


QFT: 

- Continuous theory at larger scales [1]

- Can break down at high energy [1, 2]

- Assumed discreteness at Planck scale [3]

GR:

- Mathematics requires a ‘smooth manifold’ [3]

- Enforces continuity at ALL scales

- Enforces differentiability at ALL scales [3, 4]
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THIS IS A PERFECT EQUALITY!
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- We introduce an ultraviolet cut-off  to 

the momenta of  a Klein-Gordon field

- We treat a discrete Harmonic chain 

field as samples of  a continuous 

bandlimited field

- We investigate the continuous 

symmetry properties that lattice fields 

may possess

- We investigate the effect that a cut-off  

has on the nature of  𝜙4-interactions

Nicolas C. Menicucci Achim Kempf



Shannon’s sampling theorem:

𝑓 𝑥 = 

𝑗∈ℤ

𝑓 𝑥𝑗 sinc 𝜋
𝑥 − 𝑥𝑗
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These are perfect equalities!



Continuous and Bandlimited Discrete Equivalent

Position contribution: (𝛁𝝓 𝒙 )𝟐=
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Continuous and BandlimitedDiscrete



Hamiltonian for a discrete harmonic chain:

Discrete translational 

symmetry 

Continuous translational 

symmetry

Through Shannon sampling and reconstruction the two forms are equivalent.

If  one possesses fully continuous translational symmetry, so must the other!



Continuous operator

in QFT



Continuous operator

in QFT

Shannon sampling: 

𝜙 𝑥 = σ𝑗∈ℤ 𝜙 𝑥𝑗 sincπ
𝑥−𝑥𝑗

Δ𝑥

Bandlimited derivative:
𝑑

𝑑𝑥
𝜙 𝑥 = σ𝑗∈ℤ 𝜙 𝑥𝑗

𝑑

𝑑𝑥
sincπ

𝑥−𝑥𝑗

Δ𝑥

= σ𝑚≠0
−(−1)𝑚

𝑚∆𝑥
𝜙 𝑥𝑗+𝑚



Continuous operator

in QFT

Shannon sampling: 

𝜙 𝑥 = σ𝑗∈ℤ 𝜙 𝑥𝑗 sincπ
𝑥−𝑥𝑗

Δ𝑥

Bandlimited derivative:
𝑑

𝑑𝑥
𝜙 𝑥 = σ𝑗∈ℤ 𝜙 𝑥𝑗

𝑑

𝑑𝑥
sincπ

𝑥−𝑥𝑗

Δ𝑥

= σ𝑚≠0
−(−1)𝑚

𝑚∆𝑥
𝜙 𝑥𝑗+𝑚

= σ𝑖∈ℤσ𝑚≠0
−1 𝑚

𝑚
ො𝜋(𝑥𝑖) 𝜙(𝑥𝑖+𝑚)



Continuous operator
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Continuous operator

in QFT
Equivalent discrete operator

If  a field is translationally symmetric, 𝑃 produces 

continuous translations, even if  the field is on a lattice!
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𝐻 =
1

2
න
ℝ

𝑑𝑥 ො𝜋2 𝑥 + ∇ 𝜙(𝑥)
2
+𝑚2 𝜙2 𝑥 +

𝜆

4!
𝜙4 (𝑥)

Free field Interaction term

Interaction term allows:

- Creation of  new particles 

- Destruction of  existing particles

- Collisions/Scattering [7, 8, 9]

Q. What does this look like in a discrete representation? Free field

Interaction term

Shannon sampling: 

𝜙 𝑥 = σ𝑗∈ℤ 𝜙 𝑥𝑗 sincπ
𝑥−𝑥𝑗

Δ𝑥
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[9] A. e. Izergin and V. Korepin, “Lattice versions of quantum field theory models in two dimensions,” Nuclear Physics B, vol. 205, no. 3, pp. 401–413, 1982.



Results

Free field Interaction term

Bandlimit: 𝑘 < Ω

Specific interaction:

Two conditions:

- Momentum  conservation:

- UV cut-off  bandlimit:

If these conditions are not met then the interaction WILL NOT OCCUR!

Consequences:

- Particles with high momentum 

are unlikely to interact

- These particles become 

‘transparent’ to interactions



- Through bandlimitation, discrete and continuous fields become equivalent.

- Well known continuous fields in continuous QFT are difficult to interpret in a lattice 

representation

- Discrete fields gain continuous symmetry!

- Interactions of  particles with momentum well below the cut-off  are unaffected by 

bandlimitation

- Particles with momentum close to or at the cut-off  become transparent to interactions
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