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?%z Einstein equations in GR and semiclassical/modified gravity

= JF Donoghue, Phys. Rev. Lett. 72, 2996 (1994)

General relativity: R , — = Rg — vl b —— || JF Donoghue, Phys. Rev. D 50, 3874 (1994)
M 2 H Qv — |l JF Donoghue, arXiv-gr-qc/9512024 (1995)

How can we account for quantum (gravitational) effects?

T,uy = <Tluy>¢

. . . L~ Expectation value of renormalized energy-
[1] Semiclassical gravity: RMV — § RgW = 8T TMV

momentum tensor in quantum state @D :

1
2 §Rg,uu + >\g,uu — 87TTM,/

//’
Accounts for deviations resulting from higher-order

[2] Modified gravity: R m

M?2
Eg - 16P1 (R +)‘f( RMVPU))

2
11\46P72R + CL1R + CLQR'LWRM + agRWpUR veo .. !

curvature corrections in the gravitational Lagrangian density.
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?%% Semiclassical gravity: implicit assumptions

eg. T := T/T and T :=TH'T,,

1. Regularity: curvature scalars are finite at apparent horizons

Consequence of the cosmic censorship conjecture.

2. Horizons form in finite asymptotic time

. . . MBH <
(i.e. according to distant observers)

Implicitly assumed in conventional descriptions

2

of black hole formation and evaporation. 7

%’ Collapsing

star —

V Baccetti, RB Mann, SM, DR Terno Requires violation of NEC
Phys. Rev D 99, 124014 (2019) near outer apparent horizon

RB Mann, SM, DR Terno 1Y
Int. J. Mod. Phys. D 31, 2230015 (2022) [ Tluyglug < O ]

SM, DR Terno
arXiv:2110.12761 (2021)
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gf%? Semiclassical gravity: only two dynamic solutions in spherical symmetry

ds® = —e%,h(t’r)f(t, r)dt2 + f(t, 'r)_ld'r2 + r2d0?

/

Integrating factor in

coordinate transformations, e.g.

dt = e " (eh+dv — f_ldr)

Effective EMT components:

f(t,r)=1—-C/r:=0,ro"r

Misné:f-Sharp mass ’g‘

e_2hTtt , Ty 1= e_hTtT , T =T

Buv =

CW Misner, DH Sharp
Phys. Rev. 136, B571 (1964)

—e2htr) £(¢,7) 0 0 0
0 ft,r)7t_ 0 0
0 0 r? 0
] 0 0 0 r?sin®f

EMT close to horizon:

Solutions are characterised by scaling behaviour of

lim 7 ~ Y ()2 f(t, )"

Only two values of k are consistent: &k € {0, 1}

Semiclassical Einstein equations

in spherical symmetry

0,C = 87T7“2Tt/f

O

Q

2 h_r

= 3mre’ T,

Oph =4nr (s +717) / f?

DR Terno
Phys. Rev. D 101, 124053 (2020)
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SM, DR Terno
Phys. Rev. D 103, 064082 (2021)
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?%% Dynamic physical black hole solutions in spherical symmetry

SEBASTIAN MURK
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k = O solutions

Metric functions

C=r,— 012\/}4—26]-)61

J=1

1 x <
h=—=In- h.x/
2n5+; ”

JZ3

Leading coefficient

Horizon dynamics

rg = ich\/E/rg

(k0.1)

(k0.2)

(k0.3)

(k0.4)

Describes black holes immediately after

Li=T—Tg

formation (and for the rest of their lifetime).

k = 1 solution

C=r,+x—cpx?+ Z cjx/ (k1.1)
Jj>2
h:—élnf+ih-xf (k1.2)
2T
J=3

C32 — 47’3/2\/ —71'62/3 (k13)

r, = tcnpé?/r, (k1.4)

Describes formation of black holes.

Both violate the NEC near the horizon.

The formation of black holes follows a unique scenario that involves both classes of solutions!

The transition between them i1s continuous.

Details:

‘ SM, DR Terno
Phys. Rev. D 103, 064082 (2021)
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?%z Black holes in modified gravity theories

1
Modified Einstein field equations: R,W — §R9W + )\8,uu = 87 T/W

Question: What are the constraints that any self-consistent modified theory of gravity

(MTG) must satisfy to be compatible with semiclassical physical black holes?

Only assumption.

regular apparent horizon forms in finite time of distant observer.

SM, DR Terno

So far:  only vacuum solutions known Phys. Rev. D 104, 064048 (2021)

explicitly in modified gravity. SM

Phys. Rev. D 105, 044051 (2022)
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% Field equations in modified gravity theories

SM, DR Terno
Phys. Rev. D 104, 064048 (2021)

Modified Einstein field equations: SM

Phys. Rev. D 105, 044051 (2022)

e L

4 )

1 MPI
R,uy — §RgW + )“qu — 87TT,uz/ Lo= T2 (R+AF(g

M2
g / J PR + a1 R? + ag R R + a3 Ry pe R*P7 + ...

/ 167

A

" Ryvpo))

No a priori assumptions are made about the modified term. Perturbed metric:
Use physical value of horizon radius 7, to avoid artifactual divergences. Cy (t,7g) =g

=) Results apply to almost all possible modifications of general relativity,
irrespective of specific properties of a particular theoretical model! I
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?%% Qualitative overview of results

coordinate distance from the horizon
> O(\) %
1. Treat higher-order terms as small. I:> Expand in both & := T — I'g and A

Result: obtain constraints for the two classes of dynamic solutions.

2. Consider k=0 solutions where the leading terms in the effective EMT Expand only in

components are not determined by terms of order O(\). ro— g —
T g

Result: obtain analogous constraint; no well-defined GR limit.

SM, DR Terno
Phys. Rev. D 104, 064048 (2021)
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Phys. Rev. D 105, 044051 (2022)
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?%% Non-perturbative (in A) k=0 solutions

Consider solutions where the leading reduced components of the EMT are not determined by terms of order O(\) .

J

EMT expansion: T, = AZ it A ( Ta) 4 \2 (71652))

M.HM8

Metric functions: C =r, — Ao1av/x + Z (Cj + Ao + )\2052)) x?,

j>1 : Obtain MTG constraints
1 00 ) analogous to perturbative
5 .
h = 5 In I3 + Z (77j T Awj + A w; ) ’ class of k=0 solutions

S 1
925

But:

~

It is impossible to determine the sign of = and 5(2) solely from the SM. DR Terno

requirement of self-consistency of the modified Einstein equations. Phys. Rev. D 104, 064048 (2021)

SM

IR (M

I:> Unclear if violation of NEC is prerequisite for formation of PBH.

Phys. Rev. D 105, 044051 (2022) I
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?%/ Overview of modified gravity constraints
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TABLE II. Necessary conditions for the existence of semiclassical PBHs in arbitrary metric MTG. To be compatible with
semiclassical PBHs of the k = 0 (k = 1) type, the MTG terms of arbitrary metric MTG must conform to the structures prescribed by
Egs. (k0.D)—(k0.III) [Egs. (k1.)—(k1.II[)] when expanded in terms of x := r — r,. Additionally, their lowest-order coefficients must

satisfy the three (two) identities given by Egs. (kO.IV)—(k0.V) [Egs. (k1.IV)-(k1.V)].

k = 0O solutions

k = 1 solution

Decomposition of MTG terms

- &7 &5 = ,

£, 271+—\)_;+260+226ij (k0.1)

J23
E’tr = E + (079 + i (0% ‘Xj (kOH)

VX —

J25
ET=0g+ ) oxi (kO0.11)
Jj>3
Relations between MTG - B

coefficients ’p = \/gzoel—z = &g (k0.IV)

- & ®] & — .
S =32, T2 E X k1.1
n=pnt gttt m (KD

23
ES = ey + Z e x/ (k1.01)
=
Em =Y @xI (k1.I11)
Jj>3
&i = 253/2(30 — E3¢32 (klIV)

@] =282 (hjpeg+0e1y) —E (2h1y03 +0,) (K1.V)




% Black holes in MTG: constraints for k=0 solutions

Structural decomposition of the MTG terms:

O
_ 1) 0 j
==+ T —+ oC;T
ZT
izl
O
=@+ >_ 050’
izl

C=ry— 612\/5+ch:vj

/ =1
= 012\/§

rg

g

Additional relations between coefficients:

X = \/5081—2 = {00

X1 — 2\/5080 — §®12

SM, DR Terno
Phys. Rev. D 104, 064048 (2021)

SM
Phys. Rev. D 105, 044051 (2022)
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% Black holes in MTG: constraints for k=0 solutions

Structural decomposition of the MTG terms:

C=ry— 612\/5+ch:vj

/ =1
= 012\/§

rg

g

Additional relations between coefficients:

XY = \/5081—2 = {00

X1 — 2\/5_080 — §®12

SM, DR Terno
Phys. Rev. D 104, 064048 (2021)

SM
Phys. Rev. D 105, 044051 (2022)
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% Black holes in MTG: constraints for the k=1 solution

Structural decomposition of the MTG terms: / §>2
4 =) = -l
e _ @ *1 | *13 | g g

iz3
’ Additional relations between coefficients:

& =(egrt Y wja - -
> gy = 26°%aeg — E203:

oTT — 7 _ B

- % ®’] = 253/2 (hi20eg + ce12) — & (2h12032 + 92)

SM, DR Terno
Phys. Rev. D 104, 064048 (2021)

SM
Phys. Rev. D 105, 044051 (2022)
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% Black holes in MTG: constraints for the k=1 solution

Structural decomposition of the MTG terms:

z3/2 L Jx

ZE—I-—F%—f—I-an—I-iae

i>5

\

e
T

Additional relations between coefficients:

gy = 263/ %0eg — E393

X1 = 253/2 (h120eg + 0e12) — '5_3 (2h12832 + @2)

SM, DR Terno
Phys. Rev. D 104, 064048 (2021)

SM
Phys. Rev. D 105, 044051 (2022)
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?%% Do popular models satisfy the constraints?

. . . A E SM, DR Terno
Derive field equations from action: S = / vV—gLyd'w = Phys. Rev. D 104. 064048 (2021)
M2 D_; SM
Gravitational Lagrangian density: £, = 1 6P1 (R+\F(g" Y R pa)) =—|| Phys. Rev. D 105, 044051 (2022)
T
2
%P1R+ a1 R? + as R, R"Y + a3 Ry, 06 RF7P7 4.
T

Tested so far:

v

[1] Starobinsky model F = §R2 , S = 167TCL1/M2
H(R) = R+ AF(R) vV

[2] Generic f(R) theories F =c¢R?, JF =g¢q RI1

[3] Generic fourth-order gravity theories S = / V—g (—ozRWRW + BR? + ’yﬁ:_2R) diz \/

What's next? - Testadditional MTG: reformulations of Gauli-Bonnet gravity, higher-dimensional BH models;
2. Generalisation to non-spherically-symmetric spacetimes; consideration of angular momentum. A
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% Review article
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Black holes and their horizons in semiclassical and modified theories of gravity
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Abstract

# Tools Recommend To Library

For distant observers, black holes are trapped spacetime domains bounded by apparent horizons. We review properties of the near-horizon
geometry emphasizing the consequences of two common implicit assumptions of semiclassical physics. The first is a consequence of the cosmic
censorship conjecture, namely, that curvature scalars are finite at apparent horizons. The second is that horizons form in finite asymptotic time
(i.e. according to distant observers), a property implicitly assumed in conventional descriptions of black hole formation and evaporation. Taking
these as the only requirements within the semiclassical framework, we find that in spherical symmetry only two classes of dynamic solutions are
admissible, both describing evaporating black holes and expanding white holes. We review their properties and present the implications. The null
energy condition is violated in the vicinity of the outer horizon and satisfied in the vicinity of the inner apparent/anti-trapping horizon. Apparent
and anti-trapping horizons are timelike surfaces of intermediately singular behavior, which manifests itself in negative energy density firewalls.
These and other properties are also present in axially symmetric solutions. Different generalizations of surface gravity to dynamic spacetimes are
discordant and do not match the semiclassical results. We conclude by discussing signatures of these models and implications for the

identification of observed ultra-compact objects.

Keywords: Semiclassical gravity = modified gravity = black holes = apparent horizon = evaporation = white holes

energy conditions = thin shell collapse = surface gravity = information loss
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