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The information loss paradox is widely regarded as one of the biggest open problems in theoretical
physics. Several classical and quantum features must be present to enable its formulation. First, an event
horizon is needed to justify the objective status of tracing out degrees of freedom inside the black hole.
Second, evaporation must be completed (or nearly completed) in finite time according to a distant observer,
and thus the formation of the black hole should also occur in finite time. In spherical symmetry these
requirements constrain the possible metrics strongly enough to obtain a unique black hole formation
scenario and match their parameters with the semiclassical results. However, the two principal
generalizations of surface gravity, the quantity that determines the Hawking temperature, do not agree
with each other on the dynamic background. Neither can correspond to the emission of nearly-thermal
radiation. We infer from this that the information loss problem cannot be consistently posed in its standard
form.
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I. INTRODUCTION

Information loss in black hole evolution is one of the
longest-running controversies in theoretical physics [1–11].
Its essence is captured by the following scenario: according
to distant observers, matter collapsing into a black hole
completely evaporates via Hawking radiation within a finite
time. If quantum correlations between the inside and
outside of the black hole horizon are not restored during
the evaporation, this evolution of low-entropy collapsing
matter into high-entropy radiation implies information loss.
This problem is referred to as a paradox because a
combination of information-preserving theories—quantum
field theory and general relativity (GR)—ostensibly leads
to a loss of information [12].
Its status as a paradox, the necessity and/or validity of

particular resolutions and their implications for a putative
theory of quantum gravity or the fundamental structure of
quantum theory are not the subject of our discussion here.
Instead, we focus on the consequences of its formulation
within the framework of semiclassical gravity. In common
with the paradoxes of quantum mechanics, the information
loss problem combines classical and quantum elements and
some counterfactual reasoning. In this paper, we consider

the physical and mathematical consequences of having the
necessary elements for its formulation realized.
We find that the conditions required for the formulation of

the paradox (in contrast to its resolution) cannot be realized
without significant modifications of the late-time black hole
radiation, which is considered to be one of the most
established results of quantum field theory in curved
spacetime. The key technical findings that we report are
the discordant properties of generalizations of surface
gravity. As a result, we conclude that, while gravitational
collapse and gravitationally-induced radiation contain sev-
eral important physical questions, including matter-gravity
correlations, observability of various horizons, and the
applicability of semiclassical physics, the standard formu-
lation of apparent loss of information cannot consistently be
made in the context of semiclassical gravity. Consequently,
if the paradox cannot be self-consistently formulated in the
best tested framework we currently have available, this
suggests that its various proposed resolutions should be
reappraised.
We first note that the setting for the formulation of the

information loss problem involves at least the following:
(1) Formation of a transient trapped region. Such a

region either completely disappears or turns into a
stable remnant; in either case, this takes place in
finite time as measured by a distant observer Bob.
This provides the scatteringlike setting to describe
the states (and their alleged information content)
“before” and “after”.
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Semiclassical gravity: overview of our self-consistent approach

i. Classical spacetime structure is still meaningful and described by 
metric; classical notions (e.g. horizons, trajectories) can be used.

ii. Metric is modified by quantum effects. The resulting curvature 
satisfies semiclassical Einstein equations

iii. EMT describes total matter content, i.e. both the original 
collapsing matter and the produced excitations. Dynamics of 
collapsing matter is still described classically using metric.

Rµ⌫ � 1
2Rgµ⌫ = 8⇡hT̂µ⌫i!

Collapsing 
star

i+

i�

B

r = 0

r = 0

r = 0

B

i0

i�

i0

i+

RBH ⌃tS

⌃tS

MBH

PBH

No assumptions about: global/asymptotic structure of spacetime; quantum state    ; 
status of energy conditions; presence or absence of singularity; presence or absence 
of Hawking radiation.

! SM, DR Terno
arXiv:2110.12761 (2021).

https://arxiv.org/abs/2110.12761
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Information loss: a simplified view

Stephen W. Hawking, Cambridge (1993).

SW Hawking, Nature 248, 30 (1974).

= 8⇡Tµ⌫

SW Hawking, Commun. Math. Phys. 43, 
199 (1975); 46, 206(E) (1976).

Semiclassical gravity:

Thermal radiation:

uncorrelated; no information other than 
the mass and temperature of the BH.

Unitarity: information is preserved.

Tµ⌫ ⌘ hT̂µ⌫i!

Rµ⌫ � 1
2Rgµ⌫

https://doi.org/10.1038/248030a0
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
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Prerequisites for the paradox

The formulation of the information loss problem involves at least the following:

1) Formation of transient trapped region in finite time of distant observer
Provides the scattering-like setting to describe the states 
and their alleged information content “before” and “after”.

2) Formation of an event horizon
Needed to give an objective, observer-independent significance 
to tracing out of the black hole degrees of freedom.

3) Thermal or nearly-thermal character of the radiation
Responsible for disappearance of trapped region and 
high entropy of the reduced exterior density operator.



6© Okinawa Institute of Science and Technology Graduate University 20202 0 2 2 / 1 2 / 1 2

Prerequisites for the paradox: physical consequences

Note: event horizons are physically unobservable!

work with apparent horizon

Necessary condition for the formulation of the paradox:

for an evaporating black hole, existence of event horizon in finite time t 
implies formation of apparent horizon at some finite time tS.

RB Mann, SM, DR Terno, 
Phys. Rev. D 105, 124032 (2022).

Details:

Note:

Formation of a regular apparent horizon in finite
time as measured by the clock of a distant observer.

Unique scenario for black hole formation!

Collapsing 
star

i+

i�

B

r = 0

r = 0

r = 0

B

i0

i�

i0

i+

RBH ⌃tS

⌃tS

MBH

PBH

6

T := Tµ
µ

T := TµνTµν

finite at horizon

< 1

SM, DR Terno, 
Phys. Rev. D 103, 064082 (2021).

M Visser, 
Phys. Rev. D 90, 127502 (2014).

https://doi.org/10.1103/PhysRevD.105.124032
https://doi.org/10.1103/PhysRevD.103.064082
https://doi.org/10.1103/PhysRevD.90.127502
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Semiclassical gravity: spherically symmetric setup

ds2 = �e2h(t,r)f(t, r)dt2 + f(t, r)�1dr2 + r2d⌦

f(t, r) := 1� C/r := @µr@
µrwhere

Misner-Sharp mass CW Misner, DH Sharp, 
Phys. Rev. 136, B571 (1964). 

dt = e�h
�
eh+dv � f�1dr

�

Integrating factor in 
coordinate transformations, e.g.

@rC = 8⇡r2⌧t/f

@tC = 8⇡r2eh⌧ r
t

@rh = 4⇡r (⌧t + ⌧ r) /f2,

Einstein equations

Effective EMT components:

6

T := Tµ
µ

T := TµνTµν

Rµν − 1

2
Rgµν = 8πTµν

Rµν − 1

2
Rgµν = 8πTµν

Tµν ≡ 〈T̂µν 〉ω

gµν =





−e2h(t,r)f(t, r) 0 0 0
0 1/f(t, r) 0 0
0 0 r2 0
0 0 0 r2 sin2 φ





τt := e−2hTtt , τ r
t := e−hT r

t , τ r := T rr

τt := e−2hTtt

τ r
t := e−hT r

t

τ r := T rr

τt := e−2hTtt

τ r
t := e−hT r

t

τ r := T rr

∂rC = 8πr2τt/f

∂tC = 8πr2ehτ r
t

∂rh = 4πr (τt + τ r) /f2

https://doi.org/10.1103/PhysRev.136.B571
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Semiclassical gravity: spherically symmetric setup

ds2 = �e2h(t,r)f(t, r)dt2 + f(t, r)�1dr2 + r2d⌦

@rC = 8⇡r2⌧t/f

@tC = 8⇡r2eh⌧ r
t

@rh = 4⇡r (⌧t + ⌧ r) /f2,

f(t, r) := 1� C/r := @µr@
µrwhere

Misner-Sharp mass

Einstein equations

k 2 {0, 1}Only two values of      are consistent: kDR Terno, Phys. Rev. D 101, 124053 (2020).
SM, DR Terno, Phys. Rev. D 103, 064082 (2021).

Solutions are characterised by scaling behaviour of EMT close to horizon: lim
r!rg

⌧ ⇠ ±⌥(t)2f(t, r)k

T := (⌧ r � ⌧t) /f

T :=
⇣
(⌧ r)2 + (⌧t)

2 � 2 (⌧ r
t )2

⌘
/f2

Curvature scalars:

Both classes violate NEC near horizon.

CW Misner, DH Sharp, 
Phys. Rev. 136, B571 (1964). 

Effective EMT components:

6

T := Tµ
µ

T := TµνTµν

Rµν − 1

2
Rgµν = 8πTµν

Rµν − 1

2
Rgµν = 8πTµν

Tµν ≡ 〈T̂µν 〉ω

gµν =





−e2h(t,r)f(t, r) 0 0 0
0 1/f(t, r) 0 0
0 0 r2 0
0 0 0 r2 sin2 φ





τt := e−2hTtt , τ r
t := e−hT r

t , τ r := T rr

τt := e−2hTtt

τ r
t := e−hT r

t

τ r := T rr

τt := e−2hTtt

τ r
t := e−hT r

t

τ r := T rr

∂rC = 8πr2τt/f

∂tC = 8πr2ehτ r
t

∂rh = 4πr (τt + τ r) /f2

https://doi.org/10.1103/PhysRevD.101.124053
https://doi.org/10.1103/PhysRevD.103.064082
https://doi.org/10.1103/PhysRev.136.B571
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Dynamic physical black hole solutions in spherical symmetry

r−2∂tCþ λEt
r ¼ 8πTt

r; ð18Þ

2f2r−1∂rh − fr−2∂rCþ λErr ¼ 8πTrr: ð19Þ

We assume that there is a solution of Eq. (16) with the
metric functions

Cλ≕ C̄ðt; rÞ þ λΣðt; rÞ; ð20Þ

hλ ≕ h̄ðt; rÞ þ λΩðt; rÞ; ð21Þ

where the bar labels functions of semiclassical gravity
described in Sec. III, e.g., C̄ ≔ rg þ W̄ [cf. Eq. (6)], and Σ

and Ω denote the perturbative corrections. To avoid
artifactual divergences, we use the physical value of
rgðtÞ that corresponds to the perturbed metric
gλ ≔ ḡμν þ λg̃μν, i.e., Cλðt; rgÞ ¼ rg. Similarly, the EMT
depends on λ through the metric gλ, and potentially also
through effective corrections resulting from perturbative
corrections to the modified field equations (17)–(19). It is
decomposed as

Tμν ≕ T̄μν þ λT̃μν; ð22Þ

where T̄μν ≡ Tμν½C̄; h̄& corresponds to the semiclassical
term. The perturbative corrections must satisfy the boun-
dary conditions

TABLE I. Comparison of the two classes of dynamic solutions in spherical symmetry. The metric functions C and h [cf. Eqs. (3) and
(4)] are obtained as the solutions of Eqs. (13) and (15) and are written together with the effective EMT components and Ricci scalar as
series expansions in terms of the coordinate distance x ≔ r − rg from the apparent horizon rg. The function ϒðtÞ > 0 parametrizes the
leading contributions to the effective EMT components for k ¼ 0 solutions, and ξðtÞ is determined by the choice of time variable. In
spherical symmetry, the geometry near the apparent horizon [23–25] is constrained sufficiently enough to identify ϒðtÞ and ξðtÞ and
match them with the semiclassical results [35]. The letter j ∈ Z 1

2 labels half-integer and integer coefficients and powers of x. Since only
the leading terms in each series are relevant, we simplify the notation by writing c12 instead of c1=2, and similarly for higher orders and
coefficients of the EMT expansion and Ricci scalar. To remind us of their connection to physical quantities, the coefficients of the
effective EMT components are denoted ej (energy density), ϕj (flux), and pj (pressure). Consistency of Eqs. (14) and (15) implies
E ¼ −P ¼ 1=ð8πr2gÞ and Φ ¼ 0. The lower (upper) signature in Eqs. (k0.4), (k0.6), and (k1.4) describes an evaporating PBH (an
expanding white hole). The dynamic behavior of the horizon r0g ≔ drg=dt is determined by Eq. (14), and also implicitly through the
requirement that the Ricci scalar R be finite at the horizon, that is Eqs. (k0.4) and (k1.4) must hold for the k ¼ 0 and k ¼ 1 solutions,
respectively, in order for the divergent terms in the series expansion of R to vanish. The Einstein equations Eqs. (13)–(15) hold order by
order in terms of x. Accordingly, explicit expressions for higher-order terms in the metric functions are obtained by matching those of the
same order in the EMT expansion [18,36].

k ¼ 0 solutions k ¼ 1 solution

Metric functions
C ¼ rg − c12

ffiffiffi
x

p
þ
X∞

j≥1
cjxj ðk0:1Þ

h ¼ −
1

2
ln
x
ξ
þ
X∞

j≥1
2

hjxj ðk0:2Þ

C ¼ rg þ x − c32x3=2 þ
X∞

j≥2
cjxj ðk1:1Þ

h ¼ −
3

2
ln
x
ξ
þ
X∞

j≥1
2

hjxj ðk1:2Þ

Leading coefficient
c12 ¼ 4

ffiffiffi
π

p
r3=2g ϒ ðk0:3Þ c32 ¼ 4r3=2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−πe2=3

p
ðk1:3Þ

Horizon dynamics
r0g ¼ 'c12

ffiffiffi
ξ

p
=rg ðk0:4Þ r0g ¼ 'c32ξ3=2=rg ðk1:4Þ

Effective EMT
τt ¼ −ϒ2 þ

X∞

j≥1
2

ejxj ðk0:5Þ

τtr ¼ 'ϒ2 þ
X∞

j≥1
2

ϕjxj ðk0:6Þ

τr ¼ −ϒ2 þ
X∞

j≥1
2

pjxj ðk0:7Þ

τt ¼ Ef þ
X∞

j≥2
ejxi ðk0:5Þ

τtr ¼ Φf þ
X∞

j≥2
ϕjxj ðk0:6Þ

τr ¼ Pf þ
X∞

j≥2
pjxi ðk0:7Þ

Ricci scalar
R ¼ R0 þ R12

ffiffiffi
x

p
þ R1xþ

X∞

j≥3
2

Rjxj ðk0:8Þ R ¼ 2=r2g þ R1xþ
X∞

j≥3
2

Rjxj ðk1:8Þ
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leading contributions to the effective EMT components for k ¼ 0 solutions, and ξðtÞ is determined by the choice of time variable. In
spherical symmetry, the geometry near the apparent horizon [23–25] is constrained sufficiently enough to identify ϒðtÞ and ξðtÞ and
match them with the semiclassical results [35]. The letter j ∈ Z 1

2 labels half-integer and integer coefficients and powers of x. Since only
the leading terms in each series are relevant, we simplify the notation by writing c12 instead of c1=2, and similarly for higher orders and
coefficients of the EMT expansion and Ricci scalar. To remind us of their connection to physical quantities, the coefficients of the
effective EMT components are denoted ej (energy density), ϕj (flux), and pj (pressure). Consistency of Eqs. (14) and (15) implies
E ¼ −P ¼ 1=ð8πr2gÞ and Φ ¼ 0. The lower (upper) signature in Eqs. (k0.4), (k0.6), and (k1.4) describes an evaporating PBH (an
expanding white hole). The dynamic behavior of the horizon r0g ≔ drg=dt is determined by Eq. (14), and also implicitly through the
requirement that the Ricci scalar R be finite at the horizon, that is Eqs. (k0.4) and (k1.4) must hold for the k ¼ 0 and k ¼ 1 solutions,
respectively, in order for the divergent terms in the series expansion of R to vanish. The Einstein equations Eqs. (13)–(15) hold order by
order in terms of x. Accordingly, explicit expressions for higher-order terms in the metric functions are obtained by matching those of the
same order in the EMT expansion [18,36].

k ¼ 0 solutions k ¼ 1 solution

Metric functions
C ¼ rg − c12

ffiffiffi
x

p
þ
X∞

j≥1
cjxj ðk0:1Þ

h ¼ −
1

2
ln
x
ξ
þ
X∞

j≥1
2

hjxj ðk0:2Þ

C ¼ rg þ x − c32x3=2 þ
X∞

j≥2
cjxj ðk1:1Þ

h ¼ −
3

2
ln
x
ξ
þ
X∞

j≥1
2

hjxj ðk1:2Þ

Leading coefficient
c12 ¼ 4

ffiffiffi
π

p
r3=2g ϒ ðk0:3Þ c32 ¼ 4r3=2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−πe2=3

p
ðk1:3Þ

Horizon dynamics
r0g ¼ 'c12

ffiffiffi
ξ

p
=rg ðk0:4Þ r0g ¼ 'c32ξ3=2=rg ðk1:4Þ

Effective EMT
τt ¼ −ϒ2 þ

X∞

j≥1
2

ejxj ðk0:5Þ

τtr ¼ 'ϒ2 þ
X∞

j≥1
2

ϕjxj ðk0:6Þ

τr ¼ −ϒ2 þ
X∞

j≥1
2

pjxj ðk0:7Þ

τt ¼ Ef þ
X∞

j≥2
ejxi ðk0:5Þ

τtr ¼ Φf þ
X∞

j≥2
ϕjxj ðk0:6Þ

τr ¼ Pf þ
X∞

j≥2
pjxi ðk0:7Þ

Ricci scalar
R ¼ R0 þ R12

ffiffiffi
x

p
þ R1xþ

X∞

j≥3
2

Rjxj ðk0:8Þ R ¼ 2=r2g þ R1xþ
X∞

j≥3
2

Rjxj ðk1:8Þ

SEBASTIAN MURK PHYS. REV. D 105, 044051 (2022)

044051-4

Describes formation of black holes.Describes black holes immediately after 
formation (and for the rest of their lifetime).

The formation of black holes follows a unique scenario that involves both classes of solutions!

Details:
The transition between them is continuous.

Both violate the NEC near the horizon.
x := r � rg

SM, DR Terno, 
Phys. Rev. D 103, 064082 (2021).

https://doi.org/10.1103/PhysRevD.103.064082
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Surface gravity in stationary spacetimes

dr

dt
= ±2peel(t)x+O

�
x2

�

Several equivalent definitions, related to either

or

TH =


2⇡
Hawking temperature: (for observer at infinity)

Inaffinity of null geodesics on the horizon:

Peeling off properties of null geodesics near the horizon:

⇠µ;⌫⇠
⌫ := ⇠µ

Killing vector field p
⇠µ⇠µ = 0with norm

r & rg

x := r � rg
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Surface gravity in dynamical spacetimes

In general dynamical spacetimes: no asymptotically timelike Killing vector.

Indistinguishable for sufficiently slowly evolving horizons with properties close to their classical counterparts.

Role of Hawking temperate captured either by peeling or Kodama surface gravity.

C Barceló, S Liberati, S Sonego, M Visser, 
Phys. Rev. D 83, 041501(R) (2011). 

H Kodama, Prog. Theor. Phys. 63, 1217 (1980).
G Abreu, M Visser, Phys. Rev. D 82, 044027 (2010).
F Kurpicz, N Pinamonti, R Verch, Lett. Math. Phys. 111, 110 (2021). 

However: the similarity fails for dynamic spherically symmetric solutions!

RB Mann, SM, DR Terno, 
Phys. Rev. D 105, 124032 (2022).

https://doi.org/10.1103/PhysRevD.83.041501
https://doi.org/10.1143/PTP.63.1217
https://doi.org/10.1103/PhysRevD.82.044027
https://doi.org/10.1007/s11005-021-01445-7
https://doi.org/10.1103/PhysRevD.105.124032
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Surface gravity in dynamic spacetimes: peeling surface gravity

Consider peeling surface gravity:

With the metric functions C and h of the k=0 and k=1 solutions:

AB Nielsen, JH Yoon, Class. Quantum Gravity 25, 085010 (2008).
B Cropp, S Liberati, M Visser, Class. Quantum Gravity 30, 125001 (2013).

peel =
eh(t,rg) (1� C 0 (t, rg))

2rg

dr

dt
= ±2peel(t)x+O

�
x2

�
Cf. stationary expression:

Using Painlevé–Gullstrand coordinates         :(t̄, r)

AB Nielsen, M Visser, 
Class. Quantum Gravity 23, 4637 (2006).

PG1 =
1

2rg

�
1� @rC̄

�����
r=rg

PG2 =
1

2rg

�
1� @rC̄ + @t̄C̄

�����
r=r

PG1 = 0

3 possibilities (0,∞,finite) 
depending on behaviour of t̄

peel ! 1 dr

dt
= ±r0g + a12(t)

p
x+O(x)

C = rg � c12
p
x+

1X

j>1

cjx
j

h = �1

2
ln

x

⇠
+

1X

j> 1
2

hjx
j

For example: k=0

RB Mann, SM, DR Terno, 
Phys. Rev. D 105, 124032 (2022).

https://doi.org/10.1088/0264-9381/25/8/085010
https://doi.org/10.1088/0264-9381/30/12/125001
https://doi.org/10.1088/0264-9381/23/14/006
https://doi.org/10.1103/PhysRevD.105.124032
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Surface gravity in dynamic spacetimes: Kodama surface gravity

1

2
Kµ (rµK⌫ �r⌫Kµ) := KK⌫

Kµ =
�
e�h+ , 0, 0, 0

�

rµK
µ = 0,

rµJ
µ = 0, Jµ := Gµ⌫K⌫

K =
1

2

✓
C+(v, r)

r2
� @rC+(v, r)

r

◆����
r=r+

=
(1� w1)

2r+

Defined via

Kodama vector field:

covariantly conserved:

evaluated at horizon.

Result:

0 at formation of black hole.

Approaches static value                         
only if metric is close to pure Vaidya metric.

 = 1/(4M) Contradicts semiclassical results.

(v,r) coordinates

RB Mann, SM, DR Terno, 
Phys. Rev. D 105, 124032 (2022).

https://doi.org/10.1103/PhysRevD.105.124032
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One-sentence summary

If semiclassical gravity is valid, 

it is impossible to simultaneously realise all of the necessary elements

that are required for a self-consistent formulation of the information loss problem.

1. Evaporation
2. Event horizon
3. Thermal character of the radiation

RB Mann, SM, DR Terno, Phys. Rev. D 105, 124032 (2022).
RB Mann, SM, DR Terno, Int. J. Mod. Phys. D 31, 2230015 (2022).Details:

Surface gravity and the information loss problem
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The information loss paradox is widely regarded as one of the biggest open problems in theoretical
physics. Several classical and quantum features must be present to enable its formulation. First, an event
horizon is needed to justify the objective status of tracing out degrees of freedom inside the black hole.
Second, evaporation must be completed (or nearly completed) in finite time according to a distant observer,
and thus the formation of the black hole should also occur in finite time. In spherical symmetry these
requirements constrain the possible metrics strongly enough to obtain a unique black hole formation
scenario and match their parameters with the semiclassical results. However, the two principal
generalizations of surface gravity, the quantity that determines the Hawking temperature, do not agree
with each other on the dynamic background. Neither can correspond to the emission of nearly-thermal
radiation. We infer from this that the information loss problem cannot be consistently posed in its standard
form.

DOI: 10.1103/PhysRevD.105.124032

I. INTRODUCTION

Information loss in black hole evolution is one of the
longest-running controversies in theoretical physics [1–11].
Its essence is captured by the following scenario: according
to distant observers, matter collapsing into a black hole
completely evaporates via Hawking radiation within a finite
time. If quantum correlations between the inside and
outside of the black hole horizon are not restored during
the evaporation, this evolution of low-entropy collapsing
matter into high-entropy radiation implies information loss.
This problem is referred to as a paradox because a
combination of information-preserving theories—quantum
field theory and general relativity (GR)—ostensibly leads
to a loss of information [12].
Its status as a paradox, the necessity and/or validity of

particular resolutions and their implications for a putative
theory of quantum gravity or the fundamental structure of
quantum theory are not the subject of our discussion here.
Instead, we focus on the consequences of its formulation
within the framework of semiclassical gravity. In common
with the paradoxes of quantum mechanics, the information
loss problem combines classical and quantum elements and
some counterfactual reasoning. In this paper, we consider

the physical and mathematical consequences of having the
necessary elements for its formulation realized.
We find that the conditions required for the formulation of

the paradox (in contrast to its resolution) cannot be realized
without significant modifications of the late-time black hole
radiation, which is considered to be one of the most
established results of quantum field theory in curved
spacetime. The key technical findings that we report are
the discordant properties of generalizations of surface
gravity. As a result, we conclude that, while gravitational
collapse and gravitationally-induced radiation contain sev-
eral important physical questions, including matter-gravity
correlations, observability of various horizons, and the
applicability of semiclassical physics, the standard formu-
lation of apparent loss of information cannot consistently be
made in the context of semiclassical gravity. Consequently,
if the paradox cannot be self-consistently formulated in the
best tested framework we currently have available, this
suggests that its various proposed resolutions should be
reappraised.
We first note that the setting for the formulation of the

information loss problem involves at least the following:
(1) Formation of a transient trapped region. Such a

region either completely disappears or turns into a
stable remnant; in either case, this takes place in
finite time as measured by a distant observer Bob.
This provides the scatteringlike setting to describe
the states (and their alleged information content)
“before” and “after”.

*rbmann@uwaterloo.ca
†sebastian.murk@mq.edu.au
‡daniel.terno@mq.edu.au
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Information loss
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