger perturbation theory, with the perturbed wave function given by.

� n =

X

m

cnm m (27)

Calculating the appropriate Rayleigh Schrodinger coe�cients for the perturbed theory we obtain,

c00 =
✏
2

⇡

Z
⇡

0
d✓ ✓

2
=
✏
2
⇡
2

3
(28)

cnn = 2

Z
⇡

0
d✓

✓
2
✏
2
(cos(n✓))

2

⇡
=

�
2⇡

2
n
2
+ 3
�
✏
2

6n2
(29)

cn0 =
4

⇡

Z
⇡

0
d✓  0✓

2
=

4
p
2(�1)

n

n2
(30)

cnm = 2

Z
⇡

0
d✓

2n✓
2
✏
2
(n cos(m✓) cos(n✓)� 2m sin(m✓) sin(n✓))

⇡ (n2 �m2)
= �

8n
2
✏
2
(�1)

m+n
�
n
2
� 3m

2
�

(m� n)3(m+ n)3
(31)

The shift in the eigen-values can also be calculated from RS perturbation theory, with

��n = �

Z
⇡

0
d✓

✏
2
(4✓

2
n
2
sin

2
(n✓)� 2✓

2
n
2
cos

2
(n✓))

⇡
= ✏

2
(3�

2⇡
2
n
2

3
) (32)

We can also obtain the full perturbed wave function by directly solving the Sturm-Liouville equation by directly

solving the inhomogeneous di↵erential equation to first order. The first order inhomogenous equation is,

d
2
� n(✓)

d✓2
�
�
���n � 2✓

2
n
2
�
cos(n✓) + n

2
� n(✓) + 8n✓ sin(n✓)� n = 0 (33)

4

where k is the curvature, and u a dimensionfull parameter in 5 dimensions. where i = 0,⇡ represents the Planck and

the TeV branes respectively. For the above potential, the warp factor A(y) and the background VEV can be exactly

solved to obtain,

A(y) = k|y|+

2
�
2
P

96
(e

�2u|y|
� 1) ' k̃|y|+


2
�
2
P

24
u
2
|y|

2
' k̃rc|✓|+


2
�
2
P

24
u
2
r
2
c
|✓|

2
(15)

�0(y) = �1e
�u|y|

' �P e
�urc|✓| (16)

where we have defined k̃ ⌘ k �

2
�
2
Pu

48 . In the final step, we have changed co-ordinates from y ! ✓ as y = rc✓.

Formally, we will treat A0(y) = k̃|y| = k̃rc|✓|, where rc is the compactification radius, as the unperturbed warp factor,

while the term proportional to l
2
will be treated in a perturbative expansion.

Before moving on to the details of the full DFKG model, let’s consider a simpler model, which we call the ”Flat-

stabilized” model. We express the warp factor A(✓) as,

A(✓) = k̃rc|✓|+

2
�
2
P

24
u
2
r
2
c
|✓|

2
= k̃rc|✓|+ ✏

2
|✓|

2
(17)

where ✏
2
=


2
�
2
P

24 u
2
r
2
c
. Within this model, we can take k̃ ! 0, such that the unperturbed set up is flat. The flat

extra-dimensional set up, with a massless radion stabilized by the O(✏
2
) warping obtained from the potential.

A(✓) ' ✏
2
|✓|

2
(18)

Note that while this model does not solve the ‘hierarchy problem’, nevertheless it is a self consistent model in it’s

own right, and the phenomenological issues that plague a simple compactified orbifolded model can be evaded entirely.

The phenomenological implications of this simplified set up will be discussed in a di↵erent work. For the purposes of

this paper, we will use it to show that scattering amplitudes in this model is well behaved before proceeding on to

the full DFKG model.

The metric and the scalar fluctuations are given by,

� = �0 + � (19)

r(x, y) = e
F (x,y)

(20)

The gauge condition that relates the scalar sector to the radion is,

�(x, y) =
3

2

e
2A(y)

2�02
0

@F (x, y)

@y
(21)

III. THE QUADRATIC LAGRANGIAN AND INTERACTIONS

IV. THE COUPLED STURM LIOUVILLE PROBLEM

The derivation of the quadratic Lagrangian in the previous section enables us to construct the Sturm-Liouville (SL)

problem of the system. This consists, of two sectors, the pure spin-2 part, which we will call the graviton SL problem,

and scalar sector, consisting of the radion, r(x, y) and the bulk scalar part, which will be denoted by Goldberger-Wise

(GW) scalars. The radion wave function, formally a part of the gravity sector of the problem is intertwined with the

GW scalar sector by a gauge condition. Before delving into the complexities of the scalar SL problem, we summarize

the e↵ect of the backreacting terms on the graviton sector. We will use SL perturbation theory for mass, wave function

and weights, to derive sum rules in perturbation theory.

A. SL problem for the flat-stabilized model

1. KK graviton sector

Before proceeding to the details of the SL problem for the full model, we briefly discuss the simplified model,

described earlier. There are two distinct Sturm-Liouville problems, one for the Spin-2 KK graviton resonances, and

6

The above di↵erential equation is subject to boundary conditions,

����
d� n

d✓

����
✓=0

=

����
d� n

d✓

����
✓=⇡

= 0 (35)

and the normalization condition,

2

⇡

Z
⇡

0
d✓ (⇢+ �⇢) ̃

2
n
= 1 (36)

which fixes all the undetermined constants of the solution. The solution to the above di↵erential equation is

� n = �
3 cos(n✓)

2n2
�

1

3
n✓

3
sin(n✓) +

3

2
✓
2
cos(n✓) +

1

3
⇡
2
✓n sin(n✓)�

3✓ sin(n✓)

n
�

1

6
⇡
2
cos(n✓) (37)

Evaluating the Fourier coe�cients, one can show that the solutions obtained via RS perturbation theory and a direct

solution of the inhomogeneous di↵erential equation are identical, as expected.

2. Scalar sector

Next we look at the scalar sector of this problem, which includes the radion and what we would call a tower of

GW scalars obtained from the stabilizing bulk scalar. The radion and the GW scalar are intertwined by the gauge

condition described in the previous section. The SL equation for the scalar sector reads, for the wave function �n,

d

d✓


exp[2A(✓)]

�020

d�n

d✓

�
�

exp[2A(✓)]

6
�n = �

exp[4A(✓)]

�020
µ
2
(n)�n (38)

For the flat-stabilized model, the warp factor for the unstabilized solution is 0, while to first order it is given by,

A(✓) = ✏
2
✓
2

(39)

The VEV of the stabilizing potential, and it’s derivative that appears in the SL problem,

�0 = (�P ) exp[�urc✓] , �
02
0 = (urc)

2

2
�
2
P
exp[�2urc✓] = 24✏

2
exp[�2urc✓] (40)

The scalar wave functions are subject to Neumann boundary conditions,

����
d��n

d✓

����
✓=0

=

����
d��n

d✓

����
✓=⇡

= 0 (41)

To first order, the SL equation for the full DFKG model reads,

d

d✓


exp[2A(✓)]

�00
2

d�n

d✓

�
�

exp[2A(✓)]

6
�n = �µ

2
(n)

exp[4A(✓)]

�0
02 �n (42)

Plugging in the VEV, to first order, the above equation reduces to,

d

d✓


exp[2A(✓) + 2urc✓]

d�n

d✓

�
� 4✏

2
exp[2A(✓)]�n = �µ

2
(n) exp[4A(✓) + 2urc✓]�n (43)

For the flat-Stabilized model, A(✓) = ✏
2
✓
2
, and therefore to leading order the SL equation is simply,

d
2
�n

d✓2
= �µ

2
(n)�n (44)

with a solution

�n = Nngw cos(n✓) (45)
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Summary -again

How do bad high energy growth get tamed in Extra Dimensional Models

MASSIVE SPIN-2 PARTICLES AND 
ENERGY GROWTHS

STABILIZING THE EXTRA DIMENSION VIA 
GOLDBERGER-WISE MECHANISM

MATRIX ELEMENTS AND CANCELLATIONS IN 
TOROIDAL AND AND ADS COMPACTIFICATIONS

MATRIX ELEMENTS AND CANCELLATIONS IN 
STABILIZED MODELS

Boundary value problem, Sum 
rules

Naive re-introduction of bad 
high energy behavior

Sum rules for the Stabilized 
model

→
s5

m8M2
pl

7

s5 s4 s3 s2

Mcontact �
2r7

c
[7+c2✓ ]s

2
✓

3072n8⇡

2r5
c
[63�196c2✓+5c4✓ ]

9216n6⇡

2r3
c
[�185+692c2✓+5c4✓ ]

4608n4⇡
�

2rc[5+47 c2✓ ]
72n2⇡

M2n
2r7

c
[7+c2✓ ]s

2
✓

9216n8⇡

2r5
c
[�13+c2✓ ]s

2
✓

1152n6⇡

2r3
c
[97+3 c2✓ ]s

2
✓

1152n4⇡
2rc[�179+116c2✓�c4✓ ]

1152n2⇡

M0
2r7

c
[7+c2✓ ]s

2
✓

4608n8⇡

2r5
c
[�9+140c2✓�3c4✓ ]

9216n6⇡

2r3
c
[15�270c2✓�c4✓ ]

2304n4⇡
2rc[175+624 c2✓+c4✓ ]

1152n2⇡

Mradion 0 0 �
2r3

c
s2
✓

64n4⇡
2rc[7+c2✓ ]

96n2⇡

Sum 0 0 0 0

TABLE I. Cancellations in the (n, n) ! (n, n) 5DOT amplitude, where ✓ is the center-of-mass scattering angle and (cn✓, sn✓) =

(cosn✓, sinn✓).

expand the diagrams and total matrix element in s, and
label the coe�cients like so:

M(s, ✓) ⌘
X

�2Z
M

(�)
(✓) · s� (51)

In this paper, we will demonstrate that M
(�)

vanishes
for � > 1 and present the residual linear term in s.

V. CANCELLATIONS AND HIGH ENERGY
GROWTH OF AMPLITUDES

A. Cancellations in the orbifolded torus model

We first analyze the cancellations in the orbifolded
torus. While we have calculated all arbitrary scatter-
ing states, we present the (n, n) ! (n, n) process due to
the relative simplicity. The full matrix element is,

M
(5DOT)
(n,n)!(n,n) = Mcontact +Mradion +M0 +M2n (52)

The principle results were presented in [], here we ex-
pand and provide some additional details of the calcula-
tion. For the process (n, n) ! (n, n), we summarize the
growth and cancellation of amplitudes at every order in
s
�, starting from � = 5. Due to the KK number con-
servation for the 5DOT, the intermediate states for the
non-contact diagrams can only be a massive 2n state and
the massless graviton(0 state). In Table I we present the
growth of matrix elements for each diagram for the scat-
tering of longitudinal helicity modes. As expected, we
observe that the contact, as well as diagrams with mas-
sive intermediate propagator and the masless graviton
grow like s

5 as the highest power. However the diagram
with a radion intermediate state appears only at O(s3).
Note that the results for the massive intermediate prop-
agator 2n and the massless graviton are presented after
summing up the s, t and u channel diagrams. At O(s5)
and O(s4), the contact diagrams along with the massive
2n state and the massless graviton state cancel each other
out. The underlying reason for this due to a 4D di↵eo-
morphism invariance being part of the full 5D di↵eomor-
phism. This feature will be clearer when we discuss the
sum rules for cancellation. At order s

3 and s
2 however,

the massless radion plays an important role in the cancel-
lation, which will be elucidated in more detail within the

context of sum rules. In Fig. 2, we present the pattern
of cancellations at every order in s

�, for all phase space
points between (�⇡,⇡) for the scattering of KK states
(2, 2) ! (2, 2). We observe that although the angular
distributions for various individual diagrams are quite
di↵erent, the cancellations between various diagrams is
exact for every phase space point. Notice that the radion
plays a significant role in the cancellations from O(s3).
This cancellation is therefore extremely intricate, and re-
quires a subtle conspiracy between various field degrees
of freedom of the underlying 5D theory. Any calculation
that does not take into account the full field content and
all possible diagrams will encounter a high energy growth
greater than O(s), which is misleading and incorrect.

The only non-zero contribution therefore appears at
O(s). In general, for a process (k, l) ! (m,n) in the
5DOT model,

M
(1)

=
xklmn

2

256⇡rc
[7 + cos(2✓)] csc2 ✓ (53)

where xklmn is fully symmetric in its indices, ✓ being the
scatering angle and satisfies

xaaaa = 3, xaabb = 2, and xabcd = 1

when discrete KK momentum is conserved, and vanishes
when it is not. For the (n, n) ! (n, n) scattering there-
fore, we have,

M
(1)(✓) =

32

256⇡rc
[7 + cos(2✓)] csc2 ✓ (54)

Since 
2
/(⇡rc) = 8/M2

Pl
, the amplitude grows as s/M2

Pl

as expected. More importantly, for scattering of (n, n) !
(n, n) states, if we truncate the theory below 2n, the
amplitude will grow as s5, in the absence of the state 2n.
Thus the cut-o↵ scale for this theory is ⇤5, and not ⇤3,
as suggested in [].
Processes like (1, 4) ! (2, 3) are particularly nice

because discrete KK momentum conservation forbids a
massless intermediate, such that the full matrix element
is devoid of t- and u-channel singularities. For these, we
can directly compute the appropriately normalized par-
tial wave amplitude,

a
J

�a�b!�c�d
=

1

32⇡2

Z
d⌦ D

J

�i�f
(✓,�)Ma�b!�c�d

(s, ✓,�) ,

(55)
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I. INTRODUCTION

Compactified theories of extra dimensional gravity are a prime candidate for a theory of physics beyond the standard

model. It also serves as a primary motivation for a low energy e↵ective field theory originating from string theory

origins, the prime candidate for quantum gravity. The validity of extra-dimensional theories as a low energy EFT

is described in association with a scale where the theory is expected to be strongly coupled. In phenomenologically

attractive models like the Randall-Sundrum set up, where the extra dimensional geometry is Anti-De-Sitter, the EFT

validity is set by a low energy emergent scale that depends on the curvature of the ADS space and the radius of

the compactification. While the EFT scale is generally argued by the ADS/CFT correspondence, an explicit proof

was only recently shown in a series of papers by the authors of this work. In particular it was shown that although

individual Kaluza-Klein spin-2 resonance scattering amplitudes grew as fast as s
5
/⇤

2
⇡
m

8
n
(s being the centre of mass

energy and mn the n
th

spin-2 KK resonance) subtle cancellations lead to this anomalously fast high energy growth

tamed down to s/⇤
2
⇡
, ensuring that higher dimensional di↵eomorphism invariance is preserved and amplitudes are

unitary till the scale ⇤⇡ = MPLe
�⇡krc , where k is the curvature of the ADS space. The pattern of cancellation leads

to a set of sum rules at every order in the Laurent series expansion of the scattering amplitude, starting at s
5
.

The RS set up predicts a massless radial mode, the radion. The massless radion couples to the trace of the Stress-

Energy tensor, resembling a Brans-Dicke theory, which is phenomenologically inconsistent due to a variety of issues

similar to those that plague theories of massive Fierz-Pauli gravity. Additionally since the radion, a proxy for the

size of the extra dimension is unspecified by any dynamics, the geometry is unstable and eventually collapses due to

the Casimir force between the two branes. The stabilization of the extra dimension is performed by adding a bulk

modulii field, following the prescription of Goldberger-Wise, such that there is a non-trivial potential which lifts the

flat radion wave function in the extra dimension, generating a mass and providing a dynamic origin to the size of the

extra dimension.

The question we address in this paper is- How do scattering amplitudes of massive KK resonances behave in the

presence of a stabilizing bulk field and a massive radion ? Naively, plugging in a mass by hand to the radion re-

introduces a low energy divergence in the theory. It can be explicitly checked that in this case scattering amplitudes

of massive KK gravitons grow as M /
s
2
m

2
r

⇤2
⇡m

4
n
, thus suggesting an IR divergence in the limit mn ! 0. In this paper, we

show explicitly that in an an honest stabilization procedure that generates a mass for the radion, no such diveregences

occur, and the amplitudes are unitary untill the scale ⇤⇡, the emergent scale of the RS model.

II. SET UP

We begin our discussion by laying out the set up and various elements of this paper. In this section, we will lay out

the stabilization procedure, with a review of a specific model based on super-potentials. The ADS metric is described

by,

GMN =

✓
w(x, y)gµ⌫ 0

0 �v(x, y)
2

◆
. (1)

This is expressed in coordinates x
M

⌘ (x
µ
, y) such that the corresponding invariant interval ds

2
equals

ds
2
= (GMN )dx

M
dx

N
= (wgµ⌫)dx

µ
dx

⌫
� (v

2
)dy

2
, (2)

allowing for warping of the transverse four-dimensional space. The Minkowski metric ⌘MN is defined by ⌘MN =

(+1,�1,�1,�1,�1). Meanwhile, the inverse metric equals

eGMN
=

✓
g̃
µ⌫
/w(x, y) 0

0 �1/v(x, y)
2

◆
, (3)

where we denote the inverse with a tilde (e.g. eG ⌘ G
�1

and eg ⌘ g
�1

) along with the definitions for w, v and u,

w(x, y) = e
�2(A(y)+û)

(4)

v(x, y) = 1 + 2û (5)

û(x, y) ⌘
 r̂(x, y)

2
p
6

e
+k(2A(y)�⇡rc) . (6)

While r(x, y) is the scalar fluctuations, the tensor fluctuations are obtained by, gµ⌫ ! ⌘µ⌫ + ĥµ⌫ , where  is the 5D

Planck mass. In order to stabilize the extra dimensional set up, a bulk scalar is added with a non-trivial potential

✔︎

✔︎
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Conclusions and perspective
• Compactified theories of extra dimensions -> No low energy cut-off 

• Cancellations due to different diagrams reduce O(s5) growth to O(s). 

• No low energy cut-off for consistent models of stabilization 

•  Uncovered sum rules enforcing this cancellation 

• Can show ->  Analysis extends to matter on brane or bulk 

• Consistent with literature on massive gravity. 

• Possible to double-copy a compactified gauge theory to compactified gravity   for flat toroidal compactification 

• Pheno papers : Doing an unitarity analysis for DM models, ultralight radion as a candidate …  

• Theory papers : Spinor Helicity calculation ? More connections with massive gravity community … 


