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Abstract

In this work, we consider the P77 -symmetric quantum Rabi model
(PTQRM), which describes a P77 -symmetric qubit coupled to a quan-
tized light field. This model can be solved analytically in a reason-
able parameter regime by using the adiabatic approximation (AA).
With AA and numerical diagonalization, static and dynamic proper-
ties of the PTQRM are investigated. Particularly, a bunch of excep-
tional points (EPs) 1s found in the eigenspectrum and they turn out
to be closely connected with the exactly solvable points in the Her-
mitian counterpart of the model. Interestingly, these EPs vanish and
revive depending on the light-matter coupling strength. The time evo-
lution of physical observables under the system Hamiltonian 1s also
discussed. This work may shed some light on the research of non-
Hermitian pure quantum systems.

Introduction

PT -symmetric systems, which are invariant under the com-
posited operation of parity P and time reversal 7, possess real
eigenvalues without being Hermitian. The natural advantage
of easy manipulation of gain and loss makes optical and pho-
tonic systems excellent platforms for realizing P77 symmetry.

Previous investigations on P/ -symmetric light-matter inter-
action models were focused on imaginary coupling [1] and pe-
riodically modulated systems [2]. In this work, we approach
this problem by coupling a P -symmetric qubit to the light
field.

The model

We consider a generalization of the quantum Rabi model
(QRM) defined as

A .
H = wa'a + 502; + go, (aﬂL + a) + %Eax. (1)

Real parameters

w: light field frequency,
A: level splitting,
g: coupling strength,
€: 1maginary bias,

with operators

ral
P — O.Zemra a,

T take complex conjugate.
Features:

o the system is P77 -symmetric (|(H,PT| = 0), so we call it
the PTQRM.

e there are an infinite number of exceptional points (EPs), the
phase transition points from P77 -symmetric to P’/ -broken.

e the key is competition between ¢ and A, so we can set them
to be small to apply the Adiabatic Approximation (AA).
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Figure 1: (a) Schematic of the system Hamiltonian (1) consisting of a PT -
symmetric qubit and a cavity. (b) Displaced oscillator interpretation of the
model.
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Spectrum and Eigenstates

We have calculated the spectra and eigenstates of the
PTQRM. Key points:

e the amount and positions of EPs can be deduced from the
results of the QRM.

 EPs vanish and revive.

e approximated locations can be derived by the AA, where
e = ().

e cigenstates are orthogonal at some points between the EPs
(Judd points in the QRM 1ndependent of €), which 1s absent
in P77 -symmetric qubit.
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Figure 2: (a)-(d) Real energy spectra of the PTQRM against the qubit pa-
rameter €, with the coupling strength g/w = 0,0.2,0.5 and 1.8. (e) Real
(blue) and 1imaginary (red) energy spectra of the PTQRM against coupling
strength g, with €¢/w = 0.3, A/w = 0.5.

Under the AA the eigenvalues are given by

1
Ef =nw—g¢*/w+ 5\/&2%—62 (2)

with non-normalized eigenstates

) = (ie: \/Q%—EQ’ 1>T. (3)

In these expressions,

2 2 4 2
() = Ae 21 <i> (4)

with L,(z) being the nth Laguerre polynomial of .
The locations of orthogonal points under AA are where the
Laguerre polynomials vanish, where the normalized eigenvec-

tors become | )
i) w-(). e

and are trivially orthogonal. The fidelity calculated with AA 1s
shown in Fig. 3(b) in the dashed line, which agrees well with
exact diagonalization.
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Figure 3: (a) Real part (thick blue) and imaginary part (thin red) of the
energy spectrum against g for the 5Sth and 6th eigenstates. (b) The fidelity
between these two eigenstates. (¢) - (d) Qubit populations and mean pho-
ton number on these eigenstates. A/w = 0.5 and €/w = 0.1 for all plots.

Dynamic behaviour

In this section, we investigate the dynamic behavior of the
PTQRM by solving the time-dependent Schrodinger equation
numerically.

The evolution of mean photon numbers can be divided into 3
stages:

e oscillation around the 1nitial state at the beginning.

e convergence to eigenstate(s) with locally largest imaginary
eigenvalue(s).

e divergence to infinite-photon states in large time scale.
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Figure 4: (a) Photon population evolution with initial state |4, +). Inset:
The 19th (and 20th) eigenstate of the Hamiltonian. (b) States components
evolution with initial state |4, +) at g/w = 0.7, A /w = 0.6.

The stability increases with:
e smaller e.
e larger displacement.

The dynamic behavior here 1s more difficult to fit in the AA
picture: the effect of higher-order tunneling can be amplified
by the growth factor through time in the P -broken phase.

The qubit population evolution 1s analyzed similarly and the
numerical data for low-lying states agrees with recent experi-
ments on P77 -symmetric qubits [3].
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Figure 5: Qubit population evolution with initial state |4, +) at g/w = 0.7.

Summary

* An infinite number of exceptional points are observed 1n
this PTQRM, which vanish and revive with the coupling
strength.

* There are no overall P77 -symmetric and P -broken phases
similar to P77 -symmetric bosonic systems [4].

 Any initial state grows to nearby P -broken eigenstates and
diverges to infinite-photon states.

 The static part can be solved analytically using adiabatic ap-
proximation (AA), while the growth factors make AA less
effective 1in the dynamic part.



