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Time is perhaps the most enigmatic concept in physics [1]. The lack of a universally accepted treatment of 

time has produced deficiencies such as the lack of an acceptable explanation of the observed direction of time 

and the definition of an operator to represent the time observable [2 - 4]. 
 

Vaccaro’s recently introduced Quantum Theory of Time (QTT) [5 - 8] describes the evolution of a quantum 

state over time as a variable, undergoing virtual fluctuations, alike D’Alembert’s Principle of virtual 

displacement [9]. The theory attributes the differences between the spatial and temporal dimensions to the 

violation of the time reversal symmetry, known as T-violation. If there is no T-violation present, the spatially-

averaged time is fixed at one value and so there is no time evolution however, with T-violation in the system, 

time is represented as fluctuating at every point in space about a spatially-averaged time that corresponds to 

the usual time evolution. Despite basing the theory as a heuristic model of time, it is currently, without 

reference to an operator that represents the time observable. The aim of this work is to rectify this shortcoming 

and investigate how the time observable can be represented. 
 

Any time observable needs to have a canonically conjugate relationship with the Hamiltonian, due to the fact 

that the Hamiltonian is the generator of translations in time.  We apply the complement of the Hamiltonian, 

Pegg’s Age operator [3], as a basis for defining the time observable in QTT. Whereas Pegg defined the Age 

to represent time associated with a single system, it has merit as the time associated with a point in space as 

well. We further explore if the Age observable has potential of being applied to the spatially-averaged time. 

We compare the statistics of the time observable to values previously obtained utilising heuristic models.  The 

uncertainty relation for energy (i.e. Hamiltonian) and time will be defined and investigated for its simple and 

most elegant forms. We further examine the relationship of the observable to conventional studies of time in 

quantum mechanics such as the time associated with flight measurement [10]. 
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