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● Existence of 
horizons as a math question
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● Admissible solutions, their properties, 
and the holes they describe

● Implications for black holes

● Implications for wormholes

What’s next?

Outline



astrophysical black holes
known knowns known unknowns

EHT 2019

Masses in the stellar graveyard
(in solar masses)
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Masses in the stellar graveyard
(in solar masses)

physical black hole (PBH) = 
a trapped spacetime region 
[that has been formed at a finite time 
of a distant observer]

Frolov, arXiv:/gr-qc1411.6981

Many definitons of a black hole:
Curiel, Nature Astr. 3, 27 (2019)



ultra-compact objects

compactness

0 (1 )grr = + 

UCO: has a photosphere
BH: has a horizon

MBH: has an event horizon
PBH: has a trapped region

ECO: non-BH UCO

♦ Modified
♦ Semiclassical
♦ Quantum

gravity

Exotic matter

Buchdal’s theorem
1 8>

0, 0ρ > >p

GR

Why  ECOs are 
called exotic?

the zoo & physical black holes

Cardoso and Pani, Nat. Astron. 1, 586 (2017)
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BH: has a horizon
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PBH: has a trapped region

ECO: non-BH UCO

♦ Modified
♦ Semiclassical
♦ Quantum

gravity

Exotic matter

Buchdal’s theorem
1 8>

0, 0ρ > >p

GR

Why  ECOs are 
called exotic?

the zoo & physical black holes

[1] Perpetual ongoing collapse, with an asymptotic 
horizon
[2] Formation of a transient or an asymptotic object, 
where the compactness reaches a minimum at some 
finite  asymptotic [=distant observer] time 
[3] Formation of an apparent horizon in finite 
asymptotic time

0→

min→ 

f 0( ) =t Cardoso and Pani, Nat. Astron. 1, 586 (2017)



4+ii

not assumed: global structure, singularity, types of 
fields, quantum state, presence of Hawking radiation

1
2

ˆ8R TR gµν µν µν ω
π− =

+Eμν
4. Dynamics of the collapsing matter is still described
classically using the self-consistent metric

3. The metric is modified by quantum effects. The resulting 
curvature satisfies the semiclassical self-consistent equation

2. Classical concepts, such as trajectory, event horizon or
singularity can be used.

1.The classical spacetime structure is still meaningful and
is described by a metric gμν.

assumptions

semiclassical physics
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not assumed: global structure, singularity, types of 
fields, quantum state, presence of Hawking radiation

1
2

ˆ8R TR gµν µν µν ω
π− =

+Eμν
4. Dynamics of the collapsing matter is still described
classically using the self-consistent metric

3. The metric is modified by quantum effects. The resulting 
curvature satisfies the semiclassical self-consistent equation

2. Classical concepts, such as trajectory, event horizon or
singularity can be used.

1.The classical spacetime structure is still meaningful and
is described by a metric gμν.

assumptions

(i) a light-trapping region forms at a finite
time of a distant observer
(ii) curvature scalars [contractions of the 
Riemann tensor] are finite on the 
boundary of the trapped region

Worked-out consequences:
□ Spherical symmetry □ Kerr-Vaidya metrics

physical black holes

semiclassical physics



spherical symmetry: recap + some results
PBH: the process
Use Schwarzschild coordinates to extract the info from divergencies
Pick a nice form of the Einstein equations. Demand existence of real solutions
Use null coordinates to help classification



Finite infall time (according to a distant Bob)
Collapse of a massive thin shell takes a finite time (according to Bob),

but most of the mass remains [?]
Outer apparent horizon is always timelike
Null energy condition is violated [in the vicinity of the outer horizon]
A weak firewall:  energy density for escaping* non-geodesic Alice diverges, but weakly. 
 Inner apparent horizon is timelike or null.
 Some popular RBH models do not work.
Usual proofs of instability of RBH do not apply

spherical symmetry: recap + some results
PBH: the process

PBH: the properties

Use Schwarzschild coordinates to extract the info from divergencies
Pick a nice form of the Einstein equations. Demand existence of real solutions
Use null coordinates to help classification



spherical symmetry
structure 

2 2 2 1 2 2
2

hds e fdt f dr r d−= − + + Ω

1 2 ( , )= −f M t r r

□ circumference: 2πr 
□ physical time at infinity: t

2 ( , ) ( , )M t r C t r≡
Misner-Sharp invariant mass

max ( , )ggr C t r=
Schwarzschild radius

( ) ( , )gC r t W t r= + ►
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spherical symmetry
structure Curvature scalars

T : T µ
µ=

All three components go to zero
or diverge in the same way

2 0

lim ~       
( )g

a kr r
a

f
t f

τ
τ→

±ϒ



k=0,1*

useful

Einstein equations

+regular terms*2 2 2 1 2 2
2

hds e fdt f dr r d−= − + + Ω

1 2 ( , )= −f M t r r

□ circumference: 2πr 
□ physical time at infinity: t

2 ( , ) ( , )M t r C t r≡
Misner-Sharp invariant mass

max ( , )ggr C t r=
Schwarzschild radius

2lim lim
g gr

r
tr r r
τ τ

→ →
= = −ϒ 0k =( ) ( , )gC r t W t r= + ►



:= − gx r r

34 ...g gC r r xπ= − ϒ +
1 ln ...
2 ξ

= − +
xh

1. The limiting form (close apparent horizon) of dynamical metrics 
is almost uniquely defined (both k=0 and k=1). 

3 2
32 ...C r c x= − +

3 ln ...
2

xh
ξ

= − +

0k =

1k =

spherical symmetry
metrics

2.   BH parameters are related via evaporation rate
3
2

32g

g

dr c
dt r

ξ
= −

◄

►

(dynamical BH/WoH; more static options)

4g
g

dr
r

dt
π ξ= − ϒ
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spherical symmetry
metrics

2.   BH parameters are related via evaporation rate
3
2

32g

g

dr c
dt r

ξ
= −

 No static k=0 solutions
 Vaidya metrics are k=0 solutions
Reissner-Nordström, many static RBH are examples of k=1 solutions:
Popular dynamic RBH models are k=0 solutions

◄

►

(dynamical BH/WoH; more static options)

4g
g

dr
r

dt
π ξ= − ϒ

28 ...g g gC r r xπ ρ= + +



spherical symmetry
metrics

22 2 2
2

2 2 2
2      =

      

h h

h h

ds e fd e d dr r d

e fdu e dudr r d

+ +

− −

= − + + Ω

− + + Ω

v v

2 ( , ) ( , ) ( ( , ), ) ...M t r C t r C u t r r−≡ ≡ ≡

3. Most convenient coordinates are
retarded (u-,r)  for white holes and  
advanced (v+,r) for black holes

( )1hhdt e e dv f dr±− −
±= 

E.g, in (v,r) the metric is regular at              for             and  singular for gr r+≡ 0gr′ < 0gr′ >



BH solutions

0gr′ < ( , )rv► 0gr′ > ► ( , )ru

WH solutions

spherical symmetry
metrics
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 A wormhole throat: a marginal 

outer trapped surface +

 Use all possible solution +

impose wormhole requirements



Finite infall/collapse time (according to a distant Bob)
Outer apparent horizon is always timelike
Null energy condition is violated [in the vicinity of the outer horizon]
Unique formation scenario.
A weak firewall:  energy density for escaping* non-geodesic Alice diverges, but weakly
 Some popular RBH models do not work.
Generalized surface gravity: Kodama
 Interesting consistency/thermo implications
 If the 1st law+ thermality of evaporation work, then a short hair

spherical symmetry: recap + some results
PBH: the process

PBH: the properties

Use Schwarzschild coordinates to extract the info from divergencies
Pick a nice form of the Einstein equations. Demand real solutions
Use null coordinates to help classification
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spherical symmetry: recap + some results
PBH: the process

PBH: the properties

Use Schwarzschild coordinates to extract the info from divergencies
Pick a nice form of the Einstein equations. Demand real solutions
Use null coordinates to help classification

Wormholes:
A problem



wormholes
classic sci-fi

2 2 2 1 2 2
2

hds e fdt f dr r d−= − + + Ω

max ( , )ggr C t r=
Schwarzschild radius

2 2 1 2 2
2ds e dt f dr r dΦ −= − + + Ω

DRT, Inaccessibility of traversable wormholes, 
Phys. Rev. D 106, 044035 (2022)

A wormhole throat: a marginal outer trapped 
surface +

Use all possible solution +
impose wormhole requirements

2
00,Φ = =C b r Ellis-Morris-Thorne

 Simpson-Visser



wormholes
consequences

EMT and SV wormholes are k=1 
More dynamical solutions are possible
EMT and SV are not static limits of any of the admissible solutions
 Static limits of admissible solutions (if exist) have strong firewall and/or violate the QEI

Kontou and Olum, 
PRD 91, 104005 (2015).





PBH in modified gravity
Wed 14/12, R2 @16:45

Horizon singularities & EMT
Mon 12/12, R2 @15:00

BH thermo in dS
Wed 14/12, R2 @16:30

Sebastian Murk





0T k k R k kµ ν µ ν
µν µν≥ ⇔

0T u uµ ν
µν ≥

Energy conditions
Energy  momentum (k=0)

2

ˆˆ

 1   1( )
1    1
± ϒ

= −  ± ab

tT
f

Solutions of the Einstein
equations exist:
the NEC must be violated 

Levi and Ori, Phys. Rev. Lett. 117, 231101 (2016)

spherical symmetry
consequences



useful relations

( ):= − gx r r t
): (+= −y r r v

1= −
Cf
r

(Dynamical k=1 solution: w1=1)

Parameter identification, 1.0

(v,r) & (t,r)

 1st step in the coordinate transformation ▲
 1st terms in the expansion ▼ (use invariance of the MS mass)

using the EMT transformation, near-horizon expansions: 

(for the semiclassical evaporation law in a general form)
( ) ( )g gr t r′ = Γ ( ) ( )r t r+ + +′ = Γ

2 2 2 1 2 2
2

hds e fdt f dr r d−= − + + Ω

4 ...gf r xπ= ϒ + 1 ln ...
2 ξ

= − +
xh



 A PBH forms as k=1 solution 
and then evolves as 
(evaporating) k=0 solution

BH formation

min gap C-r r of min C-r

Hence up to formation of the first 
marginally trapped surface w1=1

At the formation: Δ(vf)=0, r+(vf)=r*(vf)

After formation: Δ=0,  but r+(v) is not  @ min 



Surface gravity

 0th law: surface gravity is constant on the horizon

 1st law:

Schwarzschild:

8 HdM dA dJκ ω
π

= +

NEC is true

Surface gravity κ is: 
(a) inaffinity of null geodesics on the horizon
(b) and the peeling off properties of null geodesics near the horizon

Stationary Killing horizon: (a)=(b)=(c)

3

2 B

cT
Gk

κ
π

=


Temperature

1 4 1 2M Cκ = =

NEC is false

Interpretation: the force per unit mass as measured at infinity, to keep the 
observer stationary just outside the horizon (c) 

Surface gravity plays a key role in BH thermo 

Surface gravity plays a key role in the Hawking radiation



@ outer apparent horizon

*
peel 0,κ = ∞ both k=0,1 solutions K 0κ = for k=1 solution

K 1 2rκ +≤ for k=0 (w1=1) solution

Peeling surface gravity Kodama surface gravity

( )
( , )

peel 1 ( , )
g

h t r

r
r r

e C t r
r

κ
=

= − ∂ K 2
1 ( , ) ( , )
2

g

r

r r r

C r C r
r r

κ
+= ≡

∂ = − 
 

v v

 Vanzo, Acquaviva, and Di Criscienzo, 
Class. Quant. Grav. 28, 183001 (2011).
 Cropp, Liberati,Visser, 
Class. Quant. Grav. 30, 125001 (2013)

Mann, Murk and DRT, 
Phys. Rev. D 105, 124032 (2022)

surface gravity

 Hayward, 
Class. Quant. Grav. 15, 3147 (1996).

1( )C r w r r+ += + …+−



Dahal, Simovic, Soranidis, DRT, 
soon(ish)

 If we want the 1st law with AH, then the metric is ``close’’ to Vaidya  

K 1
1 0

2
w

r
κ

+

= ⇒ =

 Use the relations between the coefficients
2

2

| |
g

g g

r
r

r r+

′
′ =

′′

 Add Page’s law

2( ) ( )g g
g

r t r
r
α′ = Γ = −

then

universality
of BH dynamics

1
2 2 grπ

ϒ =

2

3
gr
αξ =

1
2

r+′ = −

8
dM dAκ

π
=



ECO vs BH
will be there a smoking gun?

To get to the QNM, waveforms:
scattering in the effective potential

*r
* → →∞r r

*−∞← r

Shwarzschild

ECO

A missing piece 
PBH give yet another potential:
what are the QNM & waveforms? 

*r*finite r←

tortoise coordinate►

Cardoso and Pani, 
Liv. Rev. Rel. 22, 4 (2019)

THE QUESTION


