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Outline of this talk

1) superintegrable chiral Potts model
—> coupled Temperley-Lieb algebra
= pictorial representation

2) Baxter-Fendley Z(N) model
— free parafermions

—> exceptional points



Z(N) spin chains
Building blocks are the N x N (‘shift’ and ‘clock’) matrices
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Some well studied Yang-Baxter integrable N-state quantum spin
chains are of the form
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where 1, 7 and o are N x N matrices, 7 and ¢ occur in position j.



special cases
e N-state quantum Potts model
a,=1

e Fateev-Zamolodchikov Z(N) model
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an = sin(mn/N)

o N-state superintegrable chiral Potts model

2
R R

Each model reduces to the quantum Ising model for N = 2.
Models (1) and (2) are equivalent for N = 3.

Model (3) still something of an enigma..



Potts and Temperley-Lieb
Recall the N-state quantum Potts representation of the TL algebra
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Potts model hamiltonian
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Superintegrable chiral Potts (SICP) chain
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The chiral Potts model has an R-matrix when

A COS ¢ = COS .

The special values ¢ = ¢ = 7 define the superintegrable case.

Hsicp admits an infinite set of commuting conserved charges.

Hsicp only solved for periodic bc's.
(N-state free parafermions only solved for open bc's)



Hsicp can be written in terms of a coupled TL algebral
[N = 3 case, J Fjelstad and T Ménsson, JPA 45, 155208 (2012)]

For general N there are N — 1 generators e}k) which satisfy
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with Q = V/N.
For N = 2 this reduces to the single TL generator e;.

For N = 3 we label the generators by ¢; = e}l) and f; = e}2).



In general we can write
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for k=1,...,N—1. Here w = e2™/N,

Then, for periodic bc's
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And for open bc's
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The generators ej(k) also satisfy additional cubic relations.

For the N = 3 case
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(2) and gj = e’ a typical cubic

For N = 4 with ¢; = e}l), fi = &
relation is of the type

1 . 1 . . .
fiece; = 5(1 — 1)626’1 — 5(1 + 1)g2€1 —ifher +1ieg.



Pictorial representation
We give a pictorial representation of the generators. For N = 3:
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The key feature of the pictorial representation is a pole around
which loops can become entangled. Here we choose the position of
the pole to be at one end of the chain. In the associated loop
diagrams, closed (contractible) loops have weight Q, with

Q =+/3. The weight of closed (non-contractable) loops encircling
the red line is zero.



SICP N = 3 example, generators e; and f;

The generators ¢; are like the usual TL generators, with loops not
encircling a line.

The generators f; involve loops around the single red line.

Generators for the L = 2 site open chain:
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SICP N = 3 example, generators e; and f;

All algebraic relations can be proved via the diagrams.
We make use of the usual Kauffman-type relations.

The most interesting cubic relations are fifofi = f1 and fhfif, = h.



Proof of the relation HfiHh =1
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The knot can be resolved!

Key ingredients are crossing relations for loops encircling a red line.



Line crossing relations

N

For this example with N = 3 the parameter is w = ¢

This value can be derived topologically.

Based on the publication

Remy Adderton, MTB and Paul Wedrich,
J. Phys. A 53, 36LT01 (2020) (open access)
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2) The Baxter-Fendley Z(N) spin chain

A model that received no attention for a long time was found by
Rodney Baxter in 1989.

For an L-site chain this model is defined as
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It reduces to the quantum Ising model for N = 2.

H is non-Hermitian!



The eigenvalues of H have a simple form!

‘—E =wPler +wPer + - +preL‘

for any choice of p, =0,..., N — 1. Recall w = 27/,

o cf free fermions (N:2)‘—E:ﬂ:€1:l:€2:|:"-:i:€L‘

Gives all Nt eigenvalues in the spectrum.

The energy levels € are known.

Initially a numerical observation.

The model originates as the hamiltonian limit of the 7 model,
a variant of the chiral Potts model.

R J Baxter, Phys Lett A 140, 155 (1989); J Stat Phys 57, 1 (1989)
V'V Bazhanov and Y G Stroganov, J Stat Phys 59, 799 (1990)

R J Baxter, J Stat Phys 117, 1 (2004)



e Fendley derived this result using a generalisation of the
Jordan-Wigner transformation, namely the Fradkin-Kadanoff
transformation to parafermionic operators originally
introduced for the N-state clock models.

e Baxter (2014) and Au-Yang and Perk (2014,2016) applied
Fendley's parafermionic approach to the more general 7
model with open boundaries.

P Fendley, J. Phys. A 47, 075001 (2014)
R J Baxter, J Phys A 47, 315001 (2014)

H Au-Yang and J H H Perk, J Phys A 47, 315002 (2014); arXiv:1606.06319



The hamiltonian is non-Hermitian, with complex energy
eigenvalues for N > 3.

For any eigenvalue E, there are other eigenvalues wE, w?E, . ..

This is the generalisation of the E <+ —E Ising symmetry
(recall w = —1 for N = 2).

In general non-Hermitian hamiltonians describe the dynamics of
physical systems that are not conservative.

The properties of the model are well worth exploring, being a rare
example of an exactly solved non-Hermitian many-body system.



Free parafermion eigenspectrum (N =3 L = 4)
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The solution

F C Alcaraz, MTB and Z-Z Liu, J Phys A 50, 16LT03 (2017)
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What are exceptional points?

Exceptional points are spectral singularities in the parameter space
of a system in which two or more eigenvalues, and their
corresponding eigenvectors, simultaneously coalesce.

Such degeneracies are peculiar features of nonconservative systems
that exchange energy with their surrounding environment.

EPs are level degeneracies induced by non-Hermiticity.

They exhibit exotic topological phenomena associated with the
winding of eigenvalues and eigenvectors.

A vast and highly active topic!



Exceptional points

For real positive A, the quasi-energies ¢; are always positive and
distinct.

For complex )\, a pair of them may become equal at certain values
of A\, which depend on N and L.

We call these quasi-energy exceptional points.

We call EPs in the energy spectrum Hamiltonian exceptional
points.

Our point is that quasi-energy EPs give rise to Hamiltonian EPs.

Moreover, we can calculate them.



A quasi-energy EP will occur when
sin(L+ 1)k = =AM sin Lk

has a repeated root, meaning that both this equation and its
derivative are satisfied.

The EPs are pairs of values kgp and Agp which satisfy these
equations simultaneously.

In this way we obtain kgp as the solution to
sin(2L+ 1)k — (2L+1)sink =0,
with the corresponding value A\gp given by

\_ [Zsin(L+ 1)k 2/N
N sin Lk '



Im()\)

0.00
Re(k)

(left) k solutions for L = 4

(middle) difference between smallest and second-smallest
quasi-energies for N = 2

(right) difference between smallest and second-smallest
quasi-energies for N =3

The corresponding values of Agp are also shown as crosses.
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Can apply large L expansion results for k to show that Agp satisfies

2] 2mj
AV = cos (%j) +isin (%J)
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Concluding remarks

> We have located the quasi-energy EPs in the complex plane.
» Numerical tests confirm they correspond to Hamiltonian EPs.
» And also confirm that the corresponding eigenvectors coalesce.

P There are other degeneracies in the energy eigenspectrum, but
they are not EPs.

» Although in the complex plane, EPs can influence properties
(such as correlations) along the real axis..



