Quantum asymmetry between space and time: Phenomenological emergence of Lorentz invariance

F. Tanjia, A. Sadeghi and J. Vaccaro

Centre for Quantum Dynamics, Griffith University Yuggera Country, Brisbane, Queensland, Australia

Outline

- Introduction/motivation
 - Quantum Time formalism
- The problem/question
 - Galilean relativity of T violation
 - Effective T violation
 - Example of interaction
- Emergence of Lorentz invariance
 - Effect of T violation on Time
 - Effect of T violation on Length
- Conclusion

Introduction/motivation

Asymmetry between space and time

- Special Relativity ⇒ space and time treated *on the same footing*
- Time evolution and conservation laws treat time and space *differently*
 - Momentum operator, \hat{p} is the generator of translations in <u>both positive and negative</u> spatial directions
 - \widehat{H} violates the discrete C, P and T symmetry properties, while, \hat{p} does not

Introduction/motivation

Asymmetry between space and time

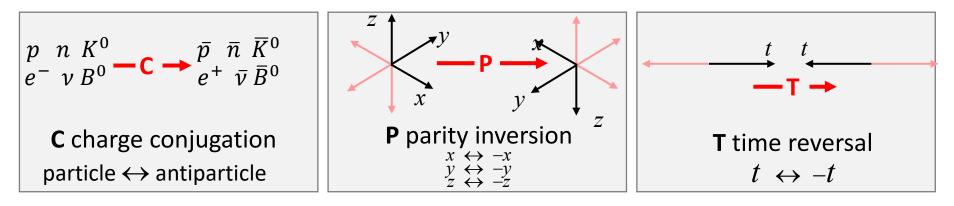
- Special Relativity ⇒ space and time treated *on the same footing*
- Time evolution and conservation laws treat time and space *differently*
 - Momentum operator, \hat{p} is the generator of translations in both positive and negative spatial directions
 - \widehat{H} violates the discrete C, P and T symmetry properties, while, \hat{p} does not

Quantum Time Theory (QTT)

- Attributes asymmetry between the spatial and temporal dimensions to the violation of time reversal symmetry, known as **T violation**
- Represents the quantum state as a sum over virtual paths in time

A quick recap – CPT Theorem

• Discrete symmetries



$\hat{C}\hat{P}\hat{T}=\hat{I}$

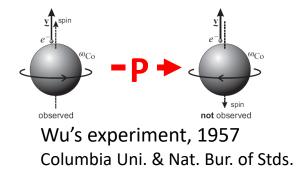
• Lorentz invariance implies invariance under $\hat{C}\hat{P}\hat{T}$ transformation

A quick recap – Violation of CPT

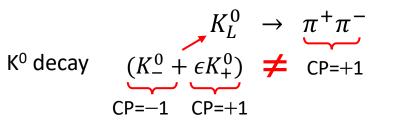
• History

• **P violation:** Lee & Yang, 1956, Brookhaven Nat. Lab., NY

Phys. Rev. **104**, 254 (1956) *Phys. Rev.* **105**, 1413 (1957)



• **CP violation:** Cronin & Fitch, 1964, Princeton Uni. NJ *Phys. Rev. Lett.* **13**, 138 (1964)



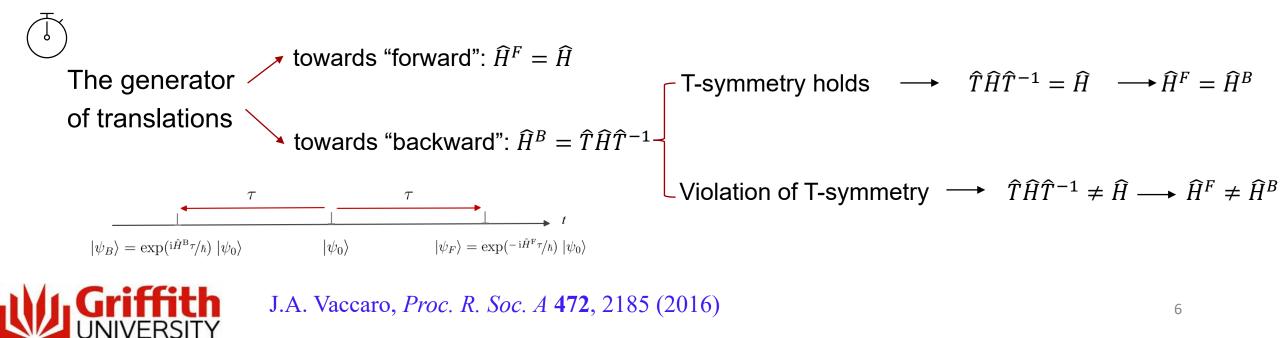
• **T violation:** BABAR, SLAC 2012, Stanford Uni., CA *Phys. Rev. Lett.* **109**, 211801 (2012)

B⁰ decay $\overline{B}^0 \to B_- \neq B_- \to \overline{B}^0$



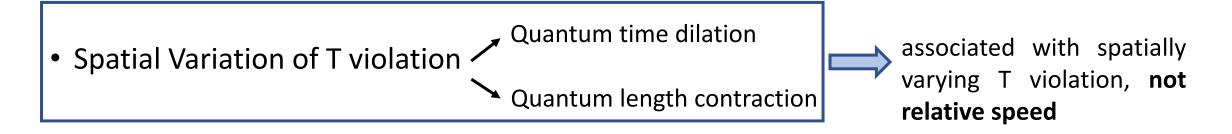
- Attributes asymmetry between the spatial and temporal dimensions to the violation of time reversal symmetry, known as **T violation**
- Represents the quantum state as a sum over virtual paths in time

- Attributes asymmetry between the spatial and temporal dimensions to the violation of time reversal symmetry, known as **T violation**
- Represents the quantum state as a sum over virtual paths in time
- Two versions of the Hamiltonian related by Wigner's time reversal operation \widehat{T}



- Localised sources of T-violation
 - neutral mesons
 - neutrinos
- Spatially uniform T violating scalar field
- Spatial Variation of T violation

- Localised sources of T-violation
 - neutral mesons
 - neutrinos
- Spatially uniform T violating scalar field



The problem/question

Could a **T-violation source that varies with relative velocity** give rise to velocity-dependent versions that **mirror the original time dilation and length contraction effects** in special relativity?

The problem/question

So far, treated as one of the fundamental symmetries of relativity

Lorentz Invariance: _

However, may not be an exact symmetry over all energy ranges

Question: does Lorentz invariance have a phenomenological origin?

We want to find out the role Lorentz symmetry plays in quantum time formalism

Galilean relativity of T violation

- All the system are affected by a uniform source of T violation that exists throughout the universe
- This source is assumed to be a **non-relativistic** complex scalar field
- Non-relativistic expressions for the energy and momentum operators
- Two objects moving relative to each other within a Galilean space-time framework, experience different T violation effects
- The objects do not include any localised T violating subsystems

Effective T violation

- T violation will inevitably **involve an interaction between fields**
- The corresponding Hamiltonians:

$$\hat{H}_{n}^{\mathrm{F}} = \int \mathrm{d}^{3}\mathbf{p} \,\omega_{\mathbf{p},n}^{F} \,(a_{\mathbf{p}}^{\dagger} + f_{\mathbf{p}}^{*})(a_{\mathbf{p}} + f_{\mathbf{p}})$$
$$\hat{H}_{n}^{\mathrm{B}} = \hat{T}\hat{H}_{n}^{\mathrm{F}}\hat{T}^{-1} = \int \mathrm{d}^{3}\mathbf{p} \,\omega_{\mathbf{p},n}^{B} \,(a_{\mathbf{p}}^{\dagger} + f_{\mathbf{p}})(a_{\mathbf{p}} + f_{\mathbf{p}}^{*})$$

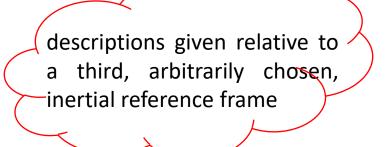
- $f_{\mathbf{p}} \Longrightarrow$ Interaction term
- Frequencies in different frames 💳

$$\Rightarrow \begin{bmatrix} \omega_{\mathbf{p},n}^F \equiv \omega_{\mathbf{p},0} + \mathbf{p} \cdot \mathbf{v}_n \\ \omega_{\mathbf{p},n}^B \equiv \omega_{\mathbf{p},0} - \mathbf{p} \cdot \mathbf{v}_n \end{bmatrix}$$

Effective T violation

- T violation will inevitably involve an interaction between fields
- The corresponding Hamiltonians:

$$\hat{H}_{n}^{\mathrm{F}} = \int \mathrm{d}^{3}\mathbf{p}\,\omega_{\mathbf{p},n}^{F}\,(a_{\mathbf{p}}^{\dagger} + f_{\mathbf{p}}^{*})(a_{\mathbf{p}} + f_{\mathbf{p}})$$
$$\hat{H}_{n}^{\mathrm{B}} = \hat{T}\hat{H}_{n}^{\mathrm{F}}\hat{T}^{-1} = \int \mathrm{d}^{3}\mathbf{p}\,\omega_{\mathbf{p},n}^{B}\,(a_{\mathbf{p}}^{\dagger} + f_{\mathbf{p}})(a_{\mathbf{p}} + f_{\mathbf{p}}^{*})$$



- $f_{\mathbf{p}} \Longrightarrow$ Interaction term
- Frequencies in different frames

$$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{b}}}}}}}^{F}} \equiv \boldsymbol{\mathbf{\mathbf{\omega}}}_{\mathbf{p},0} + \mathbf{p} \cdot \mathbf{v}_{n}$$
$$\boldsymbol{\mathbf{\mathbf{\mathbf{\mathbf{b}}}}_{B}^{B}} \equiv \boldsymbol{\mathbf{\mathbf{\omega}}}_{\mathbf{p},0} - \mathbf{p} \cdot \mathbf{v}_{n}$$

$$\omega_{\mathbf{p},2}^{F} \equiv \omega_{\mathbf{p},1} + \mathbf{p} \cdot \Delta \mathbf{v}$$
$$\omega_{\mathbf{p},2}^{B} \equiv \omega_{\mathbf{p},1} - \mathbf{p} \cdot \Delta \mathbf{v}$$
$$\Delta \mathbf{v} \equiv \mathbf{v}_{2} - \mathbf{v}_{1}$$

Effective T violation

• The effective T violation in respective frames

$$\lambda_n = \langle \psi | [\hat{H}_n^{\mathrm{F}}, \hat{H}_n^{\mathrm{B}}] | \psi \rangle$$

$$t_{\rm cl,n} = t_0 \sqrt{\frac{\lambda_0}{\lambda_n}}$$

 $t_{cl,n} \Rightarrow$ clock time in respective frames $\lambda \Rightarrow$ effective T violation in respective frames

Example of interaction

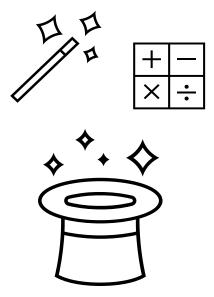
- We assume
 - a complex scalar field has acquired a large nonzero vacuum expectation value through spontaneous symmetry breaking
 - $f_{\mathbf{p}}$ is from the interaction with symmetry breaking field

$$f_{\mathbf{p}} = f(\mathbf{p}) = \beta \frac{4\pi}{p^3} \left(\sin(pX) - pX\cos(pX) \right)$$

 $\beta \Rightarrow$ complex T violation parameter comes from the interaction with the field with broken symmetry

Example of interaction

After some pages of mathematics



Example of interaction

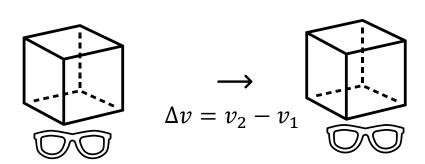
$$\lambda_n = \langle \psi | [\hat{H}_n^{\mathrm{F}}, \hat{H}_n^{\mathrm{B}}] | \psi \rangle = 4\pi u^2 \left(1 - \frac{v_n^2}{3u^2} \right) \int \mathrm{d}p \, p^2 (f_{\mathbf{p}}^{*2} - f_{\mathbf{p}}^2)$$

• Reminder, clock time:
$$t_{\rm cl,n} = t_0 \sqrt{\frac{\lambda_0}{\lambda_n}}$$

Effect of T violation on Time

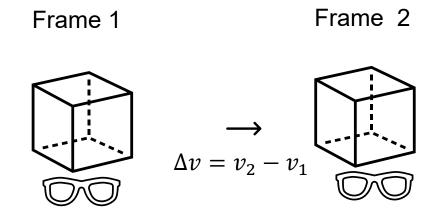
Frame 1

- Two events that are happening at the same position in Frame 1
- Observer at rest in Frame 1 is measuring the time interval, Δt_1
- Observer at rest in Frame 2, measuring the same interval, Δt_2



Effect of T violation on Time

- Two events that are happening at the same position in Frame 1
- Observer at rest in Frame 1 is measuring the time interval, Δt_1
- Observer at rest in Frame 2, measuring the same interval, Δt_2

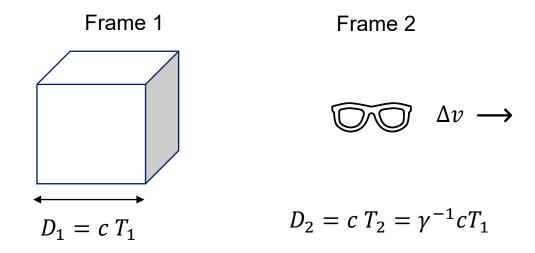


$$\frac{\Delta t_1}{\Delta t_2} = \sqrt{\frac{\lambda_2}{\lambda_1}} = \sqrt{1 - \frac{(\Delta v)^2}{c^2}} = \gamma^{-1}$$

$$\lambda_2 > \lambda_1 \Rightarrow \text{ in agreement with the prediction of QTT} the larger the effective T-violation, slower the clocks}$$

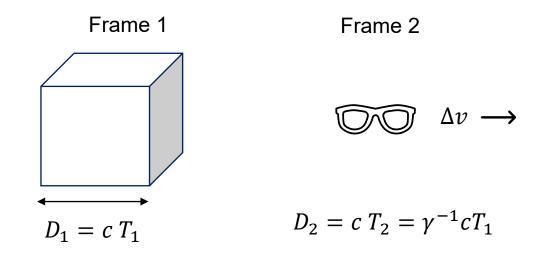
Effect of T violation on Length

- A box with length D_1 in its rest frame, Frame 1
- An observer in Frame 2, would measure the length



Effect of T violation on Length

- A box with length D_1 in its rest frame, Frame 1
- An observer in Frame 2, would measure the length



$$D_2 = \sqrt{1 - \frac{(\Delta v)^2}{c^2}} D_1 \longrightarrow \text{Equivalent to relativistic length contraction}$$

NOTE:

 \bigcirc

Special relativity:

Speed of light is constant \rightarrow Time dilation

Quantum time formalism:

Time dilation \rightarrow speed of light is constant

Conclusion

- A short review of Quantum Time formalism
- In the new formalism, Lorentz invariance arises from the relative velocity of a spatially-uniform background T violating field
- Without introducing special relativity into the theory -
 - relativistic quantum time dilation
 - relativistic quantum length contraction
- The theory predicts the state of the clock to be affected
 - Lorentz effect is seen in the dynamical state, not in the coordinates (which are in Galilean spacetime)
 - Likewise, distances are measured with clocks and light pulses and are similarly affected (not the coordinates)
- A proposal for the **phenomenological origin** of Lorentz invariance

Thank you!

Question?

Thursday Poster Session

- Khai Bordon (board 7)
- Ayden Howarth (board 6)

