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Problem Statement

 How do black holes 
 form?

 The pressure gradient stops 
 gravitational collapse as long as 
 r-2m(r) > 0 

 A large but finite density can 
 require an infinite pressure 
 gradient to stop collapse.

 For static spherically symmetric 
 space-times in hydro-static 
 equilibrium these equations 
 lead to the 
 Oppenheimer-Volkoff Equation

 Einstein's field equations for a 
 perfect fluid in conjunction with 
 the tensor give the O-V equation

 * Energy (in all its forms) curves 
 space-time.

  
 * The curvature of space-time is 

 the effect of gravity on energy (in 
 all its forms) 

 What are the equations of state 
 for stable stars and which ones 
 lead to the formation black 
 holes? 
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Background
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It has been sug�e�ted that, when t�e pressure within stellar matter becomes high enough,
a n�� �base consistmg of neutrons will be formed. In this paper we study the gravitational 
eqml!b�mm of masses of neutrons, using the equation of state for a cold Fermi gas, and general
relat1:7ity. For masses under ¼0 only one equilibrium solution exists, which is approximately 
described by the nonrelativistic Fermi equation of state and Newtonian gravitational theory. 
For masses ¼0 <m<¾0 two solutions exist, one stable and quasi-Newtonian, one more 
condensed, and unstable. For masses greater than ¾0 there are no static equilibrium solutions. 
These results are qualitatively confirmed by comparison with suitably chosen special cases 
of the _an�lytic solutions rece_ntly discovered by Tolman. A discussion of the probable effect
of deviations from the Fermi equation of state suggests that actual stellar matter after the 
exhaustion of thermonuclear sources of energy will, if massive enough, contract indefinitely, 
although more and more slowly, never reaching true equilibrium. 

J. INTRODUCTION 

FOR the application of the methods commonly 
used in attacking the problem of stellar 

structure1 the distribution of energy sources and 
their dependence on the physical conditions 
within the star must be known. Since at the time 
of Eddington's original studies not much was 
known about the physical processes responsible 
for the generation of energy within a star, 
various mathematically convenient assumptions 
were made in regard to the energy sources, and 
these led to different star models (e.g. the 
Eddington model, the point source model, etc.). 
It was found that with a given equation of state 
for the stellar material many important properties 
of the solutions (such as the mass-lurp.inosity 

. Jaw) were quite insensitive to the choice of 
assumptions about the distribution of energy 
sources, but were common to a wide range of 
models. 

In 1932 Landau2 proposed that instead of 
making arbitrary assumptions about energy 
sources chosen merely for mathematical con
venience, one should attack the problem by first 
investigating the physical nature of the equi
librium of a given mass of material in which no 
energy is generated, and from which there is no 
radiation, presumably in the hope that such an 

1 A. Eddington, The Internal Constitution of the Stars
(Cambridge Universit); Press, 1926); B. Stromgren, 
�rgebn. Exakt. Naturw1ss. 16,465 (1937); Short summary 
m G. Gamow, Phys. Rev. 53, 595 (1938). 

2 L. Landau, Physik. Zeits. Sowjetunion 1, 285 (1932).

investigation would afford some insight into the 
more general situation where the generation of 
energy is taken into account. Although such a 
model gives a good description of a white dwarf 
star in which most of the material is supposed to 
be in a degenerate state with a zero point energy 
high compared to thermal energies of even 107 

degrees, and such that the pressure is determined 
essentially by the density only and not by the 
temperature, still it would fail completely to 
describe a normal main sequence star, in which 
on the basis of the Eddington model the stellar 
material is nondegenerate, and the existence of 
energy sources and of the consequent temperature 
and pressure gradients plays an important part in 
determining the equilibrium conditions. The 
stability of a model in which the energy sources 
have to be taken into account is known to depend 
also on the temperature sensitivity of the energy 
sources and on the presence or absence of a 
time-lag in their response to temperature changes. 
However, if the view which seems plausible at 
present is adopted that the principal sources of 
stellar energy, at least in main sequence stars, are 
thermonuclear reactions, then the limiting case 
considered by Landau again becomes of interest 
in the discussion of what will eventually happen 
to a normal main sequence star after all the 
elements available for thermonuclear reactions 
are used up. Landau showed that for a model 
consisting of a cold degenerate Fermi gas there 
exist no stable equilibrium configurations for 
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Solution Flow Diagram

 The Metric Tensor 
 Inside a Star

 Assume Perfect Fluid (Ideal Gas)

 2nd Order Linear ODE

 Confluent Heun functions

 Sensible density and pressure 
 profiles for the interior of stars

 Assume Static Spherically 
 Symmetric Space-Time

 Riccati Equation

 Consider a family of "sensible" 
 functions for  mass distribution

 Calculate pressure
  and density

 Substitution

 Boundary 
 conditions
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From a Metric to a Riccati equation

Starting from a the metric of a static, spherically symmetric
spacetime:

d s2 = −e2Φ(r) d t2 + e2Λ(r) d r2 + r2 d θ2 + r2 sin2 θ dϕ2

we obtain the following expression for the density ρ and
pressure P:

ρ(r) = e−2Λ(r)

(
2Λ′(r)

r
− 1

r2

)
+

1

r2
,

P(r) =
e−2Λ(r)

(
−e2Λ(r) + 2rΦ′(r) + 1

)
r2

,

where Φ(r) satisfies an 2nd-order ODE involving Λ(r):

Φ′′(r) =
rΛ′(r)− e2Λ(r) + 1

r2
+

(
r2Λ′(r) + r

)
Φ′(r)

r2
−Φ′(r)2, ′ =

d

dr
.
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Riccati to a 2nd-order linear ODE

Φ′′ = A(x) + B(x)Φ′ − Φ′2,

Let Φ′ = y , we have Riccati eqn:

y ′ = A(x) + B(x)y − y2,

Φ′ = y = w ′

w we obtain a linear 2nd-order ODE:

w ′′ = A(x)w + B(x)w ′

with

A(x) =
xΛ′(x)− e2Λ(x) + 1

x2

B(x) =
x2Λ′(x) + x

x2
,
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2nd-order linear ODE for different Λ(x)’s

An 2nd-order linear ODE:

w ′′ = A(x)w + B(x)w ′

with

A(x) =
xΛ′(x)− e2Λ(x) + 1

x2

B(x) =
x2Λ′(x) + x

x2
,

Different choices of Λ(x)’s:

e2Λ(x) = a = const,

e2Λ(x) = (ax + b) ,

e2Λ(x) =

(
a− bx

1− dx

)
,

e2Λ(x) = (a(b − x)(c − x)) ,

e2Λ(x) =
(
a(b − x)2

)
,

a, b, c and d are constants.

Boundary conditions Λ(x), ρ(x) and P(x):

e2Λ(1) =
1

1− µ
, ρ(1) = 0, P(1) = 0.

Where µ = 2M/R, M is the mass of the star and R is its radius.
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Linear ODE and its singularities

Definition

Given a second-order linear ODE

y ′′(x) + p(x)y ′(x) + q(x)y(x) = 0

Let n ≥ 0, the order of singularity at x = a, be the minimal integer
such that both limits

lim
x→a

(x − a)np(x), and lim
x→a

(x − a)2nq(x)

are finite.

n = 0, ordinary point

n = 1, a regular singular point

n > 1, irregular singular with rank m = n − 1

Behaviour of x = ∞ using z = 1/x and checked at z = 0.
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Special functions satisfying 2nd-order ODEs. Heun

Singularities at 0, 1, a,∞ of order (1,1,1,1).

Coalescence cascade of Heun functions:
(1, 1, 1, 1) → (1, 1, 2) → (2, 2)...

Confluent Heun equation has singularities at 0, 1,∞ of order
(1, 1, 2):

d2w

dz2
+

(
γ

z
+

δ

z − 1
+ ϵ

)
dw

dz
+

αz − q

z(z − 1)
w = 0,

general solution w(z) = c1H1 + c2H2.
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e2Λ(x) = (ax + b), linear case. Confluent Heun.

u′′ = A(t)u + B(t)u′

with

A(t) =

((
µ2 − 2µ

)
µ4

(µ− 1)2t2
+

µ4

2(t − 1)
−
(
µ2 − 2µ− 1

)
µ4

2(µ− 1)2t

)

B(t) =

(
µ2

2(t − 1)
+

µ2

t

)
,

where ′ = d
dt and µ is a parameter. Asymptotic expansions at

x = 0:

w(x) ∼ c2x
1−

√
2µ2−4µ+1
(1−µ)

1−

(
µ3−2µ2−µ
2(µ−1)2

+ 1
2µ

(
1−

√
2µ2−4µ+1
(1−µ)

))
x

2µ−µ2

(µ−1)2
+

(
1−

√
2µ2−4µ+1
(1−µ)

)(
2−

√
2µ2−4µ+1
(1−µ)

)
+

√
2µ2−4µ+1
(1−µ) − 2

+ ...



+c1x
1+

√
2µ2−4µ+1
(1−µ)

1−

(
µ3−2µ2−µ
2(µ−1)2

+ 1
2µ

(√
2µ2−4µ+1
(1−µ) + 1

))
x

2µ−µ2

(µ−1)2
+

(√
2µ2−4µ+1
(1−µ) + 1

)(√
2µ2−4µ+1
(1−µ) + 2

)
−

√
2µ2−4µ+1
(1−µ) − 2

+ ...


(1)

where c1 and c2 are arbitrary constants
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Density is plotted for various values of µ’s
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Pressure is plotted for various values of µ’s
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Summary and Future Work

We have found some exactly solutions to Einstein’s field
equations that seem to correspond to realistic density and
pressure profiles for stars.

Further analysis of the properties of these solutions is required.

A more general class of solutions exist and should be
investigated.

Special fns Singularity e2Λ(x) Physics

Conf. Heun (1, 1, 2) linear Schwarzschild

Heun (1, 1, 1, 1) ? -

? (1, 1, 1, 2) rational/quadratic -

Painlevé non-linear ? -
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Non-linear Special functions. Painlevé eqns PI − PVI

Coalescence cascade of Painlevé functions:

PVI

Gauss
→ PV

Kummer
→ PIII

Bessel
↓ ↓

PIV

Weber
→ PII

Airy
→ PI

×

PII equation:
d2y
dz2

= 2y3 + zy + α.
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