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Problem Statement

How do black holes
form? *Energy (in all its forms) curves
space-time.

* The curvature of space-time is
the effect of gravity on energy (in
all its forms)

i

™
i

Einstein's field equations for a
perfect fluid in conjunction with
the tensor give the O-V equation

For static spherically symmetric
space-times in hydro-static
equilibrium these equations. -
N
lead to the NS OB _ gppod
T = (p + P)u*u’ + Pg™*
GPip = 8nT ;5=

Oppenheimer-Volkoff Equation

dP  [p+Pl[m+4mr°P]
- r[r — 2m]

“dr

A large but finite density can
require an infinite pressure
gradient to stop collapse.

The pressure gradient stops
gravitational collapse as long as

r-2m(r) >0

What are the equations of state
for stable stars and which ones
lead to the formation black

holes?

P(p)
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It has been suggested that, when the pressure within stellar matter becomes high enough,
a new phase consisting of neutrons will be formed. In this paper we study the gravitational
equilibrium of masses of neutrons, using the equation of state for a cold Fermi gas, and general
relativity. For masses under $© only one equilibrium solution exists, which is approximately
described by the nonrelativistic Fermi equation of state and Newtonian gravitational theory.
For masses 3@ <m <10 two solutions exist, one stable and quasi-Newtonian, one more
condensed, and unstable. For masses greater than O there are no static equilibrium solutions.
These results are qualitatively confirmed by comparison with suitably chosen special cases
of the analytic solutions recently discovered by Tolman. A discussion of the probable effect
of deviations from the Fermi equation of state suggests that actual stellar matter after the
exhaustion of thermonuclear sources of energy will, if massive enough, contract indefinitely,
although more and more slowly, never reaching true equilibrium.

I. INTRODUCTION

OR the application of the methods commonly
used in attacking the problem of stellar
structure! the distribution of energy sources and
their dependence on the physical conditions
within the star must be known. Since at the time
of Eddington’s original studies not much was
known about the physical processes responsible
for the generation of energy within a star,
various mathematically convenient assumptions

wore made 1n recard o the aneratr caltreroace and

investigation would afford some insight into the
more general situation where the generation of
energy is taken into account. Although such a
model gives a good description of a white dwarf
star in which most of the material is supposed to
be in a degenerate state with a zero point energy
high compared to thermal energies of even 107
degrees, and such that the pressure is determined
essentially by the density only and not by the
temperature, still it would fail completely to
describe a normal main sequence star, in which
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Solution Flow Diagram

The Metric Tensor 2nd Order Linear ODE N
Inside a Star B N\
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Boundary
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Assume Static Spherically . Pl N ’:

Symmetric Space-Time 1

¥ = N / Consider a family of "sensible"
functions for mass distribution

Confluent Heun functions

Calculate pressure__ _
and density
.

/
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Sensible density and pressure
profiles for the interior of stars

Assume Perfect Fluid (Ideal Gas)
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From a Metric to a Riccati equation

@ Starting from a the metric of a static, spherically symmetric
spacetime:

ds? = —ez¢(r)dt2+e2A(r)dr2+r2d92+r25in29d¢2

we obtain the following expression for the density p and

pressure P:
_ 2N'(r) 1 1
2A(r
p(r)=e ”(,‘ ,2>+,2’
P(r) B ef2A(r) (_e2A(r) + 2r¢/(r) + 1)

r2 ’

@ where ®(r) satisfies an 2nd-order ODE involving A(r):
rN(r) — M) ¢ L (PPN (r)+r) ®'(r)
r2 r2

(D//(r) — _¢/(r)2’ I -
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Riccati to a 2nd-order linear ODE

" = A(x) + B(x)®' — 9”2,

o Let &' =y, we have Riccati eqn:
y'=A(x) + B(x)y -y,
o =y = WW/ we obtain a linear 2nd-order ODE:

w” = A(x)w + B(x)w'

with
xN(x) — e?Nx) 1
) = )=
270/
B(x) = x“N(x) —f—x7
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2nd-order linear ODE for different A(x)'s

Different choices of A(x)'s:

An 2nd-order linear ODE:
e?M¥) = 3 = const,

w” = A(x)w + B(x)w’ e\ = (ax + b)
with 2Mx) (i - f/i ) ,
a0 = I EIEL v _ (ot (e — ).
Bx) = NI ') = (a(b - x)?),

a, b, c and d are constants.

Boundary conditions A(x), p(x) and P(x):

1
e T p(l)=0, P(1)=0.

Where ;n = 2M/R, M is the mass of the star and R is its radius.
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Linear ODE and its singularities

Definition

Given a second-order linear ODE

y'(x)+ p(x)y'(x) + a(x)y(x) = 0

Let n > 0, the order of singularity at x = a, be the minimal integer
such that both limits

)I(ig]a(x —a)"p(x), and )I(if;na(x —a)*"q(x)

are finite.

e n =0, ordinary point
@ n =1, a regular singular point
@ n > 1, irregular singular with rank m=n—1

Behaviour of x = oo using z = 1/x and checked at z = 0.
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Special functions satisfying 2nd-order ODEs. Heun

@ Singularities at 0,1, a, co of order (1,1,1,1).

@ Coalescence cascade of Heun functions:
(1,1,1,1) — (1,1,2) — (2,2)...

Confluent Heun equation has singularities at 0, 1, oo of order

Pw (v 0 \dw az-g
dz? z z-1 %) dz z2(z—-1) 7

general solution w(z) = ciHy + e Ho.

(1,1,2):
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e?M¥) = (ax + b), linear case. Confluent Heun.

J' = A(t)u + B(t)d

A(t):<(u2—2u)u4+ p _(u2—2u—1)u4>

(n—1)2t2 2(t—1) 2(pn — 1)t

B(t) = (2(tluj " Mi) ’

and p is a parameter. Asymptotic expansions at

where ’/
x=0:

dt

\V2pl —4p41

w(x) ~ ox T @w 1-

u3—2u2—u+1 V 2y —4p+1 +1 |
1 V2 i - A (En

1 o~ (1—11)



Density is plotted for vario

values of u's
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Pressure is plotted for various values of u's

Plot[Pr(x] /. {r - #}, {X, @, 2}] &/@
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Summary and Future Work

@ We have found some exactly solutions to Einstein’s field
equations that seem to correspond to realistic density and
pressure profiles for stars.

@ Further analysis of the properties of these solutions is required.

@ A more general class of solutions exist and should be
investigated.

Special fns | Singularity e2N\X) Physics
Conf. Heun | (1,1,2) linear Schwarzschild
Heun (1,1,1,1) ? -
? (1,1,1,2) | rational/quadratic -
Painlevé non-linear ? -
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Non-linear Special functions. Painlevé eqns P; — Py

@ Coalescence cascade of Painlevé functions:

Py R Pv P
Gauss Kummer Bessel
{ {
Prv P Py

Weber - Airy 7«

o Py equation: % =2y3+zy +a.
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