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Abstract
In this work, we consider the PT -symmetric quantum Rabi model

(PTQRM), which describes a PT -symmetric qubit coupled to a quan-
tized light field. This model can be solved analytically in a reason-
able parameter regime by using the adiabatic approximation (AA).
With AA and numerical diagonalization, static and dynamic proper-
ties of the PTQRM are investigated. Particularly, a bunch of excep-
tional points (EPs) is found in the eigenspectrum and they turn out
to be closely connected with the exactly solvable points in the Her-
mitian counterpart of the model. Interestingly, these EPs vanish and
revive depending on the light-matter coupling strength. The time evo-
lution of physical observables under the system Hamiltonian is also
discussed. This work may shed some light on the research of non-
Hermitian pure quantum systems.

Introduction

PT -symmetric systems, which are invariant under the com-
posited operation of parity P and time reversal T , possess real
eigenvalues without being Hermitian. The natural advantage
of easy manipulation of gain and loss makes optical and pho-
tonic systems excellent platforms for realizing PT symmetry.

Previous investigations on PT -symmetric light-matter inter-
action models were focused on imaginary coupling [1] and pe-
riodically modulated systems [2]. In this work, we approach
this problem by coupling a PT -symmetric qubit to the light
field.

The model

We consider a generalization of the quantum Rabi model
(QRM) defined as

H = ωa†a +
∆

2
σz + gσx

(
a† + a

)
+
iϵ

2
σx. (1)

Real parameters

ω: light field frequency,
∆: level splitting,
g: coupling strength,
ϵ: imaginary bias,

with operators

P = σze
iπa†a,

T : take complex conjugate.

Features:

• the system is PT -symmetric ([H,PT ] = 0), so we call it
the PTQRM.

• there are an infinite number of exceptional points (EPs), the
phase transition points from PT -symmetric to PT -broken.

• the key is competition between ϵ and ∆, so we can set them
to be small to apply the Adiabatic Approximation (AA).
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Figure 1: (a) Schematic of the system Hamiltonian (1) consisting of a PT -
symmetric qubit and a cavity. (b) Displaced oscillator interpretation of the
model.
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Spectrum and Eigenstates

We have calculated the spectra and eigenstates of the
PTQRM. Key points:
• the amount and positions of EPs can be deduced from the

results of the QRM.
• EPs vanish and revive.
• approximated locations can be derived by the AA, where
ϵ = Ωn.

• eigenstates are orthogonal at some points between the EPs
(Judd points in the QRM independent of ϵ), which is absent
in PT -symmetric qubit.
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Figure 2: (a)-(d) Real energy spectra of the PTQRM against the qubit pa-
rameter ϵ, with the coupling strength g/ω = 0, 0.2, 0.5 and 1.8. (e) Real
(blue) and imaginary (red) energy spectra of the PTQRM against coupling
strength g, with ϵ/ω = 0.3, ∆/ω = 0.5.

Under the AA the eigenvalues are given by

E±
n = nω − g2/ω ± 1

2

√
Ω2
n − ϵ2 (2)

with non-normalized eigenstates∣∣ψ±
n

〉
=

(
iϵ±

√
Ω2
n − ϵ2

Ωn
, 1

)T

. (3)

In these expressions,

Ωn = ∆e−2g2/ω2

Ln

(
4g2

ω2

)
(4)

with Ln(x) being the nth Laguerre polynomial of x.
The locations of orthogonal points under AA are where the

Laguerre polynomials vanish, where the normalized eigenvec-
tors become

ψ+
n =

(
1
0

)
, ψ−

n =

(
0
1

)
, (5)

and are trivially orthogonal. The fidelity calculated with AA is
shown in Fig. 3(b) in the dashed line, which agrees well with
exact diagonalization.
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Figure 3: (a) Real part (thick blue) and imaginary part (thin red) of the
energy spectrum against g for the 5th and 6th eigenstates. (b) The fidelity
between these two eigenstates. (c) - (d) Qubit populations and mean pho-
ton number on these eigenstates. ∆/ω = 0.5 and ϵ/ω = 0.1 for all plots.

Dynamic behaviour

In this section, we investigate the dynamic behavior of the
PTQRM by solving the time-dependent Schrodinger equation
numerically.

The evolution of mean photon numbers can be divided into 3
stages:

• oscillation around the initial state at the beginning.

• convergence to eigenstate(s) with locally largest imaginary
eigenvalue(s).

• divergence to infinite-photon states in large time scale.
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Figure 4: (a) Photon population evolution with initial state |4,+⟩. Inset:
The 19th (and 20th) eigenstate of the Hamiltonian. (b) States components
evolution with initial state |4,+⟩ at g/ω = 0.7, ∆/ω = 0.6.

The stability increases with:

• smaller ϵ.

• larger displacement.

The dynamic behavior here is more difficult to fit in the AA
picture: the effect of higher-order tunneling can be amplified
by the growth factor through time in the PT -broken phase.

The qubit population evolution is analyzed similarly and the
numerical data for low-lying states agrees with recent experi-
ments on PT -symmetric qubits [3].
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Figure 5: Qubit population evolution with initial state |4,+⟩ at g/ω = 0.7.

Summary

• An infinite number of exceptional points are observed in
this PTQRM, which vanish and revive with the coupling
strength.

• There are no overall PT -symmetric and PT -broken phases
similar to PT -symmetric bosonic systems [4].

• Any initial state grows to nearby PT -broken eigenstates and
diverges to infinite-photon states.

• The static part can be solved analytically using adiabatic ap-
proximation (AA), while the growth factors make AA less
effective in the dynamic part.


