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• Einsteinian revolution: relativity and quantum physics discovered start of the 20th century

• Quantum field theory developed shortly thereafter in mid-1920s

• Many open questions in relativistic quantum mechanics:

– How does one reconcile quantum theory with general relativity?

– What can we learn from quantum field theory on curved spacetimes?

– Can one formulate a “first-quantised” relativistic quantum mechanics?

– What can the transition from relativistic to non-relativistic quantum mechanics tell us?

– Is it possible to define localised states in relativistic quantum mechanics?
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• Two-level system ො𝜇 (i.e. detector), interacting with a scalar field 𝜙(𝒙)

𝐻𝐼 = 𝜆 Ƹ𝜇 ⊗ 𝜙(𝒙)

Originally proposed by Unruh [1] and later simplified by DeWitt [2]

Unruh-DeWitt (UDW) detector model

[1] W. G. Unruh, Phys. Rev. D 14, 870 (1976)

[2] B. DeWitt, in General Relativity: An Einstein Centenary Survey (University Press, UK, 1979).
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𝐻𝐼 = 𝜆 Ƹ𝜇 ⊗ 𝜙(𝒙)

Originally proposed by Unruh [1] and later simplified by DeWitt [2]

• Ultraviolet divergences with monopole model → introduce a spatial profile for detector [3]

𝐻𝐼 = 𝜆 න𝑑3𝑥 𝐹 𝒙 − 𝒙𝐷 Ƹ𝜇 ⊗ 𝜙(𝒙)

Unruh-DeWitt (UDW) detector model

[1] W. G. Unruh, Phys. Rev. D 14, 870 (1976)

[2] B. DeWitt, in General Relativity: An Einstein Centenary Survey (University Press, UK, 1979).

[3] S. Schlicht, Class. Quantum Grav. 21, 4647 (2004); J. Louko and A. Satz, Class. Quantum Grav. 23, 6321 (2006) 12
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• Traditional UDW model: field is quantised, but detector follows a classical worldline

• Model previously extended for quantised centre of mass in the non-relativistic regime [4, 5]

𝐻𝐷 =
ෝ𝒑2

2𝑀
+ 𝐸 𝑒 𝑒 , 𝐻𝐼 = 𝜆 ∫ 𝑑3𝑥 Ƹ𝜇 ⊗ 𝒙 𝒙 ⊗ 𝜙(𝒙)

[4] N. Stritzelberger and A. Kempf, Phys. Rev. D 101, 036007 (2020)

[5] V. Sudhir, N. Stritzelberger and A. Kempf, Phys. Rev. D 103, 105023 (2021)
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2𝑀
+ 𝐸 𝑒 𝑒 , 𝐻𝐼 = 𝜆 ∫ 𝑑3𝑥 Ƹ𝜇 ⊗ 𝒙 𝒙 ⊗ 𝜙(𝒙)

• Can calculate the transition rate perturbatively for some particular physical processes, such as 

spontaneous emission or absorption

ሶ𝑃 𝜓𝑖 =
𝜆2

2𝜋
න𝑑3𝑝 𝜓𝑖 𝒑

2 𝒯(𝒑)

where the transition rate is a functional of the initial wavefunction 𝜓𝑖 and a “template function” 𝒯

[4] N. Stritzelberger and A. Kempf, Phys. Rev. D 101, 036007 (2020)

[5] V. Sudhir, N. Stritzelberger and A. Kempf, Phys. Rev. D 103, 105023 (2021)
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[6] M. Wilkens, Phys. Rev. A 47, 671 (1993); Phys. Rev. A 49, 570 (1994)

[7] M. Sonnleitner, N. Trautmann and S. M. Barnett, Phys. Rev. Lett. 118, 053601 (2017)

• Non-relativistic model should be extended:

– Does not fully account for the relativistic dynamics of the detector

– Mixing Lorentz and Galilean symmetries leads to spurious velocity-dependent effects [6, 7]
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• Non-relativistic model should be extended:

– Does not fully account for the relativistic dynamics of the detector

– Mixing Lorentz and Galilean symmetries leads to spurious velocity-dependent effects [6, 7]

• Two possible approaches:

– Model “semi-relativistically” and account for relativistic corrections perturbatively [8]

– Provide a relativistic model of the detector’s dynamics

• Choice between first- or second-quantised approach to modelling relativistic dynamics
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• First-quantised model: 𝐻𝐼
(1st)

= 𝜆1 ∫ 𝑑
3𝑥 ො𝜇 ⊗ 𝒙 𝒙 ⊗ 𝜙 𝒙

– Free Hamiltonian: 𝐻𝐷 = ෝ𝒑2 + 𝑀2

– Mass-energy operator: 𝑀 = 𝑀𝑔|𝑔⟩⟨𝑔 + 𝑀𝑒 𝑒⟩⟨𝑒| = 𝑚|𝑔⟩⟨𝑔 + 𝑚 + 𝐸 𝑒⟩⟨𝑒|
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• Second-quantised model, restrict detector to one-particle sector [9]:

𝐻𝐼
(2nd)

= 𝜆2 න𝑑3𝑥

𝑗≠𝑘

𝜓𝑗 𝒙 𝜓𝑘 𝒙 ⊗ 𝜙 𝒙 ⟶ ቚ𝐻𝐼
2nd

ℋ1
𝐷
= 𝜆2න𝑑3𝑥

𝑗≠𝑘

𝒙 𝒙 ⊗ 𝜙(𝒙)𝑘𝑗
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• Obtain different localisations [10]:

⟩|𝒙 𝐷
(1st)

=
1

2𝜋 3/2
න𝑑3𝑝 𝑒−𝑖 𝒑⋅𝒙 ⟩|𝒑 𝐷, ⟩|𝒙 𝐷

(2nd)
=

1

2𝜋 3/2
න

𝑑3𝑝

2𝐸 𝒑
𝑒−𝑖 𝒑⋅𝒙 𝑏𝑗

†(𝒑) ⟩|0 𝐷

𝑘𝑗

[9] F. Giacomini and A. Kempf, Phys. Rev. D 105, 125001 (2022)

[10] T. Padmanabhan, Eur. Phys. J. C 78, 563 (2018)
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• Derive first-order perturbation in spontaneous emission rate
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• Derive first-order perturbation in spontaneous emission rate

ሶ𝑃 𝑒,0 → 𝑔,1 𝜓𝑖 =
𝜆2
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න𝑑3𝑝 𝜓𝑖 𝒑
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• In a vacuum, the template functions for the first- and second-quantised cases are

𝒯 1st 𝒑 =
1

2
1 −

𝑀𝑔
4

𝑀𝑒
4 𝑀𝑒

2 + 𝒑2

𝒯 2nd 𝒑 =
1

2
1 −

𝑀𝑔
2

𝑀𝑒
2

1

𝑀𝑒
2 + 𝒑2

𝜆1= 2 𝑀𝑔
2 +𝑀𝑒

2 𝜆2
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Template functions for first- and second-
quantised localisations in a vacuum

Τ𝐸 𝑚 = 0.001 𝐸/𝑚 = 10

where 𝑚 is the rest mass, i.e. 𝑀𝑔 ≡ 𝑚 and 𝑀𝑒 ≡ 𝑚 + 𝐸.
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Template functions for first- and second-
quantised localisations in a medium

𝜈 = 0.1 𝜈 = 0.9

where 𝜈 is the propagation speed of the field 𝜙 and Τ𝐸 𝑚 = 0.001.



Spontaneous emission rates for first- and 
second-quantised localisations in a vacuum
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Consider detector initially in a Gaussian state

ሶ𝑃 𝑒,0 → 𝑔,1 𝜓𝑖 =
𝜆2

2𝜋
න𝑑3𝑝 𝜓𝑖 𝒑

2𝒯(𝒑) with 𝜓𝑖 𝒑 =
𝐿2

2𝜋

3/4

𝑒−
𝐿2

4 𝒑
2
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Consider detector initially in a Gaussian state

ሶ𝑃 𝑒,0 → 𝑔,1 𝜓𝑖 =
𝜆2

2𝜋
න𝑑3𝑝 𝜓𝑖 𝒑

2𝒯(𝒑) with 𝜓𝑖 𝒑 =
𝐿2

2𝜋

3/4

𝑒−
𝐿2

4 𝒑
2

Τ𝐿 𝜆𝑐 = 0.1 𝐿/𝜆𝑐 = 10

where 𝜆𝑐 ≡ 𝑚−1 is the Compton wavelength of the detector.



Spontaneous emission rates for a
medium (𝜈 = 0.1) and vacuum (𝜈 = 𝑐 = 1)
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Τ𝐿 𝜆𝑐 = 0.1 𝐿/𝜆𝑐 = 10

where 𝜆𝑐 ≡ 𝑚−1 is the Compton wavelength of the detector.
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• Consider for different choices of initial wavefunction

– Superpositions of Gaussians (position-momentum minimum uncertainty states)

– Consider alternate minimum uncertainty states, e.g. between position and velocity [11, 12]

Δ𝑥 2 Δ𝑣 2 − Δ𝑥𝑣 2 ≥
1

4
⟨ ⟩ො𝑥, ො𝑣 2, where ො𝑣 =

1

𝑖
ො𝑥, 𝐻 = Ƹ𝑝 𝐻−1

[11] M. H. Al-Hashimi and U.-J. Wiese, Ann. Phys. 324, 2599–2621 (2009)

[12] L. Smith, “Position-Velocity Schrodinger Intelligent States”, Honours thesis (University of Queensland, Nov. 2020)
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• Consider for different choices of initial wavefunction

– Superpositions of Gaussians (position-momentum minimum uncertainty states)

– Consider alternate minimum uncertainty states, e.g. between position and velocity [11, 12]

Δ𝑥 2 Δ𝑣 2 − Δ𝑥𝑣 2 ≥
1

4
⟨ ⟩ො𝑥, ො𝑣 2, where ො𝑣 =

1

𝑖
ො𝑥, 𝐻 = Ƹ𝑝 𝐻−1

• Extend formalism to include non-inertial detectors and curved spacetimes

• Further investigate physical meaning of the first- and second-quantised localisations (alongside 

the Foldy-Wouthuysen transformation [13])

[11] M. H. Al-Hashimi and U.-J. Wiese, Ann. Phys. 324, 2599–2621 (2009)

[12] L. Smith, “Position-Velocity Schrodinger Intelligent States”, Honours thesis (University of Queensland, Nov. 2020)

[13] L. Foldy and S. Wouthuysen, Phys. Rev. 78, 29-36 (1950)



Summary
• Relativistic quantum mechanical models of inertial UDW detectors

• Analytic results easily obtainable in a vacuum; numerical results in a medium

• Notable disagreement between first- and second-quantised models due to 

different detector localisations

• In principle, disagreement testable for detectors with large mean momenta

Evan Gale
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