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wave patterns

One of the first photos of plane soliton
interaction on the surface of shallow water
from the book by Ablowitz & Segur (1981).
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Different types of solitary wave interactions
on shallow water: X-type, H-type, and Y-type
as per Ablowitz & Baldwin (2012).

CRICOS QLD00244B NSW 02225M TEQSA:PRF12081



UNIVERSITY
OF SOUTHERN

Solitary waves on a water surface gUEENSLAND

Cross waves
(from the open sources in the Internet).
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Solitary waves on a water surface \uesnsiano

Rectangular solitary waves
(from the open sources in the Internet).
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Internal solitary waves _—
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Observations of internal wave interactions in the Strait of
Georgia, British Columbia (west coast of North America).

The deep-water case; water depth is 150 m, the pycnocline
at the depth h ~ 5-7 m (Wang & Pawlowicz, 2012).

CRICOS QLD00244B NSW 02225M TEQSA:PRF12081



Internal solitary waves UNIVERSITY

OESOUTHERN
QUEENSLAND

7

SL01

08'0L

S2'01 MECL

0008

SiL'e

Internal solitary waves in deep water after
CRICOSQLD00244BNSWOZZZSMTEQSA:PRFimage proceSSing (Wang & PaW/OWiCZ, 2012)-



The Kadomtsev-Petviashvili equation
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Derived in 1970 by Kadomtsev & Petviashvili for the

description of weakly nonlinear waves with dispersion
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propagating along the X-axis and experiencing a weak

diffraction in the lateral direction.

In 1974 Druma found Lax’s representation of the KP equation

in terms of the LA-pair of operators.

The same year Zakharov & Shabat (1974) developed a

“dressing method” of solution of the KP equation. Later it was

shown that this equation is completely integrable for 8 > 0

(the ocean wave case) and “weakly integrable” for 8 < 0.
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Satellite image of internal solitons in the
Andaman Sea (Osborne & Burch, 1980).
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In the frame moving with the linear speed C the KP equations

reads: P (577 877 8377j_ C8277
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Soliton solutions to this equation can be easily obtained through

the Hirota transform (Satsuma, 1976):

B4
(X, y,t)_12a v InF(x,y,t)

Equation for the function F(X, Y, 1) reads:
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The one-soliton solution to the KP equation in terms

of function F(X,y, t) is: |F(X,y,t) =1 + e@t-kx-ly,
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Soliton solutions of the KP2 equation

In the original variables, we obtain:

F(X, Y, t) =1+ ea)t—kx—ly;

n(x,y,t) :12£d—22In F(xy,t)

o dx
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The two-soliton solution to the KP equation \k

can be presented again through the Hirota transform:

B4 -
(X, y,t)_12a v InF(x,y,t);
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B = : _>0.
64(k, +k,) —c(tang, —tan¢,)

The length of the bridge between soliton fronts depends

on the parameter B. It becomes infinite in two cases:
(i) when B — 0, and (ii) B — oo,

provided that > 0.
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Soliton triads UNIVERSITY

(Newell & Redekopp, 1977; Miles, 1977) g[JS]EOEIJNTSEIEIEIE)I

Examples of soliton patterns in two limiting cases:

(i) when B — 0, and (ii) B > .

In the case of B =0, the solution is very simple:

F (X, y,t) —1+ ea)lt—klx—lly n ea)zt—k2 x—IZy.
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Let us make the orthogonal transformation:

X = £C0SS— 77SiNng,
y = £sind + ncoso

and present the solution in the form:

F (X, y,t) _ 1+ e—Kl(f—Ut)—Lln 4 e—Kz(f—Ut)—LG 4 e—(K1+K2)(§—Ut)—(L1+L2)77+CI).
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For the two-soliton solution this is always possible!

U= w/K; wherei=1,2, K,=k(1+tanotang,) coso,

2,8(k22 —k12)+C(tan2 @, —tan gol)

tan o =

23(k? tan o, —k? tan ¢ ) —ctan ¢, tan g, (tan g, —tan ;)
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Symmetric patterns are very special and simple cases of soliton

interaction. The patterns move along the X-axis with the parameters:
Ky =k;=k>0, l;=-1,=1>0, (¢, =—¢, = 9>0).
(2+¢” coshly) Be” +coshly

n(0,y)= 24é ke’

—, O0=wt-kx
a (1+2¢” cosh ly + Be*’)
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B = 2C| - U= ah +~tan? @
- 68K 3 2

JB

=4 > ey =4
Mimex A51+J§ = n A

Solution is nonsingular if

| > =k? % or %qan ‘o<1,
C C

This restriction is equivalent to | 2aA/C < ¢?.

v

When | = |, we obtain a symmetric triad.

crs/
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Quasi-one-dimensional Gardner equation:
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Quasi-one-dimensional Benjamin-Ono equation:
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Two-dimensional Boussinesq equations:
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Asymptotic approach to the soUTIERN
interacting soliton fronts &
»

Let us consider for simplicity a symmetric soliton pattern

moving along the X-axis with the speed Vp

and consisting of two solitons with the parameters:

Ki =k, =k>0, l;=-1,=1>0, (¢, =—¢, = p>0).
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The Boussinesq-type equation  osoutiry
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In the stationary case when n(X, Yy, t) = n(¢&, y),

where &= X — th, the KP2 equation reduces

to the Boussinesg-type equation:

o'n C28277 a 0°n’ 2,884

2 =0,
0% ¢ 0&° ¢ o0&
where|C; =2V, /c.

Then, we can think that Y is the time variable 7, and soliton fronts

in the & Y-plane represent space-time trajectories of one-

dimensional solitons experiencing a head-on collision in the &, 7-

plane.
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The soliton solution PSOUTHERN
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A soliton solution of the Boussinesq equation

on a constant pedestal P is:

f—WT:|
A

n(& )= Asechz[ +p,

A= PP W= E(Vp—ap—a—Aj.
a A C 3

This solution is real if V> a(p + A/3).

This solution remains approximately correct even when the

pedestal P is a gradually varying function of & with the

characteristic length of variation L >> A.
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Particle-like interaction of solitons \ousensianp

One of the solitons can play a role

of a pedestal p(¢) for another soliton.

)\77

1T

S, S, 3

The tall and narrow soliton can be considered as a point particle in

the external field created by the tail of another soliton.

Denoting the soliton position by S(7), we obtain from the kinematic

condition [dS/dz=W.
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Particle-like interaction of solitons \ousensianp

For two solitons moving in opposite directions,

we obtain the set of equation:

dS, 2 a A
1 |2y — I
dr \/C( P 3 j

Substituting here expressions for Vp and P, we obtain:

ds,_ (317 ], 20 [ah, (o
dr \/a/\{ 3ﬂ<:|2 ARSEC { 12,8(82 Sl)ﬂ’
ds,  [3p1*)|, 2a° )| [aA o
dr \/aAQ {1 3ﬂc|2A&AzseCh { 12,8(82 Sl)}}'
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Particle-like interaction of solitons \ousensianp

For solitons of equal amplitudes A; = A,,
real solution exists if: |I| >, = aA\/2/3/c.
The set of equations can be readily solved provided that

the distance between the soliton centres is big, |S, — S;| >> A.

Then, we obtain:

tanh(2S,,/A)

8a A |
\/ ~ A2 sech?(2S,,/A)

T, = 1Arctanh

or, bearing in mind that 7=V, we finally derive:

tanh(2S,,/A)

8a A |
\/ ~ oA sech®(2S,,/A)

Vi, = %Arctanh
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Soliton trajectories (configuration of soliton fronts). The phase shift
of trajectories caused by soliton interaction is clearly seen.
The yellow circle shows the domain where the asymptotic theory is
formally inapplicable because the distance between the solitons is

not big here.
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As follows from the solution, asymptotically

when Y — o0, we obtain:

g 38 (, 20°A°
()= Ta Y 4aA|n(l Bﬁclzj'

Then, the phase shift is:

@, =2| Y, (S)- Yy (S)] =—%In(1_ 20;;6\22 j

This exactly equals to the phase shift which follows from

the analytical solution of the KP2 equation!

When |I| > 1, =aA\/2/38c, we obtain the triad solution.
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Soliton trajectories (configuration of soliton fronts)
with the big phase shift.
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