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Introduction

Framework: Semi-Classical gravity → Spacetime described by a metric
and classical notions such as particles’ trajectories and horizons are
meaningful.

Two Categories of Black Holes:

Mathematical Black Hole (MBH): Solution of Einstein equations
containing a singularity and an event horizon.

Physical Black Hole (PBH): Trapped region of spacetime bounded
by an apparent horizon. They can be Regular Black Holes (RBHs)
without event horizon or singularity or may overlap, or be contained
in an MBH.

Ioannis Soranidis Horizon Singularities and Energy Momentum Tensor Classification 3 / 16



Introduction

Framework: Semi-Classical gravity → Spacetime described by a metric
and classical notions such as particles’ trajectories and horizons are
meaningful.

Two Categories of Black Holes:

Mathematical Black Hole (MBH): Solution of Einstein equations
containing a singularity and an event horizon.

Physical Black Hole (PBH): Trapped region of spacetime bounded
by an apparent horizon. They can be Regular Black Holes (RBHs)
without event horizon or singularity or may overlap, or be contained
in an MBH.

Ioannis Soranidis Horizon Singularities and Energy Momentum Tensor Classification 3 / 16



Introduction

Framework: Semi-Classical gravity → Spacetime described by a metric
and classical notions such as particles’ trajectories and horizons are
meaningful.

Two Categories of Black Holes:

Mathematical Black Hole (MBH): Solution of Einstein equations
containing a singularity and an event horizon.

Physical Black Hole (PBH): Trapped region of spacetime bounded
by an apparent horizon. They can be Regular Black Holes (RBHs)
without event horizon or singularity or may overlap, or be contained
in an MBH.

Ioannis Soranidis Horizon Singularities and Energy Momentum Tensor Classification 3 / 16



Introduction

Framework: Semi-Classical gravity → Spacetime described by a metric
and classical notions such as particles’ trajectories and horizons are
meaningful.

Two Categories of Black Holes:

Mathematical Black Hole (MBH): Solution of Einstein equations
containing a singularity and an event horizon.

Physical Black Hole (PBH): Trapped region of spacetime bounded
by an apparent horizon. They can be Regular Black Holes (RBHs)
without event horizon or singularity or may overlap, or be contained
in an MBH.

Ioannis Soranidis Horizon Singularities and Energy Momentum Tensor Classification 3 / 16



Introduction

Event Horizon (EH): Global

Teleological entity which is even

in principle physically

unobservable! One needs to know

the entire history of the universe!1

Apparent Horizon (AH):
Observable quasi-locally

Both timelike and null particles can
escape from the quantum ergosphere
region!

Useful to study their motion when it is
possible to cross the AH.

1M Visser, Phys. Rev. D 90, 127502 (2014)
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Self-Consistent Model

The model we are using for the description of spherically symmetric PBHs
is based on two assumptions:2

Regularity of the Apparent Horizon: Curvature scalars are finite
there.

Formation Time: A distant observer (Bob) should be able to see the
formation of the PBH in finite time.

Semi-Classical Einstein equations:

Rµν −
1

2
gµνR = 8πTµν

where Tµν := 〈T̂µν〉ω expectation value of renormalized Energy
Momentum Tensor in a quantum state ω describing both collapsing
matter and produced excitations (Joint Treatment)

2V Baccetti, RB Mann, S Murk, and DR Terno, Phys. Rev. D 99, 124014 (2019)
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Self-Consistent Model
The above assumptions lead to the main solution (k = 0) that describes
evaporation but there are more, which play role at the formation stage.3,4

The metric can be written in both Schwarzchild (t,r) coordinates and
advanced coordinates (v,r).

ds2 = −e2h(t,r)f (t, r)dt2 + f −1(t, r)dr2 + r2dΩ2

with x = r − rg (t) and

f (t, r) = 1− C (t, r)

r

C (t, r) = rg (t) + c12
√
x + c1x +O

(
x3/2

)
, c12 = −4

√
πr3/2Y < 0

h(t, r) = −1

2
ln

x

ξ
+O(x)

3DR Terno, Phys. Rev. D 101, 124053 (2020)
4RB Mann, S Murk, DR Terno, Int. J. Mod. Phys. D 31, 2230015 (2022)
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Self-Consistent Model

Important Features of the Model:

The Apparent Horizon is a timelike hypersurface.

The Null Energy Condition (NEC) is violated in the vicinity of the
outer apparent horizon.

Near the apparent horizon the metric is approximately the Vaidya
metric.

Regularity Conditions

T00 = e2h(t,r)
(
−Y 2(t) + e12

√
x + e1x + · · ·

)
T01 = f −1(t, r)eh(t,r)

(
−Y 2(t) + ϕ12

√
x + ϕ1x + · · ·

)
T11 = f −2(t, r)

(
−Y 2(t) + p12

√
x + p1x + · · ·

)
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Energy Momentum Tensor Classification

The EMT describing the self-consistent model in the orthonormal frame
with the Schwarzchild coordinate description (t, r), has the following form,

Tâb̂ =


q + µ1 q + µ2 0 0
q + µ2 q + µ3 0 0

0 0 P 0
0 0 0 P



where x = r − rg (t) and

q =
rgY 2

c12
√
x
< 0 (Divergent Term!)

µ1 = − rg e12

c12
+

r2
g (1−c1)Y 2

c2
12

+ k
√
x +O(x)

µ2 = − rgϕ12

c12
+

r2
g (1−c1)Y 2

c2
12

+ λ
√
x +O(x)

µ3 = − rgp12

c12
+

r2
g (1−c1)Y 2

c2
12

+ k̃
√
x +O(x)

Finite Terms
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Energy Momentum Tensor Classification
The Hawking-Ellis Classification of the EMT is determined by the Lorentz
invariant eigenvalues

Det(Tâb̂ − ληâb̂) = 0

We can directly determine that two of the eigenvalues are (P,P) and for
the other two, it is necessary to solve the characteristic equation

λ2 + (µ1 − µ3)λ+ (µ2
2 − µ1µ3) + q(2µ2 − µ1 − µ3) = 0

with the sign of the discriminant determining the type of the EMT

∆(x) = −e1 + p1 − 2ϕ1

4πrg
+O

(√
x
)

∆(0) > 0→ Type I
Only if the EMT behaves according to semi-classical analysis!5

NEC Violation→ Tâb̂l
â
out l

b̂
out = 4q + 4µ2 +O

(√
x
)
< 0

5PK Dahal, I Soranidis and DR Terno, arXiv:2209.10766 [gr-qc] (2022)
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Energy Momentum Tensor Classification

The EMT can be written as

T âb̂ =


q + µ2 −q − µ2 0 0
−q − µ2 q + µ2 0 0

0 0 0 0
0 0 0 0

+


µ 0 0 0
0 µ′ 0 0
0 0 P 0
0 0 0 P



First part can be written as (q + µ2)k âk b̂ where k â = (1,−1, 0, 0) is the
ingoing null vector. We have a negative energy density null dust or
radiation going inside as seen by a static observer.→ Massless

Second part is an anisotropic fluid → Massive

Two fluid description!
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ingoing null vector. We have a negative energy density null dust or
radiation going inside as seen by a static observer.→ Massless

Second part is an anisotropic fluid → Massive

Two fluid description!

Ioannis Soranidis Horizon Singularities and Energy Momentum Tensor Classification 10 / 16



Energy Momentum Tensor Classification

The EMT can be written as
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Horizon Singularities

Two different observers:

Eve: The static observer

Alice: The moving observer

Eve, static at radial distance R, will observe energy density ρE given by
the component T0̂0̂ of the EMT in the orthonormal frame!

ρE =
rgY 2

c12

√
X

+ µ2 with X = R − rg

lim
R→rg

ρE = −∞

Eve observes divergent negative energy density on the apparent
horizon!
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Horizon Singularities

We study three different cases of Alice’s motion, using the (v , r)
coordinate form of the metric, with normalized 4-velocity given by

uµA =
(
V̇ , Ṙ, 0, 0

)
and the observed energy density given by

ρA = Tµνu
µ
Au

ν
A

What does Alice see when she tries to cross the apparent horizon?

For the freely falling case we have

V̇ = Ṙ+
√

Ṙ2+f

eh+ f
' − e−h+

2Ṙ
+O(f )⇒ ρA : Finite! 6

6PK Dahal, S Murk and DR Terno, AVS Quantum Sci. 4, 015606 (2022)
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Horizon Singularities

For the case where Alice follows an outgoing geodesic inside the
quantum ergosphere of the PBH, we have that the only way to escape
is by making a transition to an ingoing trajectory and let the apparent
horizon overtake7

V̇ = Ṙ−
√

Ṙ2+f

eh+ f
−−−−−−→
Transition

V̇ = Ṙ+
√

Ṙ2+f

eh+ f

So Alice crosses the apparent horizon during the ingoing phase and thus
observing

ρA : Finite!

Also the tidal forces experienced by her are finite too!

7PK Dahal, I Soranidis and DR Terno, arXiv:2209.10766 [gr-qc](2022)
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Horizon Singularities

Figure: Escaping Particle’s Trajectory
from Regular Black Hole.

Figure: Radial velocity on the outgoing
segment of the trajectory inside the
trapped region.
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Horizon Singularities

For the case where Alice follows an outgoing non-geodesic trajectory
inside the quantum ergosphere of the PBH we consider the maximum
allowed radial velocity Ṙ = −

√
−f which leads to

V̇ = e−h+√
−f ⇒ ρA → −∞⇒ Firewall

Also leads to divergent tidal forces,
destroying any observer trying to go
outside!
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√
−f which leads to

V̇ = e−h+√
−f ⇒ ρA → −∞⇒ Firewall

Also leads to divergent tidal forces,
destroying any observer trying to go
outside!

Ioannis Soranidis Horizon Singularities and Energy Momentum Tensor Classification 15 / 16



Summary

Main Results:

NEC violating Energy Momentum Tensor, Type I, describing at least
two fluids!

Apparent Horizon has mildly singular features manifesting themselves
as a firewall!

Thank you!
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